2019-09-05 10:37:42 +02:00
\documentclass [aip,jcp,reprint,noshowkeys,superscriptaddress] { revtex4-1}
2020-02-15 14:16:56 +01:00
\usepackage { graphicx,dcolumn,bm,xcolor,microtype,multirow,amsmath,amssymb,amsfonts,physics,mhchem}
\usepackage [utf8] { inputenc}
\usepackage [T1] { fontenc}
\usepackage { txfonts}
2020-02-25 14:43:33 +01:00
\usepackage { mathrsfs}
2020-02-15 14:16:56 +01:00
\usepackage [
colorlinks=true,
citecolor=blue,
breaklinks=true
]{ hyperref}
\urlstyle { same}
2019-06-16 22:35:10 +02:00
\newcommand { \alert } [1]{ \textcolor { red} { #1} }
2020-02-15 14:16:56 +01:00
\usepackage [normalem] { ulem}
\newcommand { \titou } [1]{ \textcolor { red} { #1} }
2020-02-25 16:16:13 +01:00
\newcommand { \manu } [1]{ \textcolor { blue} { #1} }
2020-02-15 14:16:56 +01:00
\newcommand { \trashPFL } [1]{ \textcolor { red} { \sout { #1} } }
\newcommand { \trashEF } [1]{ \textcolor { blue} { \sout { #1} } }
2019-06-16 22:35:10 +02:00
%useful stuff
\newcommand { \cdash } { \multicolumn { 1} { c} { ---} }
\newcommand { \mc } { \multicolumn }
\newcommand { \mr } { \multirow }
\newcommand { \fnm } { \footnotemark }
\newcommand { \fnt } { \footnotetext }
\newcommand { \tabc } [1]{ \multicolumn { 1} { c} { #1} }
\newcommand { \la } { \lambda }
\newcommand { \si } { \sigma }
2020-02-15 16:17:44 +01:00
\newcommand { \ie } { \textit { i.e.} }
\newcommand { \eg } { \textit { e.g.} }
2019-06-16 22:35:10 +02:00
2019-09-06 17:26:37 +02:00
% operators
2020-02-14 22:41:41 +01:00
\newcommand { \hH } { \Hat { H} }
\newcommand { \hh } { \Hat { h} }
2019-09-06 17:26:37 +02:00
\newcommand { \hT } { \Hat { T} }
2020-02-14 22:41:41 +01:00
\newcommand { \vne } { v_ \text { ne} }
2019-09-06 17:26:37 +02:00
\newcommand { \hWee } { \Hat { W} _ \text { ee} }
2020-02-15 16:01:16 +01:00
\newcommand { \WHF } { W_ \text { HF} }
2019-09-06 17:26:37 +02:00
2019-06-16 22:35:10 +02:00
% functionals, potentials, densities, etc
\newcommand { \eps } { \epsilon }
\newcommand { \e } [2]{ \eps _ \text { #1} ^ { #2} }
2019-09-06 17:26:37 +02:00
\newcommand { \E } [2]{ E_ \text { #1} ^ { #2} }
2019-09-10 11:42:11 +02:00
\newcommand { \bE } [2]{ \overline { E} _ \text { #1} ^ { #2} }
\newcommand { \be } [2]{ \overline { \eps } _ \text { #1} ^ { #2} }
\newcommand { \bv } [2]{ \overline { f} _ \text { #1} ^ { #2} }
2019-09-09 11:44:30 +02:00
\newcommand { \n } [2]{ n_ { #1} ^ { #2} }
2020-03-10 17:26:53 +01:00
\newcommand { \dn } [2]{ \Delta n_ { #1} ^ { #2} }
2019-06-16 22:35:10 +02:00
\newcommand { \DD } [2]{ \Delta _ \text { #1} ^ { #2} }
\newcommand { \LZ } [2]{ \Xi _ \text { #1} ^ { #2} }
% energies
\newcommand { \EHF } { E_ \text { HF} }
\newcommand { \Ec } { E_ \text { c} }
\newcommand { \Ecat } { E_ \text { cat} }
\newcommand { \Eneu } { E_ \text { neu} }
\newcommand { \Eani } { E_ \text { ani} }
\newcommand { \EPT } { E_ \text { PT2} }
\newcommand { \EFCI } { E_ \text { FCI} }
2020-02-04 17:27:24 +01:00
% matrices/operator
2020-02-16 13:54:08 +01:00
\newcommand { \br } [1]{ \boldsymbol { r} _ { #1} }
2020-02-26 23:31:10 +01:00
\newcommand { \bx } [1]{ \boldsymbol { x} _ { #1} }
2020-02-16 13:54:08 +01:00
\newcommand { \bw } { { \boldsymbol { w} } }
\newcommand { \bG } { \boldsymbol { G} }
\newcommand { \bS } { \boldsymbol { S} }
\newcommand { \bGam } [1]{ \boldsymbol { \Gamma } ^ { #1} }
\newcommand { \bgam } [1]{ \boldsymbol { \gamma } ^ { #1} }
2020-02-15 14:16:56 +01:00
\newcommand { \opGam } [1]{ \hat { \Gamma } ^ { #1} }
2020-02-16 13:54:08 +01:00
\newcommand { \bh } { \boldsymbol { h} }
\newcommand { \bF } [1]{ \boldsymbol { F} ^ { #1} }
2020-03-08 20:37:45 +01:00
\newcommand { \Ex } [2]{ \Omega _ \text { #1} ^ { #2} }
2019-06-16 22:35:10 +02:00
2020-02-04 17:27:24 +01:00
2019-06-16 22:35:10 +02:00
% elements
\newcommand { \ew } [1]{ w_ { #1} }
\newcommand { \eG } [1]{ G_ { #1} }
\newcommand { \eS } [1]{ S_ { #1} }
2020-02-15 14:16:56 +01:00
\newcommand { \eGam } [2]{ \Gamma _ { #1} ^ { #2} }
\newcommand { \hGam } [2]{ \Hat { \Gamma } _ { #1} ^ { #2} }
\newcommand { \eh } [2]{ h_ { #1} ^ { #2} }
2019-06-16 22:35:10 +02:00
\newcommand { \eF } [2]{ F_ { #1} ^ { #2} }
2020-02-15 14:16:56 +01:00
\newcommand { \ERI } [2]{ (#1|#2)}
\newcommand { \dbERI } [2]{ (#1||#2)}
2019-06-16 22:35:10 +02:00
% Numbers
2020-02-17 16:26:36 +01:00
\newcommand { \nEl } { N}
\newcommand { \nBas } { K}
2019-06-16 22:35:10 +02:00
2020-02-14 22:41:41 +01:00
% AO and MO basis
\newcommand { \Det } [1]{ \Phi ^ { #1} }
2019-06-16 22:35:10 +02:00
\newcommand { \MO } [2]{ \phi _ { #1} ^ { #2} }
2020-02-15 14:16:56 +01:00
\newcommand { \SO } [2]{ \varphi _ { #1} ^ { #2} }
2019-06-16 22:35:10 +02:00
\newcommand { \cMO } [2]{ c_ { #1} ^ { #2} }
\newcommand { \AO } [1]{ \chi _ { #1} }
% units
\newcommand { \IneV } [1]{ #1~eV}
\newcommand { \InAU } [1]{ #1~a.u.}
\newcommand { \InAA } [1]{ #1~\AA }
\newcommand { \SI } { \textcolor { blue} { supplementary material} }
\newcommand { \LCPQ } { Laboratoire de Chimie et Physique Quantiques (UMR 5626), Universit\' e de Toulouse, CNRS, UPS, France}
\newcommand { \LCQ } { Laboratoire de Chimie Quantique, Institut de Chimie, CNRS, Universit\' e de Strasbourg, Strasbourg, France}
%%% added by Manu %%%
2020-02-14 22:41:41 +01:00
\newcommand { \beq } { \begin { equation} }
\newcommand { \eeq } { \end { equation} }
2020-02-16 13:54:08 +01:00
\newcommand { \bmk } { \boldsymbol { \kappa } } % orbital rotation vector
\newcommand { \bmg } { \boldsymbol { \Gamma } } % orbital rotation vector
\newcommand { \bxi } { \boldsymbol { \xi } }
2020-02-11 15:00:44 +01:00
\newcommand { \bfx } { { \bf { x} } }
\newcommand { \bfr } { { \bf { r} } }
2020-02-15 14:16:56 +01:00
\DeclareMathOperator * { \argmax } { arg\, max}
2019-10-28 14:47:19 +01:00
\DeclareMathOperator * { \argmin } { arg\, min}
2019-06-16 22:35:10 +02:00
%%%%
\begin { document}
\title { Weight-dependent local density-functional approximations for ensembles}
\author { Pierre-Fran\c { c} ois Loos}
\email { loos@irsamc.ups-tlse.fr}
\affiliation { \LCPQ }
\author { Emmanuel Fromager}
\email { fromagere@unistra.fr}
\affiliation { \LCQ }
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin { abstract}
We report a first generation of local, weight-dependent correlation density-functional approximations (DFAs) that incorporate information about both ground and excited states in the context of density-functional theory for ensembles (eDFT).
2020-03-10 17:26:53 +01:00
These density-functional approximations for ensembles (eDFAs) are specially designed for the computation of single and double excitations within Gross--Oliveira--Kohn (GOK) DFT (\textit { i.e.} , eDFT for excited states), and can be seen as a natural extension of the ubiquitous local-density approximation for ensemble (eLDA).
2019-06-16 22:35:10 +02:00
The resulting eDFAs, based on both finite and infinite uniform electron gas models, automatically incorporate the infamous derivative discontinuity contributions to the excitation energies through their explicit ensemble weight dependence.
Their accuracy is illustrated by computing single and double excitations in one-dimensional many-electron systems in the weak, intermediate and strong correlation regimes.
2020-03-10 17:26:53 +01:00
Although the present weight-dependent functional has been specifically designed for one-dimensional systems, the methodology proposed here is directly applicable to the construction of weight-dependent functionals for realistic three-dimensional systems, such as molecules and solids.
2019-06-16 22:35:10 +02:00
\end { abstract}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\maketitle
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2019-09-05 10:37:42 +02:00
\section { Introduction}
\label { sec:intro}
2019-06-16 22:35:10 +02:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2020-02-28 12:47:33 +01:00
Over the last two decades, density-functional theory (DFT)
2020-02-28 21:44:08 +01:00
\cite { Hohenberg_ 1964,Kohn_ 1965,ParrBook} has become the method of choice for
2020-02-28 12:47:33 +01:00
modeling the electronic structure of large molecular systems and
2020-02-28 21:44:08 +01:00
materials.
2020-02-28 12:47:33 +01:00
The main reason is that, within DFT, the quantum contributions to the
electronic repulsion energy --- the so-called exchange-correlation (xc)
2020-02-28 21:44:08 +01:00
energy --- is rewritten as a functional of the electron density $ \n { } { } \equiv \n { } { } ( \br { } ) $ , the latter being a much simpler quantity than the many-electron wave function.
2020-02-28 12:47:33 +01:00
The complexity of the many-body problem is then transferred to the xc
density functional.
2020-02-15 18:00:58 +01:00
Despite its success, the standard Kohn-Sham (KS) formulation of DFT \cite { Kohn_ 1965} (KS-DFT) suffers, in practice, from various deficiencies. \cite { Woodcock_ 2002, Tozer_ 2003,Tozer_ 1999,Dreuw_ 2003,Sobolewski_ 2003,Dreuw_ 2004,Tozer_ 1998,Tozer_ 2000,Casida_ 1998,Casida_ 2000,Tapavicza_ 2008,Levine_ 2006}
2020-02-28 12:47:33 +01:00
The description of strongly multiconfigurational ground states (often
referred to as ``strong correlation problem'') still remains a
challenge. \cite { Gori-Giorgi_ 2010,Fromager_ 2015,Gagliardi_ 2017}
2020-02-28 17:13:55 +01:00
Another issue, which is partly connected to the previous one, is the
description of low-lying quasi-degenerate states.
2019-06-16 22:35:10 +02:00
2020-02-28 17:13:55 +01:00
The standard approach for modeling excited states in a DFT framework is
2020-02-28 12:47:33 +01:00
linear-response time-dependent DFT (TDDFT). \cite { Runge_ 1984,Casida,Casida_ 2012}
2020-02-28 17:13:55 +01:00
In this case, the electronic spectrum relies on the (unperturbed) pure-ground-state KS picture, which may break down when electron correlation is strong.
Moreover, in exact TDDFT, the xc energy is in fact an xc { \it action} \cite { Vignale_ 2008} which is a
2020-02-28 21:44:08 +01:00
functional of the time-dependent density $ \n { } { } \equiv \n { } { } ( \br ,t ) $ and, as
2020-02-28 17:13:55 +01:00
such, it should incorporate memory effects. Standard implementations of TDDFT rely on
2020-02-28 21:44:08 +01:00
the adiabatic approximation where these effects are neglected. \cite { Dreuw_ 2005} In other
2020-02-28 12:47:33 +01:00
words, the xc functional is assumed to be local in time. \cite { Casida,Casida_ 2012}
2020-03-10 17:26:53 +01:00
As a result, double electronic excitations (where two electrons are simultaneously promoted by a single photon) are completely absent from the TDDFT spectrum, thus reducing further the applicability of TDDFT. \cite { Maitra_ 2004,Cave_ 2004,Mazur_ 2009,Romaniello_ 2009a,Sangalli_ 2011,Mazur_ 2011,Huix-Rotllant_ 2011,Elliott_ 2011,Maitra_ 2012,Sundstrom_ 2014,Loos_ 2019}
2019-06-16 22:35:10 +02:00
2020-02-28 12:47:33 +01:00
When affordable (\ie , for relatively small molecules), time-independent
state-averaged wave function methods
\cite { Roos,Andersson_ 1990,Angeli_ 2001a,Angeli_ 2001b,Angeli_ 2002,Helgakerbook} can be employed to fix the various issues mentioned above.
The basic idea is to describe a finite (canonical) ensemble of ground
and excited states altogether, \ie , with the same set of orbitals.
Interestingly, a similar approach exists in DFT. Referred to as
2020-02-28 21:44:08 +01:00
Gross--Oliveira--Kohn (GOK) DFT, \cite { Gross_ 1988a,Gross_ 1988b,Oliveira_ 1988} it was proposed at the end of the 80's as a generalization
2020-02-28 12:47:33 +01:00
of Theophilou's DFT for equiensembles. \cite { Theophilou_ 1979}
2020-02-28 17:13:55 +01:00
In GOK-DFT, the ensemble xc energy is a functional of the
2020-02-28 12:47:33 +01:00
density but also a
function of the ensemble weights. Note that, unlike in conventional
2020-02-28 21:44:08 +01:00
Boltzmann ensembles, \cite { Pastorczak_ 2013} the ensemble weights (each state in the ensemble
is assigned a given and fixed weight) are allowed to vary
2020-02-28 12:47:33 +01:00
independently in a GOK ensemble.
The weight dependence of the xc functional plays a crucial role in the
calculation of excitation energies.
\cite { Gross_ 1988b,Yang_ 2014,Deur_ 2017,Deur_ 2019,Senjean_ 2018,Senjean_ 2020}
2020-02-28 16:11:00 +01:00
It actually accounts for the derivative discontinuity contribution to energy gaps. \cite { Levy_ 1995, Perdew_ 1983}
2020-02-15 14:16:56 +01:00
%\titou{Shall we further discuss the derivative discontinuity? Why is it important and where is it coming from?}
2020-02-15 18:00:58 +01:00
2020-02-28 16:11:00 +01:00
Even though GOK-DFT is in principle able to
2020-02-28 17:13:55 +01:00
describe near-degenerate situations and multiple-electron excitation
2020-02-28 16:11:00 +01:00
processes, it has not
been given much attention until quite recently. \cite { Franck_ 2014,Borgoo_ 2015,Kazaryan_ 2008,Gould_ 2013,Gould_ 2014,Filatov_ 2015,Filatov_ 2015b,Filatov_ 2015c,Gould_ 2017,Deur_ 2017,Gould_ 2018,Gould_ 2019,Sagredo_ 2018,Ayers_ 2018,Deur_ 2018,Deur_ 2019,Kraisler_ 2013, Kraisler_ 2014,Alam_ 2016,Alam_ 2017,Nagy_ 1998,Nagy_ 2001,Nagy_ 2005,Pastorczak_ 2013,Pastorczak_ 2014,Pribram-Jones_ 2014,Yang_ 2013a,Yang_ 2014,Yang_ 2017,Senjean_ 2015,Senjean_ 2016,Senjean_ 2018,Smith_ 2016}
One of the reason is the lack, not to say the absence, of reliable
2020-02-28 17:13:55 +01:00
density-functional approximations for ensembles (eDFAs).
The most recent works dealing with this particular issue are still fundamental and
2020-02-28 16:11:00 +01:00
exploratory, as they rely either on simple (but nontrivial) model
systems
\cite { Carrascal_ 2015,Deur_ 2017,Deur_ 2018,Deur_ 2019,Senjean_ 2015,Senjean_ 2016,Senjean_ 2018,Sagredo_ 2018,Senjean_ 2020,Fromager_ 2020,Gould_ 2019}
or atoms. \cite { Yang_ 2014,Yang_ 2017,Gould_ 2019_ insights}
Despite all these efforts, it is still unclear how weight dependencies
can be incorporated into eDFAs. This problem is actually central not
only in GOK-DFT but also in conventional (ground-state) DFT as the infamous derivative
discontinuity problem that ocurs when crossing an integral number of
electrons can be recast into a weight-dependent ensemble
one. \cite { Senjean_ 2018,Senjean_ 2020}
2020-02-15 18:00:58 +01:00
2020-02-28 17:13:55 +01:00
The present work is an attempt to address this problem,
2020-02-28 16:11:00 +01:00
with the ambition to turn, in the forthcoming future, GOK-DFT into a
(low-cost) practical computational method for modeling excited states in molecules and extended systems.
Starting from the ubiquitous local-density approximation (LDA), we
design a weight-dependent ensemble correction based on a finite uniform
electron gas from which density-functional excitation energies can be
2020-02-28 21:44:08 +01:00
extracted. The present eDFA, which can be seen as a natural
extension of the LDA, will be referred to as eLDA in the remaining of this paper.
2020-02-28 16:11:00 +01:00
As a proof of concept, we apply this general strategy to
2020-02-28 21:44:08 +01:00
ensemble correlation energies (that we combine with
ensemble exact exchange energies) in the particular case of
2020-03-10 17:26:53 +01:00
\emph { strict} one-dimensional (1D)
2020-02-28 16:11:00 +01:00
spin-polarized systems. \cite { Loos_ 2012, Loos_ 2013a, Loos_ 2014a, Loos_ 2014b}
2020-03-10 17:26:53 +01:00
In other words, the Coulomb interaction used in this work corresponds to
2020-02-28 21:44:08 +01:00
particles which are \emph { strictly} restricted to move within a 1D sub-space of three-dimensional space.
2019-09-09 11:44:30 +02:00
Despite their simplicity, 1D models are scrutinized as paradigms for quasi-1D materials \cite { Schulz_ 1993, Fogler_ 2005a} such as carbon nanotubes \cite { Bockrath_ 1999, Ishii_ 2003, Deshpande_ 2008} or nanowires. \cite { Meyer_ 2009, Deshpande_ 2010}
%Early models of 1D atoms using this interaction have been used to study the effects of external fields upon Rydberg atoms \cite{Burnett_1993, Mayle_2007} and the dynamics of surface-state electrons in liquid helium. \cite{Nieto_2000, Patil_2001}
This description of 1D systems also has interesting connections with the exotic chemistry of ultra-high magnetic fields (such as those in white dwarf stars), where the electronic cloud is dramatically compressed perpendicular to the magnetic field. \cite { Schmelcher_ 1990, Lange_ 2012, Schmelcher_ 2012}
In these extreme conditions, where magnetic effects compete with Coulombic forces, entirely new bonding paradigms emerge. \cite { Schmelcher_ 1990, Schmelcher_ 1997, Tellgren_ 2008, Tellgren_ 2009, Lange_ 2012, Schmelcher_ 2012, Boblest_ 2014, Stopkowicz_ 2015}
2020-02-15 18:00:58 +01:00
The paper is organized as follows.
2020-02-28 21:44:08 +01:00
Exact and approximate formulations of GOK-DFT are discussed in Sec.~\ref { sec:eDFT} ,
with a particular emphasis on the calculation of individual energy levels.
2020-02-28 16:11:00 +01:00
In Sec.~\ref { sec:eDFA} , we detail the construction of the
weight-dependent local correlation functional specially designed for the
computation of single and double excitations within GOK-DFT.
2020-02-15 18:00:58 +01:00
Computational details needed to reproduce the results of the present work are reported in Sec.~\ref { sec:comp_ details} .
2020-02-28 21:44:08 +01:00
In Sec.~\ref { sec:res} , we illustrate the accuracy of the present eLDA functional by computing single and double excitations in 1D many-electron systems in the weak, intermediate and strong correlation regimes.
2020-02-15 18:00:58 +01:00
Finally, we draw our conclusion in Sec.~\ref { sec:conclusion} .
2019-09-05 10:37:42 +02:00
Atomic units are used throughout.
2019-06-16 22:35:10 +02:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2019-10-30 13:38:08 +01:00
\section { Theory}
2019-09-05 13:13:08 +02:00
\label { sec:eDFT}
2019-09-05 10:37:42 +02:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2020-02-15 18:00:58 +01:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2020-02-13 14:48:47 +01:00
\subsection { GOK-DFT} \label { subsec:gokdft}
2020-02-15 18:00:58 +01:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2019-06-16 22:35:10 +02:00
2020-02-28 16:24:33 +01:00
In this section we give a brief review of GOK-DFT and discuss the
extraction of individual energy levels \cite { Deur_ 2019,Fromager_ 2020} with a particular focus on exact
individual exchange energies.
2020-03-10 17:26:53 +01:00
Let us start by introducing the GOK ensemble energy \cite { Gross_ 1988a}
2020-02-25 12:42:14 +01:00
\beq \label { eq:exact_ GOK_ ens_ ener}
2020-02-14 22:41:41 +01:00
\E { } { \bw } =\sum _ { K \geq 0} \ew { K} \E { } { (K)} ,
\eeq
where the $ K $ th energy level $ \E { } { ( K ) } $ [$ K = 0 $ refers to the ground state] is the eigenvalue of the electronic Hamiltonian $ \hH = \hh + \hWee $ , where
2020-02-04 17:27:24 +01:00
\beq
2020-02-15 18:07:35 +01:00
\hh = \sum _ { i=1} ^ \nEl \qty [ -\frac{1}{2} \nabla_{i}^2 + \vne(\br{i}) ]
2020-02-04 17:27:24 +01:00
\eeq
2020-02-14 22:41:41 +01:00
is the one-electron operator describing kinetic and nuclear attraction energies, and $ \hat { W } _ { \rm ee } $ is the electron repulsion operator.
2020-02-15 20:55:41 +01:00
The (positive) ensemble weights $ \ew { K } $ decrease with increasing index $ K $ .
They are normalized, \ie ,
2020-02-24 18:08:50 +01:00
\beq \label { eq:weight_ norm_ cond}
2020-02-14 22:41:41 +01:00
\ew { 0} = 1 - \sum _ { K>0} \ew { K} ,
2020-02-04 17:27:24 +01:00
\eeq
2020-02-14 22:41:41 +01:00
so that only the weights $ \bw \equiv \qty ( \ew { 1 } , \ew { 2 } , \ldots , \ew { K } , \ldots ) $ assigned to the excited states can vary independently.
2020-02-15 20:55:41 +01:00
For simplicity we will assume in the following that the energies are not degenerate.
2020-03-09 10:44:21 +01:00
Note that the theory can be extended to multiplets simply by assigning the same ensemble weight to all degenerate states.\cite { Gross_ 1988b}
2020-02-28 16:24:33 +01:00
In the KS formulation of GOK-DFT, { which is simply referred to as
2020-03-09 10:44:21 +01:00
KS ensemble DFT (KS-eDFT) in the following} , the ensemble energy is determined variationally as follows:\cite { Gross_ 1988b}
2020-02-04 17:27:24 +01:00
\beq \label { eq:var_ ener_ gokdft}
2020-02-14 22:41:41 +01:00
\E { } { \bw }
2020-02-15 16:17:44 +01:00
= \min _ { \opGam { \bw } }
\qty {
\Tr [\opGam{\bw} \hh] + \E { Hx} { \bw } \qty [\n{\opGam{\bw}}{}] + \E { c} { \bw } \qty [\n{\opGam{\bw}}{}]
2020-02-14 22:41:41 +01:00
} ,
2020-02-04 17:27:24 +01:00
\eeq
2020-02-14 22:41:41 +01:00
where $ \Tr $ denotes the trace and the trial ensemble density matrix operator reads
2020-02-04 17:27:24 +01:00
\beq
2020-02-15 14:16:56 +01:00
\opGam { \bw } =\sum _ { K \geq 0} \ew { K} \dyad * { \Det { (K)} } .
2020-02-04 17:27:24 +01:00
\eeq
2020-02-24 18:08:50 +01:00
The KS determinants [or configuration state functions~\cite { Gould_ 2017} ]
$ \Det { ( K ) } $ are all constructed from the same set of ensemble KS
orbitals that are variationally optimized.
The trial ensemble density in Eq.~(\ref { eq:var_ ener_ gokdft} ) is simply
the weighted sum of the individual KS densities, \ie ,
2020-02-05 18:26:44 +01:00
\beq \label { eq:KS_ ens_ density}
2020-02-15 16:17:44 +01:00
\n { \opGam { \bw } } { } (\br { } ) = \sum _ { K\geq 0} \ew { K} \n { \Det { (K)} } { } (\br { } ).
2020-02-04 17:27:24 +01:00
\eeq
2020-02-15 20:55:41 +01:00
As readily seen from Eq.~\eqref { eq:var_ ener_ gokdft} , both Hartree-exchange (Hx) and correlation (c) energies are described with density functionals that are \textit { weight dependent} .
2020-02-24 18:08:50 +01:00
We focus in the following on the (exact) Hx part, which is defined as~\cite { Gould_ 2017}
2020-02-05 18:26:44 +01:00
\beq \label { eq:exact_ ens_ Hx}
2020-02-24 18:08:50 +01:00
\E { Hx} { \bw } [\n { } { } ]=\sum _ { K \geq 0} \ew { K} \mel * { \Det { (K),\bw } [\n { } { } ]} { \hWee } { \Det { (K),\bw } [\n { } { } ]} ,
2020-02-04 17:27:24 +01:00
\eeq
where the KS wavefunctions fulfill the ensemble density constraint
\beq
2020-02-24 18:08:50 +01:00
\sum _ { K\geq 0} \ew { K} \n { \Det { (K),\bw } [\n { } { } ]} { } (\br { } ) = \n { } { } (\br { } ).
2020-02-04 17:27:24 +01:00
\eeq
2020-02-24 18:08:50 +01:00
The (approximate) description of the correlation part is discussed in
2020-03-08 20:37:45 +01:00
Sec.~\ref { sec:eDFA} .
2020-02-04 17:27:24 +01:00
2020-02-18 16:08:34 +01:00
In practice, the ensemble energy is not the most interesting quantity, and one is more concerned with excitation energies or individual energy levels (for geometry optimizations, for example).
2020-03-09 10:44:21 +01:00
As pointed out recently in Ref.~\onlinecite { Deur_ 2019} , the latter can be extracted
2020-02-24 18:08:50 +01:00
exactly from a single ensemble calculation as follows:
2020-02-04 17:27:24 +01:00
\beq \label { eq:indiv_ ener_ from_ ens}
2020-02-24 18:08:50 +01:00
\E { } { (I)} = \E { } { \bw } + \sum _ { K>0} \qty (\delta _ { IK} - \ew { K} )
\pdv { \E { } { \bw } } { \ew { K} } ,
\eeq
where, according to the normalization condition of Eq.~(\ref { eq:weight_ norm_ cond} ),
\beq
\pdv { \E { } { \bw } } { \ew { K} } = \E { } { (K)} -
2020-03-08 20:37:45 +01:00
\E { } { (0)} \equiv \Ex { } { (K)}
2020-02-04 17:27:24 +01:00
\eeq
2020-02-24 18:08:50 +01:00
corresponds to the $ K $ th excitation energy.
According to the { \it variational} ensemble energy expression of
Eq.~\eqref { eq:var_ ener_ gokdft} , the derivative with respect to $ \ew { K } $
can be evaluated from the minimizing weight-dependent KS wavefunctions
$ \Det { ( K ) } \equiv \Det { ( K ) , \bw } $ as follows:
2020-02-05 18:26:44 +01:00
\beq \label { eq:deriv_ Ew_ wk}
2020-02-14 22:41:41 +01:00
\begin { split}
\pdv { \E { } { \bw } } { \ew { K} }
& = \mel * { \Det { (K)} } { \hh } { \Det { (K)} } -\mel * { \Det { (0)} } { \hh } { \Det { (0)} }
\\
2020-02-15 18:07:35 +01:00
& + \Bigg \{ \int \fdv { \E { Hx} { \bw } [\n { } { } ]} { \n { } { } (\br { } )} \qty [ \n{\Det{(K)}}{}(\br{}) - \n{\Det{(0)}}{}(\br{}) ] d\br { }
2020-02-14 22:41:41 +01:00
+ \pdv { \E { Hx} { \bw } [\n { } { } ]} { \ew { K} }
\\
2020-02-15 18:07:35 +01:00
& + \int \fdv { \E { c} { \bw } [n]} { \n { } { } (\br { } )} \qty [ \n{\Det{(K)}}{}(\br{}) - \n{\Det{(0)}}{}(\br{}) ] d\br { }
2020-02-14 22:41:41 +01:00
+ \pdv { \E { c} { \bw } [n]} { \ew { K} }
2020-02-15 14:16:56 +01:00
\Bigg \} _ { \n { } { } = \n { \opGam { \bw } } { } } .
2020-02-14 22:41:41 +01:00
\end { split}
2020-02-05 18:26:44 +01:00
\eeq
2020-02-15 20:55:41 +01:00
The Hx contribution from Eq.~\eqref { eq:deriv_ Ew_ wk} can be recast as
2020-02-05 18:26:44 +01:00
\beq \label { eq:_ deriv_ wk_ Hx}
2020-02-14 22:41:41 +01:00
\left .
\pdv { } { \xi _ K} \qty (\E { Hx} { \bxi } [\n { } { \bxi ,\bxi } ]
- \E { Hx} { \bw } [\n { } { \bw ,\bxi } ] )
\right |_ { \bxi =\bw } ,
2020-02-05 18:26:44 +01:00
\eeq
2020-02-24 18:08:50 +01:00
where $ \bxi \equiv ( \xi _ 1 , \xi _ 2 , \ldots , \xi _ K, \ldots ) $ and the
auxiliary double-weight ensemble density reads
2020-02-05 18:26:44 +01:00
\beq
2020-02-14 22:41:41 +01:00
\n { } { \bw ,\bxi } (\br { } ) = \sum _ { K\geq 0} \ew { K} \n { \Det { (K),\bxi } } { } (\br { } ).
2020-02-05 18:26:44 +01:00
\eeq
2020-02-15 20:55:41 +01:00
Since, for given ensemble weights $ \bw $ and $ \bxi $ , the ensemble densities $ \n { } { \bxi , \bxi } $ and $ \n { } { \bw , \bxi } $ are generated from the \textit { same} KS potential (which is unique up to a constant), it comes
2020-02-24 18:08:50 +01:00
from the exact expression in Eq.~(\ref { eq:exact_ ens_ Hx} ) that
2020-02-05 18:26:44 +01:00
\beq
2020-03-09 10:44:21 +01:00
\E { Hx} { \bxi } [\n { } { \bxi ,\bxi } ] = \sum _ { K \geq 0} \xi _ K \mel * { \Det { (K),\bxi } } { \hWee } { \Det { (K),\bxi } } ,
2020-02-05 18:26:44 +01:00
\eeq
2020-02-24 18:08:50 +01:00
and
2020-02-05 18:26:44 +01:00
\beq
2020-02-15 20:55:41 +01:00
\E { Hx} { \bw } [\n { } { \bw ,\bxi } ] = \sum _ { K \geq 0} \ew { K} \mel * { \Det { (K),\bxi } } { \hWee } { \Det { (K),\bxi } } .
2020-02-05 18:26:44 +01:00
\eeq
2020-02-15 20:55:41 +01:00
This yields, according to Eqs.~\eqref { eq:deriv_ Ew_ wk} and \eqref { eq:_ deriv_ wk_ Hx} , the simplified expression
2020-02-05 18:26:44 +01:00
\beq \label { eq:deriv_ Ew_ wk_ simplified}
2020-02-14 22:41:41 +01:00
\begin { split}
\pdv { \E { } { \bw } } { \ew { K} }
& = \mel * { \Det { (K)} } { \hH } { \Det { (K)} }
- \mel * { \Det { (0)} } { \hH } { \Det { (0)} }
\\
& + \qty {
2020-02-15 18:07:35 +01:00
\int \fdv { \E { c} { \bw } [\n { } { } ]} { \n { } { } ({ \br { } } )}
2020-02-14 22:41:41 +01:00
\qty [ \n{\Det{(K)}}{}(\br{}) - \n{\Det{(0)}}{}(\br{}) ]
+
\pdv { \E { c} { \bw } [\n { } { } ]} { \ew { K} }
2020-02-15 18:07:35 +01:00
} _ { \n { } { } = \n { \opGam { \bw } } { } } d\br { } .
2020-02-14 22:41:41 +01:00
\end { split}
2020-02-05 18:26:44 +01:00
\eeq
2020-02-24 18:08:50 +01:00
Since, according to Eqs.~(\ref { eq:var_ ener_ gokdft} ) and (\ref { eq:exact_ ens_ Hx} ), the ensemble energy can be evaluated as
2020-02-05 18:26:44 +01:00
\beq
2020-02-15 14:16:56 +01:00
\E { } { \bw } = \sum _ { K \geq 0} \ew { K} \mel * { \Det { (K)} } { \hH } { \Det { (K)} } + \E { c} { \bw } [\n { \opGam { \bw } } { } ],
2020-02-05 18:26:44 +01:00
\eeq
2020-02-15 14:16:56 +01:00
with $ \Det { ( K ) } = \Det { ( K ) , \bw } $ [note that, when the minimum is reached in Eq.~\eqref { eq:var_ ener_ gokdft} , $ \n { \opGam { \bw } } { } = \n { } { \bw , \bw } $ ],
2020-02-14 22:41:41 +01:00
we finally recover from Eqs.~\eqref { eq:KS_ ens_ density} and
2020-03-09 10:44:21 +01:00
\eqref { eq:indiv_ ener_ from_ ens} the { \it exact} expression of Ref.~\onlinecite { Fromager_ 2020} for the $ I $ th energy level:
2020-02-11 16:25:39 +01:00
\beq \label { eq:exact_ ener_ level_ dets}
2020-02-14 22:41:41 +01:00
\begin { split}
\E { } { (I)}
2020-02-15 14:16:56 +01:00
& = \mel * { \Det { (I)} } { \hH } { \Det { (I)} } + \E { c} { { \bw } } [\n { \opGam { \bw } } { } ]
2020-02-14 22:41:41 +01:00
\\
2020-02-15 18:07:35 +01:00
& + \int \fdv { \E { c} { \bw } [\n { \opGam { \bw } } { } ]} { \n { } { } (\br { } )}
\qty [ \n{\Det{(I)}}{}(\br{}) - \n{\opGam{\bw}}{}(\br{}) ] d\br { }
2020-02-14 22:41:41 +01:00
\\
& +
\sum _ { K>0} \qty (\delta _ { IK} - \ew { K} )
\left .
\pdv { \E { c} { \bw } [\n { } { } ]} { \ew { K} }
2020-02-15 14:16:56 +01:00
\right |_ { \n { } { } = \n { \opGam { \bw } } { } } .
2020-02-14 22:41:41 +01:00
\end { split}
2020-02-05 18:26:44 +01:00
\eeq
2020-02-24 19:49:14 +01:00
Note that, when $ \bw = 0 $ , the ensemble correlation functional reduces to the
conventional (ground-state) correlation functional $ E _ { \rm c } [ n ] $ . As a
result, the regular KS-DFT expression is recovered from
2020-03-10 17:26:53 +01:00
Eq.~(\ref { eq:exact_ ener_ level_ dets} ) for the ground-state energy
2020-02-24 18:08:50 +01:00
\beq
2020-02-24 19:49:14 +01:00
\E { } { (0)} =\mel * { \Det { (0)} } { \hH } { \Det { (0)} } +
\E { c} { } [\n { \Det { (0)} } { } ],
\eeq
or, equivalently,
\beq \label { eq:gs_ ener_ level_ gs_ lim}
2020-02-25 10:20:51 +01:00
\E { } { (0)} =\mel * { \Det { (0)} } { \hat { H} [\n { \Det { (0)} } { } ]} { \Det { (0)} }
2020-02-24 19:49:14 +01:00
,
\eeq
2020-02-25 10:20:51 +01:00
where the density-functional Hamiltonian reads
\beq \label { eq:dens_ func_ Hamilt}
\hat { H} [n]=\hH +
\sum ^ N_ { i=1} \left (\fdv { \E { c} { } [n]} { \n { } { } (\br { i} )}
+C_ { \rm c} [n]
\right ),
\eeq
and
\beq \label { eq:corr_ LZ_ shift}
C_ { \rm c} [n]=\dfrac { \E { c} { } [n]
-\int
\fdv { \E { c} { } [n]} { \n { } { } (\br { } )} n(\br { } )d\br { } } { \int n(\br { } )d\br { } }
2020-02-24 19:49:14 +01:00
\eeq
2020-02-25 10:20:51 +01:00
is the correlation component of
2020-03-09 10:44:21 +01:00
Levy--Zahariev's constant shift in potential.\cite { Levy_ 2014}
2020-02-25 10:20:51 +01:00
Similarly, the excited-state ($ I> 0 $ ) energy level expressions
can be recast as follows:
2020-02-24 19:49:14 +01:00
\beq \label { eq:excited_ ener_ level_ gs_ lim}
2020-02-24 18:08:50 +01:00
\E { } { (I)}
2020-02-25 10:20:51 +01:00
= \mel * { \Det { (I)} } { \hat { H} [\n { \Det { (0)} } { } ]} { \Det { (I)} }
2020-02-24 19:49:14 +01:00
+
\left .
\pdv { \E { c} { \bw } [\n { \Det { (0)} } { } ]} { \ew { I} }
\right |_ { \bw =0} .
2020-02-24 18:08:50 +01:00
\eeq
2020-02-25 10:20:51 +01:00
As readily seen from Eqs.~(\ref { eq:dens_ func_ Hamilt} ) and
(\ref { eq:corr_ LZ_ shift} ), introducing any constant shift $ \delta
2020-02-24 19:49:14 +01:00
\E { c} { } [\n { \Det { (0)} } { } ]/\delta n({ \bf r} )\rightarrow \delta
2020-02-25 10:20:51 +01:00
\E { c} { } [\n { \Det { (0)} } { } ]/\delta n({ \bf r} )+C$ into the correlation
potential leaves the density-functional Hamiltonian $ \hat { H } [ n ] $ (and
therefore the individual energy levels) unchanged. As a result, in
2020-02-24 19:49:14 +01:00
this context,
2020-02-25 10:20:51 +01:00
the correlation derivative discontinuities induced by the
excitation process~\cite { Levy_ 1995} will be fully described by the ensemble
2020-02-24 19:49:14 +01:00
correlation derivatives [second term on the right-hand side of
Eq.~(\ref { eq:excited_ ener_ level_ gs_ lim} )].
2020-02-15 18:00:58 +01:00
2020-02-14 15:51:11 +01:00
%%%%%%%%%%%%%%%%
\subsection { One-electron reduced density matrix formulation}
%%%%%%%%%%%%%%%%
2020-02-11 09:22:32 +01:00
For implementation purposes, we will use in the rest of this work
2020-02-11 10:11:16 +01:00
(one-electron reduced) density matrices
2020-02-28 16:36:51 +01:00
as basic variables, rather than Slater determinants.
As the theory is applied later on to { \it spin-polarized}
systems, we drop spin indices in the density matrices, for convenience.
If we expand the
2020-03-09 10:44:21 +01:00
ensemble KS orbitals (from which the determinants are constructed) in an atomic orbital (AO) basis,
2020-02-28 16:36:51 +01:00
\beq
\MO { p} { } (\br { } ) = \sum _ { \mu } \cMO { \mu p} { } \AO { \mu } (\br { } ),
\eeq
\iffalse %%%%%%%%%%%%%%%%%%%%%%%%
2020-02-26 23:31:10 +01:00
\titou { \beq
\SO { p} { } (\bx { } ) = s(\omega ) \sum _ { \mu } \cMO { \mu p} { } \AO { \mu } (\br { } ),
\eeq
where $ \bx { } = ( \omega , \br { } ) $ is a composite coordinate gathering spin and spatial degrees of freedom, and
2020-02-11 10:11:16 +01:00
\beq
2020-02-26 23:31:10 +01:00
s(\omega )
=
\begin { cases}
\alpha (\omega ), & \text { for spin-up electrons,} \\
\text { or} \\
\beta (\omega ), & \text { for spin-down electrons,}
\end { cases}
2020-02-11 10:11:16 +01:00
\eeq
2020-02-28 16:36:51 +01:00
}
\fi %%%%%%%%%%%%%%%%%%%%%
then the density matrix of the
2020-03-10 17:26:53 +01:00
determinant $ \Det { ( K ) } $ can be expressed as follows in the AO basis
2020-02-11 09:22:32 +01:00
\beq
2020-02-15 16:01:16 +01:00
\bGam { (K)} \equiv \eGam { \mu \nu } { (K)} = \sum _ { \SO { p} { } \in (K)} \cMO { \mu p} { } \cMO { \nu p} { } ,
2020-02-11 09:22:32 +01:00
\eeq
2020-02-28 16:36:51 +01:00
where the summation runs over the orbitals that are occupied in $ \Det { ( K ) } $ .
2020-02-25 11:00:46 +01:00
The electron density of the $ K $ th KS determinant can then be evaluated
as follows:
2020-02-11 16:25:39 +01:00
\beq
2020-02-25 11:00:46 +01:00
\n { \bGam { (K)} } { } (\br { } ) = \sum _ { \mu \nu } \AO { \mu } (\br { } ) \eGam { \mu \nu } { (K)} \AO { \nu } (\br { } ),
2020-02-11 16:25:39 +01:00
\eeq
2020-02-14 15:51:11 +01:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2020-02-13 17:07:07 +01:00
% Manu's derivation %%%
2020-02-14 15:51:11 +01:00
\iffalse %%
2020-02-13 17:07:07 +01:00
\blue {
\beq
2020-02-14 22:41:41 +01:00
n_ { \bmg ^ { (K)} } (\br { } )& =& \sum _ \sigma \left \langle \hat { \Psi } ^ \dagger (\br { } \sigma )\hat { \Psi } (\br { } \sigma )\right \rangle ^ { (K)}
2020-02-13 17:07:07 +01:00
\nonumber \\
2020-02-14 22:41:41 +01:00
& =& \sum _ \sigma \sum _ { pq} \varphi ^ \sigma _ p(\br { } )\varphi ^ \sigma _ q(\br { } )\left \langle \hat { a} _ { p^ \sigma ,\sigma } ^ \dagger \hat { a} _ { q^ \sigma ,\sigma } \right \rangle ^ { (K)}
2020-02-13 17:07:07 +01:00
\nonumber \\
2020-02-14 22:41:41 +01:00
& =& \sum _ \sigma \sum _ { \varphi ^ \sigma _ p\in (K)} \left (\varphi ^ \sigma _ p(\br { } )\right )^ 2
2020-02-13 17:07:07 +01:00
\nonumber \\
& =& \sum _ \sigma \sum _ { \varphi ^ \sigma _ p\in (K)} \sum _ { \mu \nu } c^ \sigma _ { { \mu
2020-02-14 22:41:41 +01:00
p} } c^ \sigma _ { { \nu p} } \AO { \mu } (\br { } )\AO { \nu } (\br { } )
2020-02-13 17:07:07 +01:00
\nonumber \\
2020-02-14 22:41:41 +01:00
& =& \sum _ { \mu \nu } \AO { \mu } (\br { } )\AO { \nu } (\br { } )\sum _ \sigma \sum _ { \varphi ^ \sigma _ p\in (K)} c^ \sigma _ { { \mu
2020-02-13 17:07:07 +01:00
p} } c^ \sigma _ { { \nu p} }
\eeq
}
2020-02-14 15:51:11 +01:00
\fi %%%
%%%% end Manu
2020-02-25 11:00:46 +01:00
while the ensemble density matrix
2020-02-28 16:36:51 +01:00
and the ensemble density read
2020-02-11 10:11:16 +01:00
\beq
2020-02-15 16:01:16 +01:00
\bGam { \bw }
= \sum _ { K\geq 0} \ew { K} \bGam { (K)}
2020-02-15 14:16:56 +01:00
\equiv \eGam { \mu \nu } { \bw }
2020-02-15 20:55:41 +01:00
= \sum _ { K\geq 0} \ew { K} \eGam { \mu \nu } { (K)} ,
2020-02-11 10:11:16 +01:00
\eeq
2020-02-11 16:25:39 +01:00
and
\beq
2020-02-15 16:01:16 +01:00
\n { \bGam { \bw } } { } (\br { } ) = \sum _ { \mu \nu } \AO { \mu } (\br { } ) \eGam { \mu \nu } { \bw } \AO { \nu } (\br { } ),
2020-02-11 16:25:39 +01:00
\eeq
2020-02-15 20:55:41 +01:00
respectively.
2020-02-27 10:05:46 +01:00
The exact individual energy expression in Eq.~\eqref { eq:exact_ ener_ level_ dets} can then be rewritten as
2020-02-13 11:05:53 +01:00
\beq \label { eq:exact_ ind_ ener_ rdm}
2020-02-14 22:41:41 +01:00
\begin { split}
\E { } { (I)}
2020-02-15 16:01:16 +01:00
& =\Tr [\bGam{(I)} \bh]
+ \frac { 1} { 2} \Tr [\bGam{(I)} \bG \bGam{(I)}]
+ \E { c} { { \bw } } [\n { \bGam { \bw } } { } ]
2020-02-14 22:41:41 +01:00
\\
2020-02-15 18:07:35 +01:00
& + \int \fdv { \E { c} { \bw } [\n { \bGam { \bw } } { } ]} { \n { } { } (\br { } )}
\qty [ \n{\bGam{(I)}}{}(\br{}) - \n{\bGam{\bw}}{}(\br{}) ] d\br { }
2020-02-14 22:41:41 +01:00
\\
& + \sum _ { K>0} \qty (\delta _ { IK} - \ew { K} )
2020-02-15 16:01:16 +01:00
\left . \pdv { \E { c} { \bw } [\n { } { } ]} { \ew { K} } \right |_ { \n { } { } = \n { \bGam { \bw } } { } }
2020-02-14 22:41:41 +01:00
,
\end { split}
2020-02-11 16:25:39 +01:00
\eeq
2020-02-14 15:51:11 +01:00
where
\beq
2020-02-15 20:55:41 +01:00
\bh \equiv h_ { \mu \nu } = \mel * { \AO { \mu } } { \hh } { \AO { \nu } }
2020-02-14 15:51:11 +01:00
\eeq
2020-03-09 10:44:21 +01:00
denotes the matrix of the one-electron integrals.
2020-02-25 11:00:46 +01:00
The exact individual Hx energies are obtained from the following trace formula
2020-02-14 15:51:11 +01:00
\beq
2020-02-15 16:01:16 +01:00
\Tr [\bGam{(K)} \bG \bGam{(L)}]
= \sum _ { \mu \nu \la \si } \eGam { \mu \nu } { (K)} \eG { \mu \nu \la \si } \eGam { \la \si } { (L)} ,
2020-02-14 15:51:11 +01:00
\eeq
2020-02-15 20:55:41 +01:00
where the antisymmetrized two-electron integrals read
2020-02-14 15:51:11 +01:00
\beq
2020-02-15 20:55:41 +01:00
\bG
\equiv G_ { \mu \nu \la \si }
2020-02-15 16:01:16 +01:00
= \dbERI { \mu \nu } { \la \si }
2020-02-15 14:16:56 +01:00
= \ERI { \mu \nu } { \la \si } - \ERI { \mu \si } { \la \nu } ,
2020-02-14 15:51:11 +01:00
\eeq
with
\beq
2020-02-15 16:01:16 +01:00
\ERI { \mu \nu } { \la \si } = \iint \frac { \AO { \mu } (\br { 1} ) \AO { \nu } (\br { 1} ) \AO { \la } (\br { 2} ) \AO { \si } (\br { 2} )} { \abs { \br { 1} - \br { 2} } } d\br { 1} d\br { 2} .
2020-02-14 15:51:11 +01:00
\eeq
2020-02-15 14:16:56 +01:00
%Note that, in Sec.~\ref{sec:results}, the theory is applied to (1D) spin
%polarized systems in which $\eGam{\mu\nu}{(K)\beta}=0$ and
%$G_{\mu\nu\lambda\omega}^{\alpha\alpha}\equiv G_{\mu\nu\lambda\omega}=({\mu}{\nu}\vert{\lambda}{\omega})
%-(\mu\omega\vert\lambda\nu)$.
2020-02-14 15:51:11 +01:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%% Hx energy ...
2020-02-13 17:07:07 +01:00
%%% Manu's derivation
2020-02-14 15:51:11 +01:00
\iffalse %%%%
2020-02-13 17:07:07 +01:00
\blue {
\beq
2020-02-13 18:43:40 +01:00
& & \dfrac { 1} { 2} \sum _ { PQRS} \langle PQ\vert \vert
2020-02-15 14:16:56 +01:00
RS\rangle \eGam { PR} ^ { (K)} \eGam { QS} ^ { (L)}
2020-02-13 18:43:40 +01:00
\nonumber \\
& &
=\dfrac { 1} { 2} \sum _ { \sigma ,\tau } \sum _ { p^ { \sigma } q^ { \tau } RS}
\nonumber \\
& & \Big (\langle p^ \sigma \sigma q^ \tau \tau \vert RS\rangle -\langle
p^ \sigma \sigma q^ \tau \tau
\vert SR\rangle
2020-02-13 20:18:16 +01:00
\Big )\Gamma ^ { (K)} _ { p^ \sigma \sigma ,R} \Gamma ^ { (L)} _ { q^ \tau \tau , S}
2020-02-13 18:43:40 +01:00
\nonumber \\
& &
=\dfrac { 1} { 2} \sum _ { \sigma ,\tau } \sum _ { p^ { \sigma } q^ { \tau } }
\nonumber \\
& & \Big (\sum _ { r^ \sigma s^ \tau } \langle p^ \sigma q^ \tau \vert r^ \sigma s^ \tau \rangle
2020-02-13 20:18:16 +01:00
\Gamma ^ { (K)\sigma } _ { p^ \sigma r^ \sigma } \Gamma ^ { (L)\tau } _ { q^ \tau s^ \tau }
2020-02-13 18:43:40 +01:00
\nonumber \\
& & -\sum _ { s^ \sigma r^ \tau } \langle
p^ \sigma q^ \tau
\vert s^ \sigma r^ \tau \rangle
2020-02-13 20:18:16 +01:00
\delta _ { \sigma \tau } \Gamma ^ { (K)\sigma } _ { p^ \sigma
r^ \sigma } \Gamma ^ { (L)\sigma } _ { q^ \sigma s^ \sigma } \Big )
\nonumber \\
& & =\dfrac { 1} { 2} \sum _ { \sigma ,\tau } \sum _ { p^ { \sigma } q^ { \tau } }
\nonumber \\
& & \left (\langle p^ \sigma q^ \tau \vert p^ \sigma q^ \tau \rangle
n_ { p^ \sigma } ^ { (K)\sigma } n_ { q^ \tau } ^ { (L)\tau }
-\delta _ { \sigma \tau } \langle p^ \sigma q^ \sigma \vert q^ \sigma p^ \sigma \rangle
n_ { p^ \sigma } ^ { (K)\sigma } n_ { q^ \sigma } ^ { (L)\sigma } \right )
\nonumber \\
& & =\dfrac { 1} { 2} \sum _ { \mu \nu \lambda \omega } \sum _ { \sigma ,\tau } \Big (\langle { \mu } { \lambda } \vert { \nu } { \omega } \rangle
\Gamma _ { \mu \nu } ^ { (K)\sigma } \Gamma _ { \lambda \omega } ^ { (L)\tau }
-\delta _ { \sigma \tau } \langle \mu \lambda \vert \omega \nu \rangle \Gamma _ { \mu \nu } ^ { (K)\sigma } \Gamma _ { \lambda \omega } ^ { (L)\sigma }
\Big )
\nonumber \\
& & =\dfrac { 1} { 2} \sum _ { \mu \nu \lambda \omega } \sum _ { \sigma ,\tau } \Big (\langle { \mu } { \lambda } \vert { \nu } { \omega } \rangle
-\delta _ { \sigma \tau } \langle \mu \lambda \vert \omega \nu \rangle
\Big )
\Gamma _ { \mu \nu } ^ { (K)\sigma } \Gamma _ { \lambda \omega } ^ { (L)\tau }
\nonumber \\
& & =\dfrac { 1} { 2} \sum _ { \mu \nu \lambda \omega } \sum _ { \sigma ,\tau } \Big [({ \mu } { \nu } \vert { \lambda } { \omega } )
-\delta _ { \sigma \tau } (\mu \omega \vert \lambda \nu )
\Big ]
\Gamma _ { \mu \nu } ^ { (K)\sigma } \Gamma _ { \lambda \omega } ^ { (L)\tau }
2020-02-13 17:07:07 +01:00
\eeq
}
2020-02-14 15:51:11 +01:00
\fi %%%%%%%
2020-02-13 17:07:07 +01:00
%%%%
2020-02-11 16:25:39 +01:00
%%%%%%%%%%%%%%%%%%%%%
2020-02-14 15:51:11 +01:00
\iffalse %%%% Manu's derivation ...
2020-02-11 15:00:44 +01:00
\blue {
\beq
2020-02-14 22:41:41 +01:00
n^ { \bw } ({ \br { } } )& =& \sum _ { K\geq 0} \sum _ { \sigma =\alpha ,\beta } { \tt
2020-02-11 15:00:44 +01:00
w} _ Kn^ { (K)} ({ \bfx } )
\nonumber \\
& =&
\sum _ { K\geq 0} \sum _ { \sigma =\alpha ,\beta } { \tt
w} _ K\sum _ { pq} \varphi _ p({ \bfx } )\varphi _ q({ \bfx } )\Gamma _ { pq} ^ { (K)}
\nonumber \\
& =&
\sum _ { \sigma =\alpha ,\beta }
\sum _ { K\geq 0}
{ \tt
w} _ K\sum _ { p\in (K)} \varphi ^ 2_ p({ \bfx } )
\nonumber \\
& =&
\sum _ { \sigma =\alpha ,\beta }
\sum _ { K\geq 0}
{ \tt
w} _ K
\sum _ { \mu \nu }
\sum _ { p\in (K)} c_ { \mu p} c_ { \nu p} \AO { \mu } ({ \bfx } )\AO { \nu } ({ \bfx } )
\nonumber \\
& =& \sum _ { \sigma =\alpha ,\beta } \sum _ { \mu \nu } \AO { \mu } ({ \bfx } )\AO { \nu } ({ \bfx } ){ \Gamma } ^ { \bw } _ { \mu \nu }
\eeq
}
2020-02-14 15:51:11 +01:00
\fi %%%%%%%% end
2020-02-05 18:26:44 +01:00
%%%%%%%%%%%%%%%
2020-02-04 17:27:24 +01:00
%\subsection{Hybrid GOK-DFT}
2020-02-05 18:26:44 +01:00
%%%%%%%%%%%%%%%
2020-02-04 17:27:24 +01:00
2020-02-15 20:55:41 +01:00
%%%%%%%%%%%%%%%
2020-02-13 14:48:47 +01:00
\subsection { Approximations} \label { subsec:approx}
2020-02-15 20:55:41 +01:00
%%%%%%%%%%%%%%%
2020-02-04 17:27:24 +01:00
2020-02-25 12:42:14 +01:00
In the following, GOK-DFT will be applied
2020-03-09 10:44:21 +01:00
to 1D
2020-02-25 12:42:14 +01:00
spin-polarized systems where
Hartree and exchange energies cannot be separated.
For that reason, we will substitute the Hartree--Fock (HF) density-matrix-functional interaction energy,
2020-02-12 12:04:03 +01:00
\beq \label { eq:eHF-dens_ mat_ func}
2020-02-15 16:01:16 +01:00
\WHF [\bGam{}] = \frac { 1} { 2} \Tr [\bGam{} \bG \bGam{}] ,
2020-02-12 12:04:03 +01:00
\eeq
for the Hx density-functional energy in the variational energy
2020-02-25 12:42:14 +01:00
expression of Eq.~\eqref { eq:var_ ener_ gokdft} , thus leading to the
following approximation:
\beq \label { eq:min_ with_ HF_ ener_ fun}
2020-02-15 16:01:16 +01:00
\bGam { \bw }
2020-02-25 12:42:14 +01:00
\rightarrow \argmin _ { \bgam { \bw } }
2020-02-15 14:16:56 +01:00
\qty {
2020-02-15 16:01:16 +01:00
\Tr [\bgam{\bw} \bh ] + \WHF [ \bgam{\bw}] + \E { c} { \bw } [\n { \bgam { \bw } } { } ]
2020-02-15 14:16:56 +01:00
} .
2020-02-12 12:04:03 +01:00
\eeq
2020-02-25 12:42:14 +01:00
The minimizing ensemble density matrix in Eq.~(\ref { eq:min_ with_ HF_ ener_ fun} ) fulfills the following
2020-03-10 17:26:53 +01:00
stationarity condition
2020-02-14 16:08:20 +01:00
\beq \label { eq:commut_ F_ AO}
2020-02-15 14:16:56 +01:00
\bF { \bw } \bGam { \bw } \bS = \bS \bGam { \bw } \bF { \bw } ,
2020-02-14 15:51:11 +01:00
\eeq
2020-02-25 12:42:14 +01:00
where $ \bS \equiv \eS { \mu \nu } = \braket * { \AO { \mu } } { \AO { \nu } } $ is the
overlap matrix and the ensemble Fock-like matrix reads
2020-02-14 15:51:11 +01:00
\beq
2020-02-25 12:42:14 +01:00
\bF { \bw } \equiv \eF { \mu \nu } { \bw } = \eh { \mu \nu } { \bw } +
\sum _ { \la \si } \eG { \mu \nu \la \si } \eGam { \la \si } { \bw } ,
2020-02-14 15:51:11 +01:00
\eeq
with
\beq
2020-02-15 14:16:56 +01:00
\eh { \mu \nu } { \bw }
2020-02-15 18:07:35 +01:00
= \eh { \mu \nu } { } + \int \AO { \mu } (\br { } ) \fdv { \E { c} { \bw } [\n { \bGam { \bw } } { } ]} { \n { } { } (\br { } )} \AO { \nu } (\br { } ) d\br { } .
2020-02-14 15:51:11 +01:00
\eeq
%%%%%%%%%%%%%%%
\iffalse %%%%%%
2020-02-14 10:03:34 +01:00
% Manu's derivation %%%%
\color { blue}
2020-02-14 13:51:24 +01:00
I am teaching myself ...\\
2020-02-14 10:03:34 +01:00
Stationarity condition
\beq
2020-02-14 13:51:24 +01:00
& & 0=\sum _ { K\geq 0} w_ K\sum _ { t^ \sigma } \Big (f_ { p^ \sigma \sigma ,t^ \sigma \sigma } \Gamma ^ { (K)\sigma } _ { t^ \sigma
2020-02-14 10:03:34 +01:00
q^ \sigma } -\Gamma ^ { (K)\sigma } _ { p^ \sigma
t^ \sigma } f_ { t^ \sigma \sigma ,q^ \sigma \sigma } \Big )
\nonumber \\
2020-02-14 13:51:24 +01:00
& & =\sum _ { K\geq 0} w_ K
\Big (f_ { p^ \sigma \sigma ,q^ \sigma \sigma } n^ { (K)\sigma } _ { q^ \sigma } -n^ { (K)\sigma } _ { p^ \sigma } f_ { p^ \sigma \sigma ,q^ \sigma \sigma } \Big )
2020-02-14 10:03:34 +01:00
\nonumber \\
2020-02-14 13:51:24 +01:00
& &
=\sum _ { \mu \nu } \sum _ { K\geq 0} w_ KF_ { \mu \nu } ^ \sigma c^ \sigma _ { \mu
p} c^ \sigma _ { \nu q} \left (n^ { (K)\sigma } _ { q^ \sigma } -n^ { (K)\sigma } _ { p^ \sigma } \right )
\eeq
thus leading to
\beq
& & 0=\sum _ { p^ \sigma q^ \sigma } c^ \sigma _ { \lambda
p} c^ \sigma _ { \omega q} \left (\sum _ { \mu \nu } \sum _ { K\geq 0} w_ KF_ { \mu \nu } ^ \sigma c^ \sigma _ { \mu
p} c^ \sigma _ { \nu q} \left (n^ { (K)\sigma } _ { q^ \sigma } -n^ { (K)\sigma } _ { p^ \sigma } \right )\right )
\nonumber \\
& & =\sum _ { \mu \nu } \sum _ { K\geq 0} w_ K
F_ { \mu \nu } ^ \sigma \left (\Gamma ^ { (K)\sigma } _ { \nu \omega } \sum _ { p^ \sigma } c^ \sigma _ { \lambda
p} c^ \sigma _ { \mu
p} -\Gamma ^ { (K)\sigma } _ { \mu \lambda } \sum _ { q^ \sigma } c^ \sigma _ { \omega q} c^ \sigma _ { \nu q} \right )
\nonumber \\
\eeq
If we denote $ M ^ \sigma _ { \lambda \mu } = \sum _ { p ^ \sigma } c ^ \sigma _ { \lambda
p} c^ \sigma _ { \mu
p} $ it comes
\beq
S_ { \mu \nu } =\sum _ { \lambda \omega } S_ { \mu \lambda } M^ \sigma _ { \lambda \omega } S_ { \omega \nu }
\eeq
which simply means that
\beq
{ \bm S} ={ \bm S} { \bm M} { \bm S}
\eeq
or, equivalently,
\beq
{ \bm M} ={ \bm S} ^ { -1} .
\eeq
The stationarity condition simply reads
\beq
\sum _ { \mu \nu } F_ { \mu \nu } ^ \sigma \left (\Gamma ^ { \bw \sigma } _ { \nu \omega }
\left [{\bm S}^{-1}\right] _ { \lambda \mu }
-\Gamma ^ { \bw \sigma } _ { \mu \lambda } \left [{\bm S}^{-1}\right] _ { \omega \nu } \right )
=0
\eeq
thus leading to
\beq
{ \bm S} ^ { -1} { { \bm F} ^ \sigma } { \bm \Gamma } ^ { \bw \sigma } ={ \bm \Gamma } ^ { \bw \sigma } { { \bm F} ^ \sigma } { \bm S} ^ { -1}
\eeq
or, equivalently,
\beq
{ { \bm F} ^ \sigma } { \bm \Gamma } ^ { \bw \sigma } { \bm S} ={ \bm S} { \bm
\Gamma } ^ { \bw \sigma } { { \bm F} ^ \sigma } .
2020-02-14 10:03:34 +01:00
\eeq
%%%%%
2020-02-14 13:51:24 +01:00
Fock operator:\\
2020-02-14 10:03:34 +01:00
\beq
2020-02-14 13:51:24 +01:00
& & f_ { p^ \sigma \sigma ,q^ \sigma \sigma } -\langle \varphi _ p^ \sigma \vert \hat { h} \vert \varphi _ q^ \sigma \rangle
2020-02-14 10:03:34 +01:00
\nonumber \\
2020-02-14 13:51:24 +01:00
& & =\sum _ { L\geq 0} w_ L\sum _ { \tau } \sum _ { r^ \tau s^ \tau }
2020-02-14 10:03:34 +01:00
\nonumber \\
2020-02-14 13:51:24 +01:00
& &
\Big (\langle p^ \sigma r^ \tau \vert
q^ \sigma s^ \tau \rangle
2020-02-14 10:03:34 +01:00
-\delta _ { \sigma \tau } \langle p^ \sigma r^ \sigma \vert
2020-02-14 13:51:24 +01:00
s^ \sigma q^ \sigma \rangle
\Big )
\Gamma ^ { (L)\tau } _ { r^ \tau
2020-02-14 10:03:34 +01:00
s^ \tau }
2020-02-14 13:51:24 +01:00
\nonumber \\
& &
=\sum _ { L\geq 0} w_ L\sum _ { \tau } \sum _ { r^ \tau } \Big (\langle p^ \sigma r^ \tau \vert
q^ \sigma r^ \tau \rangle
-\delta _ { \sigma \tau } \langle p^ \sigma r^ \tau \vert
r^ \tau q^ \sigma \rangle
2020-02-14 10:03:34 +01:00
\Big )
2020-02-14 13:51:24 +01:00
n^ { (L)\tau } _ { r^ \tau }
\nonumber \\
& & =\sum _ { L\geq 0} w_ L
\sum _ { \lambda \omega } \sum _ { \tau } \Big [\langle
p^ \sigma \lambda \vert q^ \sigma \omega \rangle
-\delta _ { \sigma \tau }
\langle
p^ \sigma \lambda \vert \omega q^ \sigma \rangle \Big ]
\Gamma ^ { (L)\tau } _ { \lambda \omega }
\nonumber \\
& & =
\sum _ { \lambda \omega } \sum _ { \tau } \Big [\langle
p^ \sigma \lambda \vert q^ \sigma \omega \rangle
-\delta _ { \sigma \tau }
\langle
p^ \sigma \lambda \vert \omega q^ \sigma \rangle \Big ]
\Gamma ^ { \bw \tau } _ { \lambda \omega }
\nonumber \\
& & =\sum _ { \mu \nu \lambda \omega } \sum _ { \tau }
\Big (\langle { \mu } { \lambda } \vert { \nu } { \omega } \rangle
-\delta _ { \sigma \tau } \langle \mu \lambda \vert \omega \nu \rangle
\Big )\Gamma ^ { \bw \tau } _ { \lambda \omega } c^ \sigma _ { \mu p} c^ \sigma _ { \nu q}
\nonumber \\
\eeq
or, equivalently,
\beq
f_ { p^ \sigma \sigma ,q^ \sigma \sigma } =\sum _ { \mu \nu } F_ { \mu \nu } ^ \sigma c^ \sigma _ { \mu p} c^ \sigma _ { \nu q}
\eeq
where
\beq
F_ { \mu \nu } ^ \sigma =h_ { \mu \nu } +\sum _ { \lambda \omega } \sum _ \tau
G_ { \mu \nu \lambda \omega } ^ { \sigma \tau } \Gamma ^ { \bw \tau } _ { \lambda \omega }
\eeq
and
2020-02-14 10:03:34 +01:00
\color { black}
\\
2020-02-14 15:51:11 +01:00
\fi %%%%%%%%%%%
%%%%% end Manu
%%%%%%%%%%%%%%%%%%%%
2020-02-25 12:42:14 +01:00
Note that, within the approximation of Eq.~(\ref { eq:min_ with_ HF_ ener_ fun} ), the ensemble density matrix is
optimized with a non-local exchange potential rather than a
density-functional local one, as expected from
Eq.~\eqref { eq:var_ ener_ gokdft} . This procedure is actually general, \ie ,
2020-03-09 10:44:21 +01:00
applicable to not-necessarily spin polarized and real (higher-dimensional) systems.
2020-02-25 12:42:14 +01:00
As readily seen from Eq.~\eqref { eq:eHF-dens_ mat_ func} , inserting the
ensemble density matrix into the HF interaction energy functional
2020-03-10 17:26:53 +01:00
introduces unphysical \textit { ghost interaction} errors \titou { (GIE)} \cite { Gidopoulos_ 2002, Pastorczak_ 2014, Alam_ 2016, Alam_ 2017, Gould_ 2017}
2020-03-09 10:44:21 +01:00
as well as \textit { curvature} :\cite { Alam_ 2016,Alam_ 2017}
2020-02-17 15:52:53 +01:00
\beq \label { eq:WHF}
2020-02-14 22:41:41 +01:00
\begin { split}
2020-02-15 16:01:16 +01:00
\WHF [\bGam{\bw}]
& = \frac { 1} { 2} \sum _ { K\geq 0} \ew { K} ^ 2 \Tr [\bGam{(K)} \bG \bGam{(K)}]
2020-02-14 22:41:41 +01:00
\\
2020-02-15 16:01:16 +01:00
& + \sum _ { L>K\geq 0} \ew { K} \ew { L} \Tr [\bGam{(K)} \bG \bGam{(L)}] .
2020-02-14 22:41:41 +01:00
\end { split}
2020-02-13 11:05:53 +01:00
\eeq
2020-02-25 12:42:14 +01:00
The ensemble energy is of course expected to vary linearly with the ensemble
weights [see Eq.~(\ref { eq:exact_ GOK_ ens_ ener} )].
These errors are essentially removed when evaluating the individual energy
2020-03-08 20:37:45 +01:00
levels on the basis of Eq.~\eqref { eq:exact_ ind_ ener_ rdm} .
2020-02-12 12:04:03 +01:00
2020-02-25 12:42:14 +01:00
Turning to the density-functional ensemble correlation energy, the
2020-03-10 17:26:53 +01:00
following ensemble local-density \textit { approximation} (eLDA) will be employed
2020-02-04 17:27:24 +01:00
\beq \label { eq:eLDA_ corr_ fun}
2020-02-25 12:42:14 +01:00
\E { c} { \bw } [\n { } { } ]\approx \int \n { } { } (\br { } ) \e { c} { \bw } (\n { } { } (\br { } )) d\br { } ,
2020-02-04 17:27:24 +01:00
\eeq
2020-03-10 12:14:50 +01:00
where the ensemble correlation energy per particle
\beq \label { eq:decomp_ ens_ correner_ per_ part}
\e { c} { \bw } (\n { } { } )=\sum _ { K\geq 0} w_ K\be { c} { (K)} (\n { } { } )
\eeq
2020-03-10 17:26:53 +01:00
is \titou { explicitly} \textit { weight dependent} .
2020-03-10 12:14:50 +01:00
As shown in Sec.~\ref { sec:eDFA} , the latter can be constructed
from a finite uniform electron gas model.
2020-03-08 20:37:45 +01:00
%\titou{Manu, I think we should clearly define here what the expression of the ensemble energy with and without GOC.
%What do you think?}
2020-02-18 16:08:34 +01:00
2020-03-09 14:43:53 +01:00
The resulting KS-eLDA ensemble energy obtained via Eq.~\eqref { eq:min_ with_ HF_ ener_ fun}
reads
\beq \label { eq:Ew-GIC-eLDA}
\E { eLDA} { \bw } =\Tr [\bGam{\bw}\bh] + \WHF [\bGam{\bw}] +\int
\e { c} { \bw } (\n { \bGam { \bw } } { } (\br { } )) \n { \bGam { \bw } } { } (\br { } ) d\br { } .
\eeq
%Manu, would it be useful to add this equation and the corresponding text?
%I think it is useful for the discussion later on when we talk about the different contributions to the excitation energies.
%This shows clearly that there is a correction due to the correlation functional itself as well as a correction due to the ensemble correlation derivative
2020-03-10 17:26:53 +01:00
Combining Eq.~\eqref { eq:exact_ ind_ ener_ rdm} with Eq.~\eqref { eq:eLDA_ corr_ fun} leads to our \titou { final expression of the KS-eLDA energy level}
\titou { \beq \label { eq:EI-eLDA}
2020-02-14 22:41:41 +01:00
\begin { split}
2020-02-25 14:43:33 +01:00
\E { { eLDA} } { (I)}
2020-03-10 17:26:53 +01:00
=
\E { HF} { (I)}
+ \Xi _ \text { c} ^ { (I)}
+ \Upsilon _ \text { c} ^ { (I)} ,
\end { split}
\eeq }
where
\beq \label { eq:ind_ HF-like_ ener}
\E { HF} { (I)} =\Tr [\bGam{(I)} \bh] + \frac { 1} { 2} \Tr [\bGam{(I)} \bG \bGam{(I)}]
\eeq
is the analog for ground and excited states (within an ensemble) of the HF energy, \titou { and
\begin { gather}
\begin { split}
\Xi _ \text { c} ^ { (I)}
& = \int \e { c} { \bw } (\n { \bGam { \bw } } { } (\br { } )) \n { \bGam { (I)} } { } (\br { } ) d\br { }
2020-02-15 14:16:56 +01:00
\\
&
2020-02-15 18:07:35 +01:00
+ \int \n { \bGam { \bw } } { } (\br { } ) \qty [ \n{\bGam{(I)}}{}(\br{}) - \n{\bGam{\bw}}{}(\br{}) ]
\left . \pdv { \e { c} { { \bw } } (\n { } { } )} { \n { } { } } \right |_ { \n { } { } = \n { \bGam { \bw } } { } (\br { } )} d\br { }
2020-02-15 14:16:56 +01:00
\\
2020-02-14 22:41:41 +01:00
\end { split}
2020-03-10 17:26:53 +01:00
\\
\Upsilon _ \text { c} ^ { (I)}
= \int \sum _ { K>0} \qty (\delta _ { IK} - \ew { K} ) \n { \bGam { \bw } } { } (\br { } )
\left . \pdv { \e { c} { \bw } (\n { } { } )} { \ew { K} } \right |_ { \n { } { } =\n { \bGam { \bw } } { } (\br { } )} d\br { } .
\end { gather} }
2020-02-25 14:43:33 +01:00
If, for analysis purposes, we Taylor expand the density-functional
correlation contributions
around the $ I $ th KS state density
$ \n { \bGam { ( I ) } } { } ( \br { } ) $ , the sum of
2020-03-10 17:26:53 +01:00
the \titou { second term} on the right-hand side
2020-02-25 14:43:33 +01:00
of Eq.~\eqref { eq:EI-eLDA} can be simplified as follows through first order in
2020-03-10 17:26:53 +01:00
\titou { $ \dn { \bGam { \bw } } { ( I ) } ( \br { } ) = \n { \bGam { \bw } } { } ( \br { } ) - \n { \bGam { ( I ) } } { } ( \br { } ) $ } :
2020-03-09 17:00:43 +01:00
\beq \label { eq:Taylor_ exp_ ind_ corr_ ener_ eLDA}
2020-03-10 17:26:53 +01:00
\titou { \Xi _ \text { c} ^ { (I)} }
= \int \e { c} { \bw } (\n { \bGam { (I)} } { } (\br { } )) \n { \bGam { (I)} } { } (\br { } ) d\br { }
+ \titou { \order { [\dn { \bGam { \bw } } { (I)} (\br { } )]^ 2} } .
2020-02-25 14:43:33 +01:00
\eeq
2020-03-09 10:44:21 +01:00
Therefore, it can be identified as
2020-02-25 14:43:33 +01:00
an individual-density-functional correlation energy where the density-functional
correlation energy per particle is approximated by the ensemble one for
2020-03-10 12:14:50 +01:00
all the states within the ensemble.
2020-03-09 14:43:53 +01:00
2020-03-10 12:14:50 +01:00
Let us stress that, to the best of our knowledge, eLDA is the first
2020-02-25 14:43:33 +01:00
density-functional approximation that incorporates ensemble weight
2020-02-25 12:42:14 +01:00
dependencies explicitly, thus allowing for the description of derivative
discontinuities [see Eq.~\eqref { eq:excited_ ener_ level_ gs_ lim} and the
2020-03-10 17:26:53 +01:00
comment that follows] { \it via} the \titou { third} on the right-hand side
of Eq.~\eqref { eq:EI-eLDA} . According to the decomposition of
2020-03-10 12:14:50 +01:00
the ensemble
correlation energy per particle in Eq.
2020-03-10 17:26:53 +01:00
\eqref { eq:decomp_ ens_ correner_ per_ part} , the latter can be recast
\begin { equation}
\titou { \Upsilon _ \text { c} ^ { (I)} }
%&=
%\int \sum_{K>0} \qty(\delta_{IK} - \ew{K} ) \n{\bGam{\bw}}{}(\br{})
%\Big(\be{c}{(K)}(\n{\bGam{\bw}}{}(\br{}))
%-
%\be{c}{(0)}(\n{\bGam{\bw}}{}(\br{}))
%\Big)
%d\br{}
%\\
=\int
\qty [\be { c} { (I)} (\n { \bGam { \bw } } { } (\br { } ))
2020-03-09 18:43:37 +01:00
-
\e { c} { \bw } (\n { \bGam { \bw } } { } (\br { } ))
2020-03-10 17:26:53 +01:00
] \n { \bGam { \bw } } { } (\br { } )
2020-03-10 12:14:50 +01:00
d\br { } ,
2020-03-09 17:00:43 +01:00
%\sum_{K>0}\delta_{IK}\left. \pdv{\e{c}{\bw}(\n{}{})}{\ew{K}} \right|_{\n{}{}=\n{\bGam{\bw}}{}(\br{})}
2020-03-10 17:26:53 +01:00
\end { equation}
2020-03-10 12:14:50 +01:00
thus leading to the following Taylor expansion through first order in
2020-03-10 17:26:53 +01:00
\titou { $ \dn { \bGam { \bw } } { ( I ) } ( \br { } ) $ }
%$\n{\bGam{\bw}}{}(\br{})-\n{\bGam{(I)}}{}(\br{})$:
2020-03-10 12:14:50 +01:00
\beq \label { eq:Taylor_ exp_ DDisc_ term}
2020-03-09 18:43:37 +01:00
\begin { split}
2020-03-10 17:26:53 +01:00
\titou { \Upsilon _ \text { c} ^ { (I)} }
%& = \int \sum_{K>0} \qty(\delta_{IK} - \ew{K} ) \n{\bGam{\bw}}{}(\br{})
% \left. \pdv{\e{c}{\bw}(\n{}{})}{\ew{K}} \right|_{\n{}{}=\n{\bGam{\bw}}{}(\br{})} d\br{}
%\\
2020-03-09 18:43:37 +01:00
& =-\int \e { c} { \bw } (\n { \bGam { (I)} } { } (\br { } )) \n { \bGam { (I)} } { } (\br { } ) d\br { }
2020-03-10 17:26:53 +01:00
+\int \be { c} { (I)} (\n { \bGam { (I)} } { } (\br { } )) \n { \bGam { (I)} } { } (\br { } ) d\br { }
2020-03-09 18:43:37 +01:00
\\
& +\int \Bigg [
\n { \bGam { (I)} } { } (\br { } )
\left .\left (
\pdv { \be { c} { { (I)} } (\n { } { } )} { \n { } { } }
-
\pdv { \e { c} { { \bw } } (\n { } { } )} { \n { } { } }
\right )\right |_ { \n { } { } =
\n { \bGam { (I)} } { } (\br { } )}
\\
& +\be { c} { (I)} (\n { \bGam { (I)} } { } (\br { } ))
-
2020-03-10 17:26:53 +01:00
\e { c} { \bw } (\n { \bGam { (I)} } { } (\br { } ))\Bigg ]
\dn { \bGam { \bw } } { (I)} (\br { } )
2020-03-09 18:43:37 +01:00
d\br { }
\\
&
2020-03-10 17:26:53 +01:00
+ \titou { \order { [\dn { \bGam { \bw } } { (I)} (\br { } )]^ 2} } .
2020-03-09 18:43:37 +01:00
\end { split}
2020-03-09 17:00:43 +01:00
\eeq
2020-03-10 12:14:50 +01:00
As readily seen from Eqs. \eqref { eq:Taylor_ exp_ ind_ corr_ ener_ eLDA} and \eqref { eq:Taylor_ exp_ DDisc_ term} , the
2020-03-10 17:26:53 +01:00
role of the correlation ensemble derivative \titou { $ \Upsilon _ \text { c } ^ { ( I ) } $ } \trashPFL { [last term on the right-hand side of Eq.
\eqref { eq:EI-eLDA} ]} is, through zeroth order, to substitute the expected
2020-03-10 12:14:50 +01:00
individual correlation energy per particle for the ensemble one.
2020-03-10 14:40:19 +01:00
Let us finally note that, while the weighted sum of the
2020-03-10 17:26:53 +01:00
individual KS-eLDA energy levels delivers a \textit { ghost-interaction-corrected} (GIC) version of
the KS-eLDA ensemble energy, \ie ,
2020-03-10 12:14:50 +01:00
\beq \label { eq:Ew-eLDA}
\begin { split}
\E { GIC-eLDA} { \bw } & =\sum _ { I\geq 0} \ew { I} \E { { eLDA} } { (I)}
\\
& =
\E { eLDA} { \bw }
2020-03-10 14:40:19 +01:00
-\WHF [\bGam{\bw}] +\sum _ { I\geq 0} \ew { I} \WHF [ \bGam{(I)}] ,
2020-03-10 12:14:50 +01:00
\end { split}
\eeq
2020-03-10 14:40:19 +01:00
the excitation energies computed from the KS-eLDA individual energy level
expressions in Eq. \eqref { eq:EI-eLDA} simply reads
2020-03-08 20:37:45 +01:00
\beq \label { eq:Om-eLDA}
2020-03-10 14:40:19 +01:00
\begin { split}
2020-03-08 20:37:45 +01:00
\Ex { eLDA} { (I)}
2020-03-10 17:26:53 +01:00
& =
2020-03-08 22:38:15 +01:00
\Ex { HF} { (I)}
2020-03-10 17:26:53 +01:00
\\
& + \int
2020-03-10 14:40:19 +01:00
\qty [\e{c}{{\bw}}(\n{}{})+n\pdv{\e{c}{{\bw}}(\n{}{})}{\n{}{}}]
_ { \n { } { } =
\n { \bGam { \bw } } { } (\br { } )}
2020-03-10 17:26:53 +01:00
\qty [ \n{\bGam{(I)}}{}(\br{}) - \n{\bGam{(0)}}{}(\br{}) ] d\br { }
\\ & + \DD { c} { (I)} ,
2020-03-10 14:40:19 +01:00
\end { split}
2020-03-08 22:38:15 +01:00
\eeq
2020-03-10 14:40:19 +01:00
where the HF-like excitation energies $ \Ex { HF } { ( I ) } = \E { HF } { ( I ) } -
\E { HF} { (0)} $ are determined from a single set of ensemble KS orbitals and
2020-03-08 22:38:15 +01:00
\beq \label { eq:DD-eLDA}
\DD { c} { (I)}
= \int \n { \bGam { \bw } } { } (\br { } )
\left . \pdv { \e { c} { \bw } (\n { } { } )} { \ew { I} } \right |_ { \n { } { } =\n { \bGam { \bw } } { } (\br { } )} d\br { }
2020-03-08 20:37:45 +01:00
\eeq
2020-03-10 14:40:19 +01:00
is the eLDA correlation ensemble derivative contribution to the $ I $ th excitation energy.
2020-02-14 21:01:46 +01:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section { Density-functional approximations for ensembles}
\label { sec:eDFA}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2020-02-16 13:54:08 +01:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection { Paradigm}
\label { sec:paradigm}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2020-03-10 17:26:53 +01:00
Most of the standard local and semi-local \titou { density-functional approximations (DFAs)} rely on the infinite uniform electron gas (IUEG) model (also known as jellium). \cite { ParrBook, Loos_ 2016}
2020-02-16 13:54:08 +01:00
One major drawback of the jellium paradigm, when it comes to develop eDFAs, is that the ground and excited states are not easily accessible like in a molecule. \cite { Gill_ 2012, Loos_ 2012, Loos_ 2014a, Loos_ 2014b, Agboola_ 2015, Loos_ 2017a}
2020-02-15 22:25:09 +01:00
Moreover, because the IUEG model is a metal, it is gapless, which means that both the fundamental and optical gaps are zero.
2020-02-25 16:16:13 +01:00
From this point of view, using finite UEGs (FUEGs), \cite { Loos_ 2011b,
Gill_ 2012} which have, like an atom, discrete energy levels and non-zero
gaps, can be seen as more relevant in this context. \cite { Loos_ 2014a, Loos_ 2014b, Loos_ 2017a}
However, an obvious drawback of using FUEGs is that the resulting eDFA
will inexorably depend on the number of electrons in the FUEG (see below).
Here, we propose to construct a weight-dependent eLDA for the
calculations of excited states in 1D systems by combining FUEGs with the
usual IUEG.
2020-02-14 21:01:46 +01:00
2020-02-16 13:54:08 +01:00
As a FUEG, we consider the ringium model in which electrons move on a perfect ring (\ie , a circle) but interact \textit { through} the ring. \cite { Loos_ 2012, Loos_ 2013a, Loos_ 2014b}
2020-02-25 16:16:13 +01:00
The most appealing feature of ringium regarding the development of
functionals in the context of eDFT is the fact that both ground- and
excited-state densities are uniform, and therefore { \it equal} .
2020-02-14 21:01:46 +01:00
As a result, the ensemble density will remain constant (and uniform) as the ensemble weights vary.
2020-02-25 16:16:13 +01:00
This is a necessary condition for being able to model the ensemble
correlation derivatives with respect to the weights [last term
on the right-hand side of Eq.~(\ref { eq:exact_ ener_ level_ dets} )].
2020-02-16 13:54:08 +01:00
Moreover, it has been shown that, in the thermodynamic limit, the ringium model is equivalent to the ubiquitous IUEG paradigm. \cite { Loos_ 2013,Loos_ 2013a}
2020-02-26 23:31:10 +01:00
Let us stress that, in a FUEG like ringium, the interacting and
2020-02-25 16:16:13 +01:00
noninteracting densities match individually for all the states within the
ensemble
2020-02-26 23:31:10 +01:00
(these densities are all equal to the uniform density), which means that
2020-02-25 16:16:13 +01:00
so-called density-driven correlation
2020-02-26 23:31:10 +01:00
effects~\cite { Gould_ 2019,Gould_ 2019_ insights,Senjean_ 2020,Fromager_ 2020} are absent from the model.
2020-02-16 13:54:08 +01:00
Here, we will consider the most simple ringium system featuring electronic correlation effects, \ie , the two-electron ringium model.
2020-02-14 21:01:46 +01:00
2020-02-25 16:16:13 +01:00
The present weight-dependent eDFA is specifically designed for the
calculation of excited-state energies within GOK-DFT.
2020-02-28 21:30:54 +01:00
To take into account both single and double excitations simultaneously, we consider a three-state ensemble including:
2020-02-15 22:25:09 +01:00
(i) the ground state ($ I = 0 $ ), (ii) the first singly-excited state ($ I = 1 $ ), and (iii) the first doubly-excited state ($ I = 2 $ ) of the (spin-polarized) two-electron ringium system.
2020-03-10 17:26:53 +01:00
To ensure the GOK variational principle, \cite { Gross_ 1988a} the
2020-02-28 21:30:54 +01:00
triensemble weights must fulfil the following conditions: \cite { Deur_ 2019}
2020-03-10 17:26:53 +01:00
$ 0 \le \ew { 2 } \le 1 / 3 $ and $ \ew { 2 } \le \ew { 1 } \le ( 1 - \ew { 2 } ) / 2 $ , where $ \ew { 1 } $ and $ \ew { 2 } $ are the weights associated with the singly- and doubly-excited states, respectively.
2020-02-28 21:30:54 +01:00
All these states have the same (uniform) density $ \n { } { } = 2 / ( 2 \pi R ) $ , where $ R $ is the radius of the ring on which the electrons are confined.
2020-02-16 13:54:08 +01:00
We refer the interested reader to Refs.~\onlinecite { Loos_ 2012, Loos_ 2013a, Loos_ 2014b} for more details about this paradigm.
2020-02-15 22:25:09 +01:00
Generalization to a larger number of states is straightforward and is left for future work.
2020-02-26 23:31:10 +01:00
%The constraint in \titou{red} is wrong. If $\ew{2}=0$, you should be allowed
%to consider an equi-bi-ensemble
%for which $\ew{1}=1/2$. This possibility is excluded with your
%inequalities. The correct constraints are given in Ref.~\cite{Deur_2019}
%and are the ones you also mentioned, \ie, $0 \le \ew{2} \le 1/3$ and
%$\ew{2} \le \ew{1} \le (1-\ew{2})/2$.}
%\manu{
%Just in case, starting from
%\beq
%\begin{split}
%0\leq \ew{2}\leq \ew{1}\leq (1-\ew{1}-\ew{2})
%\\
%\end{split}
%\eeq
%we obtain
%\beq
%0\leq \ew{2}\leq \ew{1}\leq (1-\ew{2})/2
%\eeq
%which implies $\ew{2}\leq(1-\ew{2})/2$ or, equivalently, $\ew{2}\leq
%1/3$.
%}
2019-09-09 11:44:30 +02:00
%%% TABLE 1 %%%
\begin { table*}
\caption {
\label { tab:OG_ func}
2020-02-14 21:01:46 +01:00
Parameters of the weight-dependent correlation DFAs defined in Eq.~\eqref { eq:ec} .}
2019-09-09 11:44:30 +02:00
% \begin{ruledtabular}
\begin { tabular} { lcddd}
\hline \hline
2020-02-14 21:01:46 +01:00
State & $ I $ & \tabc { $ a _ 1 ^ { ( I ) } $ } & \tabc { $ a _ 2 ^ { ( I ) } $ } & \tabc { $ a _ 3 ^ { ( I ) } $ } \\
2019-09-09 11:44:30 +02:00
\hline
Ground state & $ 0 $ & -0.0137078 & 0.0538982 & 0.0751740 \\
Singly-excited state & $ 1 $ & -0.0238184 & 0.00413142 & 0.0568648 \\
Doubly-excited state & $ 2 $ & -0.00935749 & -0.0261936 & 0.0336645 \\
\hline \hline
\end { tabular}
% \end{ruledtabular}
\end { table*}
%%% %%% %%% %%%
2020-02-19 20:47:37 +01:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection { Weight-dependent correlation functional}
\label { sec:Ec}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Based on highly-accurate calculations (see { \SI } for additional details), one can write down, for each state, an accurate analytical expression of the reduced (\ie , per electron) correlation energy \cite { Loos_ 2013a, Loos_ 2014a} via the following Pad\' e approximant
\begin { equation}
\label { eq:ec}
\e { c} { (I)} (\n { } { } ) = \frac { a_ 1^ { (I)} \, \n { } { } } { \n { } { } + a_ 2^ { (I)} \sqrt { \n { } { } } + a_ 3^ { (I)} } ,
\end { equation}
where the $ a _ k ^ { ( I ) } $ 's are state-specific fitting parameters provided in Table \ref { tab:OG_ func} .
The value of $ a _ 1 ^ { ( I ) } $ is obtained via the exact high-density expansion of the correlation energy. \cite { Loos_ 2013a, Loos_ 2014a}
Equation \eqref { eq:ec} provides three state-specific correlation DFAs based on a two-electron system.
2020-02-25 16:27:57 +01:00
Combining these, one can build the following three-state weight-dependent correlation eDFA:
2020-02-19 20:47:37 +01:00
\begin { equation}
\label { eq:ecw}
2020-02-27 10:05:46 +01:00
%\e{c}{\bw}(\n{}{})
2020-02-28 21:30:54 +01:00
\Tilde { \epsilon } _ { \rm c} ^ \bw (n)= (1-\ew { 1} -\ew { 2} ) \e { c} { (0)} (\n { } { } ) + \ew { 1} \e { c} { (1)} (\n { } { } ) + \ew { 2} \e { c} { (2)} (\n { } { } ).
2020-02-19 20:47:37 +01:00
\end { equation}
2019-06-16 22:35:10 +02:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2019-09-05 10:37:42 +02:00
\subsection { LDA-centered functional}
2019-06-16 22:35:10 +02:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2020-02-16 13:54:08 +01:00
One of the main driving force behind the popularity of DFT is its ``universal'' nature, as xc density functionals can be applied to any electronic system.
Obviously, the two-electron-based eDFA defined in Eq.~\eqref { eq:ecw} does not have this feature as it does depend on the number of electrons constituting the FUEG.
2020-02-15 22:25:09 +01:00
However, one can partially cure this dependency by applying a simple embedding scheme in which the two-electron FUEG (the impurity) is embedded in the IUEG (the bath).
The weight-dependence of the correlation functional is then carried exclusively by the impurity [\ie , the functional defined in Eq.~\eqref { eq:ecw} ], while the remaining correlation effects are provided by the bath (\ie , the usual LDA correlation functional).
2020-02-25 17:29:31 +01:00
Following this simple strategy, which can be further theoretically justified by the generalized adiabatic connection formalism for ensembles (GACE) originally derived by Franck and Fromager, \cite { Franck_ 2014} we propose to \emph { shift} the two-electron-based eDFA defined in Eq.~\eqref { eq:ecw} as follows:
2019-06-16 22:35:10 +02:00
\begin { equation}
\label { eq:becw}
2020-02-28 21:30:54 +01:00
\Tilde { \epsilon } _ { \rm c} ^ \bw (n)\rightarrow { \e { c} { \bw } (\n { } { } )} = (1-\ew { 1} -\ew { 2} ) \be { c} { (0)} (\n { } { } ) + \ew { 1} \be { c} { (1)} (\n { } { } ) + \ew { 2} \be { c} { (2)} (\n { } { } ),
2019-06-16 22:35:10 +02:00
\end { equation}
where
\begin { equation}
2019-09-09 11:44:30 +02:00
\be { c} { (I)} (\n { } { } ) = \e { c} { (I)} (\n { } { } ) + \e { c} { \text { LDA} } (\n { } { } ) - \e { c} { (0)} (\n { } { } ).
2019-06-16 22:35:10 +02:00
\end { equation}
2020-02-25 17:29:31 +01:00
In the following, we will use the LDA correlation functional that has been specifically designed for 1D systems in
Ref.~\onlinecite { Loos_ 2013} :
2019-06-16 22:35:10 +02:00
\begin { equation}
2020-02-19 14:52:47 +01:00
\label { eq:LDA}
2020-02-18 16:08:34 +01:00
\e { c} { \text { LDA} } (\n { } { } )
= a_ 1^ \text { LDA} F\qty [1,\frac{3}{2},a_3^\text{LDA}, \frac{a_1^\text{LDA}(1-a_3^\text{LDA})}{a_2^\text{LDA}} {\n{}{}}^{-1}] ,
2019-06-16 22:35:10 +02:00
\end { equation}
2020-02-25 17:29:31 +01:00
where $ F ( a,b,c,x ) $ is the Gauss hypergeometric function, \cite { NISTbook} and
2020-02-18 16:08:34 +01:00
\begin { subequations}
2019-06-16 22:35:10 +02:00
\begin { align}
2020-02-14 21:01:46 +01:00
a_ 1^ \text { LDA} & = - \frac { \pi ^ 2} { 360} ,
2020-02-18 16:08:34 +01:00
\\
2020-02-14 21:01:46 +01:00
a_ 2^ \text { LDA} & = \frac { 3} { 4} - \frac { \ln { 2\pi } } { 2} ,
2020-02-18 16:08:34 +01:00
\\
2020-02-14 21:01:46 +01:00
a_ 3^ \text { LDA} & = 2.408779.
2019-06-16 22:35:10 +02:00
\end { align}
2020-02-18 16:08:34 +01:00
\end { subequations}
2020-02-26 23:31:10 +01:00
Note that the strategy described in Eq.~(\ref { eq:becw} ) is general and
can be applied to real (higher-dimensional) systems. In order to make the
2020-02-25 17:29:31 +01:00
connection with the GACE formalism \cite { Franck_ 2014,Deur_ 2017} more explicit, one may
recast Eq.~\eqref { eq:becw} as
2019-06-16 22:35:10 +02:00
\begin { equation}
\label { eq:eLDA}
\begin { split}
2020-02-27 10:05:46 +01:00
{ \e { c} { \bw } (\n { } { } )}
2019-09-09 11:44:30 +02:00
& = \e { c} { \text { LDA} } (\n { } { } )
2019-06-16 22:35:10 +02:00
\\
2019-09-09 11:44:30 +02:00
& + \ew { 1} \qty [\e{c}{(1)}(\n{}{})-\e{c}{(0)}(\n{}{})] + \ew { 2} \qty [\e{c}{(2)}(\n{}{})-\e{c}{(0)}(\n{}{})] ,
2019-06-16 22:35:10 +02:00
\end { split}
\end { equation}
2020-02-25 17:29:31 +01:00
or, equivalently,
\begin { equation}
\label { eq:eLDA_ gace}
2020-02-27 10:05:46 +01:00
{ \e { c} { \bw } (\n { } { } )}
2020-02-26 23:31:10 +01:00
= \e { c} { \text { LDA} } (\n { } { } )
+ \sum _ { K>0} \int _ 0^ { \ew { K} }
2020-02-25 17:29:31 +01:00
\qty [\e{c}{(K)}(\n{}{})-\e{c}{(0)}(\n{}{})] d\xi _ K,
\end { equation}
where the $ K $ th correlation excitation energy (per electron) is integrated over the
2020-02-26 23:31:10 +01:00
ensemble weight $ \xi _ K $ at fixed (uniform) density $ \n { } { } $ .
Equation \eqref { eq:eLDA_ gace} nicely highlights the centrality of the LDA in the present eDFA.
2020-02-27 10:05:46 +01:00
In particular, $ { \e { c } { ( 0 , 0 ) } ( \n { } { } ) } = \e { c } { \text { LDA } } ( \n { } { } ) $ .
2019-06-16 22:35:10 +02:00
Consequently, in the following, we name this correlation functional ``eLDA'' as it is a natural extension of the LDA for ensembles.
Finally, we note that, by construction,
\begin { equation}
2020-02-27 10:05:46 +01:00
{ \pdv { \e { c} { \bw } (\n { } { } )} { \ew { J} } = \e { c} { (J)} (\n { } { } ) - \e { c} { (0)} (\n { } { } ).}
2019-06-16 22:35:10 +02:00
\end { equation}
2020-02-27 10:05:46 +01:00
2019-06-16 22:35:10 +02:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2020-02-14 21:01:46 +01:00
\section { Computational details}
2020-02-15 18:00:58 +01:00
\label { sec:comp_ details}
2019-06-16 22:35:10 +02:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Having defined the eLDA functional in the previous section [see Eq.~\eqref { eq:eLDA} ], we now turn to its validation.
2020-02-19 21:16:22 +01:00
Our testing playground for the validation of the eLDA functional is the ubiquitous ``electrons in a box'' model where $ \nEl $ electrons are confined in a 1D box of length $ L $ , a family of systems that we call $ \nEl $ -boxium in the following.
2020-02-17 16:26:36 +01:00
In particular, we investigate systems where $ L $ ranges from $ \pi / 8 $ to $ 8 \pi $ and $ 2 \le \nEl \le 7 $ .
2019-06-16 22:35:10 +02:00
These inhomogeneous systems have non-trivial electronic structure properties which can be tuned by varying the box length.
2019-09-05 10:37:42 +02:00
For small $ L $ , the system is weakly correlated, while strong correlation effects dominate in the large-$ L $ regime. \cite { Rogers_ 2017,Rogers_ 2016}
2020-02-19 21:16:22 +01:00
2020-02-15 16:17:44 +01:00
We use as basis functions the (orthonormal) orbitals of the one-electron system, \ie ,
2019-06-16 22:35:10 +02:00
\begin { equation}
\AO { \mu } (x) =
\begin { cases}
\sqrt { 2/L} \cos (\mu \pi x/L), & \mu \text { is odd,}
\\
\sqrt { 2/L} \sin (\mu \pi x/L), & \mu \text { is even,}
\end { cases}
\end { equation}
2020-02-17 16:26:36 +01:00
with $ \mu = 1 , \ldots , \nBas $ and $ \nBas = 30 $ for all calculations.
2020-02-28 21:12:54 +01:00
The convergence threshold $ \tau = \max { \abs { \bF { \bw } \bGam { \bw }
2020-02-27 10:26:57 +01:00
\bS - \bS \bGam { \bw } \bF { \bw } } } $ [ see Eq.~ ( \ref { eq:commut _ F _ AO } ) ] is set
to $ 10 ^ { - 5 } $ . For comparison, regular HF and KS-DFT calculations
are performed with the same threshold.
In order to compute the various density-functional
integrals that cannot be performed in closed form,
2020-02-28 21:12:54 +01:00
a 51-point Gauss-Legendre quadrature is employed.
2019-06-16 22:35:10 +02:00
2020-02-19 21:16:22 +01:00
In order to test the present eLDA functional we perform various sets of calculations.
To get reference excitation energies for both the single and double excitations, we compute full configuration interaction (FCI) energies with the Knowles-Handy FCI program described in Ref.~\onlinecite { Knowles_ 1989} .
2020-02-27 10:26:57 +01:00
For the single excitations, we also perform time-dependent LDA (TDLDA)
2020-02-28 21:12:54 +01:00
calculations [\ie , TDDFT with the LDA functional defined in Eq.~\eqref { eq:LDA} ].
2020-03-10 17:26:53 +01:00
Its Tamm-Dancoff approximation version (TDA-TDLDA) is also considered. \cite { Dreuw_ 2005}
2020-02-28 21:12:54 +01:00
Concerning the ensemble calculations, two sets of weight are tested: the zero-weight
(ground-state) limit where $ \bw = ( 0 , 0 ) $ and the
equi-tri-ensemble (or equal-weight state-averaged) limit where $ \bw = ( 1 / 3 , 1 / 3 ) $ .
2019-06-16 22:35:10 +02:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2020-02-14 21:01:46 +01:00
\section { Results and discussion}
2020-02-15 18:00:58 +01:00
\label { sec:res}
2019-06-16 22:35:10 +02:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2020-02-16 18:05:39 +01:00
2020-02-19 20:47:37 +01:00
%%% FIG 1 %%%
\begin { figure*}
\includegraphics [width=\linewidth] { EvsW_ n5}
\caption {
\label { fig:EvsW}
2020-03-10 17:26:53 +01:00
Deviation from linearity of the weight-dependent KS-eLDA ensemble energy $ \E { eLDA } { ( \ew { 1 } , \ew { 2 } ) } $ with (dashed lines) and without (solid lines) ghost-interaction correction (GIC) for 5-boxium (\ie , $ \nEl = 5 $ ) with a box of length $ L = \pi / 8 $ (left), $ L = \pi $ (center), and $ L = 8 \pi $ (right).
2020-02-19 20:47:37 +01:00
}
\end { figure*}
%%% %%% %%%
2020-03-10 17:26:53 +01:00
First, we discuss the linearity of the computed (approximate)
ensemble energies.
2020-02-17 15:52:53 +01:00
To do so, we consider 5-boxium with box lengths of $ L = \pi / 8 $ , $ L = \pi $ , and $ L = 8 \pi $ , which correspond (qualitatively at least) to the weak, intermediate, and strong correlation regimes, respectively.
2020-03-09 14:43:53 +01:00
The deviation from linearity of the three-state ensemble energy
$ \E { } { ( \ew { 1 } , \ew { 2 } ) } $ (\ie , the deviation from the
2020-03-10 17:26:53 +01:00
linearly-interpolated ensemble energy) is represented
in Fig.~\ref { fig:EvsW} as a function of $ \ew { 1 } $ or $ \ew { 2 } $ while
2020-02-27 13:06:02 +01:00
fulfilling the restrictions on the ensemble weights to ensure the GOK
2020-02-28 22:19:49 +01:00
variational principle [\ie , $ 0 \le \ew { 2 } \le 1 / 3 $ and $ \ew { 2 } \le \ew { 1 } \le ( 1 - \ew { 2 } ) / 2 $ ].
2020-03-10 17:26:53 +01:00
To illustrate the magnitude of the \titou { GIE} , we report the KS-eLDA ensemble energy with and without \titou { GIC} as explained above { [see Eqs.~\eqref { eq:Ew-GIC-eLDA} and \eqref { eq:Ew-eLDA} ]} .
2020-03-01 16:34:00 +01:00
As one can see in Fig.~\ref { fig:EvsW} , without GIC, the
ensemble energy becomes less and less linear as $ L $
2020-03-10 17:26:53 +01:00
gets larger, while the GIC reduces the curvature of the ensemble energy
drastically.
2020-03-01 16:34:00 +01:00
%\manu{This
%is a strong statement I am not sure about. The nature of the excitation
%should also be invoked I guess (charge transfer or not, etc ...). If we look at the GIE:
%\beq
%\WHF[
%\bGam{\bw}]-\sum_{I\geq0}\ew{I}\WHF[ \bGam{(I)}]
%\eeq
%For a bi-ensemble ($w_1=w$) it can be written as
%\beq
%\dfrac{1}{2}\left[(w^2-1)W_0+w(w-2)W_1\right]+w(1-w)W_{01}
%\eeq
%If, for some reason, $W_0\approx W_1\approx W_{01}=W$, then the error
%reduces to $-W/2$, which is weight-independent (it fits for example with
%what you see in the weakly correlated regime). Such an assumption depends on the nature of the
%excitation, not only on the correlation strength, right? Neverthless,
%when looking at your curves, this assumption cannot be made when the
%correlation is strong. It is not clear to me which integral ($W_{01}?$)
%drives the all thing.\\}
2020-02-27 13:06:02 +01:00
It is important to note that, even though the GIC removes the explicit
2020-03-01 16:34:00 +01:00
quadratic terms from the ensemble energy, a non-negligible curvature
remains in the GIC-eLDA ensemble energy due to the optimization of the
2020-03-09 17:00:43 +01:00
ensemble KS orbitals in the presence of GIE { [see Eqs.~\eqref { eq:min_ with_ HF_ ener_ fun} and \eqref { eq:Ew-eLDA} ]} .
2020-03-01 16:34:00 +01:00
%However, this orbital-driven error is small (in our case at
%least) \trashEF{as the correlation part of the ensemble KS potential $\delta
%\E{c}{\bw}[\n{}{}] /\delta \n{}{}(\br{})$ is relatively small compared
%to the Hx contribution}.\manu{Manu: well, I guess that the problem arises
%from the density matrices (or orbitals) that are used to compute
%individual Coulomb-exchange energies (I would not expect the DFT
%correlation part to have such an impact, as you say). The best way to check is to plot the
%ensemble energy without the correlation functional.}\\
%\\
%\manu{Manu: another idea. As far as I can see we do
%not show any individual energies (excitation energies are plotted in the
%following). Plotting individual energies (to be compared with the FCI
%ones) would immediately show if there is some curvature (in the ensemble
%energy). The latter would
%be induced by any deviation from the expected horizontal straight lines.}
2020-02-16 18:05:39 +01:00
2020-03-04 10:02:00 +01:00
%%% FIG 2 %%%
\begin { figure*}
\includegraphics [width=\linewidth] { EIvsW_ n5}
\caption {
\label { fig:EIvsW}
KS-eLDA individual energies, $ \E { eLDA } { ( 0 ) } $ (black), $ \E { eLDA } { ( 1 ) } $ (red), and $ \E { eLDA } { ( 2 ) } $ (blue), as functions of the weights $ \ew { 1 } $ (solid) and $ \ew { 2 } $ (dashed) for 5-boxium (\ie , $ \nEl = 5 $ ) with a box of length $ L = \pi / 8 $ (left), $ L = \pi $ (center), and $ L = 8 \pi $ (right).}
\end { figure*}
%%% %%% %%%
2020-03-04 15:32:32 +01:00
Figure \ref { fig:EIvsW} reports the behavior of the three KS-eLDA individual energies as functions of the weights.
2020-03-10 12:33:10 +01:00
Unlike in the exact theory, we do not obtain
2020-03-09 17:00:43 +01:00
straight horizontal lines when plotting these
energies, which is in agreement with
the curvature of the GIC-eLDA ensemble energy discussed previously. Interestingly, the
individual energies do not vary in the same way depending on the state
considered and the value of the weights.
We see for example that, within the biensemble [$ w _ 2 = 0 $ ], the energy of
the ground state increases with the first-excited-state weight $ w _ 1 $ , thus showing that we
``deteriorate'' this state a little by optimizing the orbitals also for
the first excited state. The reverse actually occurs in the triensemble
2020-03-10 12:33:10 +01:00
as $ w _ 2 $ increases. The variations in the ensemble
weights are essentially linear or quadratic. They are induced by the
eLDA functional, as readily seen from
Eqs.~(\ref { eq:Taylor_ exp_ ind_ corr_ ener_ eLDA} ) and
\eqref { eq:Taylor_ exp_ DDisc_ term} . In the biensemble, the weight dependence of the first
excitation energy is reduced as the correlation increases. On the other hand, switching from a bi- to a triensemble
2020-03-09 17:00:43 +01:00
systematically enhances the weight dependence, due to the lowering of the
ground-state energy in this case, as $ w _ 2 $ increases.
The reverse is observed for the second excitation energy.
2020-03-04 10:02:00 +01:00
2020-03-04 15:32:32 +01:00
%%% FIG 3 %%%
2020-02-19 20:47:37 +01:00
\begin { figure}
\includegraphics [width=\linewidth] { EvsL_ 5}
2020-02-16 18:05:39 +01:00
\caption {
2020-02-19 20:47:37 +01:00
\label { fig:EvsL}
2020-03-08 20:37:45 +01:00
Excitation energies (multiplied by $ L ^ 2 $ ) associated with the single excitation $ \Ex { } { ( 1 ) } $ (bottom) and double excitation $ \Ex { } { ( 2 ) } $ (top) of 5-boxium for various methods and box length $ L $ .
2020-02-19 20:47:37 +01:00
Graphs for additional values of $ \nEl $ can be found as { \SI } .
2020-02-16 18:05:39 +01:00
}
2020-02-19 20:47:37 +01:00
\end { figure}
2020-02-16 18:05:39 +01:00
%%% %%% %%%
2020-02-19 20:47:37 +01:00
Figure \ref { fig:EvsL} reports the excitation energies (multiplied by $ L ^ 2 $ ) for various methods and box sizes in the case of 5-boxium (\ie , $ \nEl = 5 $ ).
2020-02-17 16:26:36 +01:00
Similar graphs are obtained for the other $ \nEl $ values and they can be found in the { \SI } alongside the numerical data associated with each method.
2020-03-10 12:40:46 +01:00
For small $ L $ , the single and double excitations can be labeled as
2020-03-10 17:26:53 +01:00
``pure'', as revealed by a thorough analysis of the FCI wavefunctions.
2020-02-19 14:52:47 +01:00
In other words, each excitation is dominated by a sole, well-defined reference Slater determinant.
However, when the box gets larger (\ie , $ L $ increases), there is a strong mixing between the different excitation degrees.
In particular, the single and double excitations strongly mix, which makes their assignment as single or double excitations more discutable. \cite { Loos_ 2019}
2020-02-19 20:47:37 +01:00
This can be clearly evidenced by the weights of the different configurations in the FCI wave function.
2020-03-08 20:37:45 +01:00
% TITOU: shall we keep the paragraph below?
2020-03-09 10:44:21 +01:00
%Therefore, it is paramount to construct a two-weight correlation functional
%(\ie, a triensemble functional, as we have done here) which
%allows the mixing of singly- and doubly-excited configurations.
%Using a single-weight (\ie, a biensemble) functional where only the ground state and the lowest singly-excited states are taken into account, one would observe a neat deterioration of the excitation energies (as compared to FCI) when the box gets larger.
%\titou{Titou might add results for the biensemble to illustrate this.}
2020-02-28 22:19:49 +01:00
%\manu{Well, neglecting the second excited state is not the same as
%considering the $w_2=0$ limit. I thought you were referring to an
%approximation where the triensemble calculation is performed with
%the biensemble functional. This is not the same as taking $w_2=0$
%because, in this limit, you may still have a derivative discontinuity
%correction. The latter is absent if you truly neglect the second excited
%state in your ensemble functional. This should be clarified.}\\
2020-03-08 20:37:45 +01:00
%\manu{Are the results in the supp mat? We could just add "[not
%shown]" if not. This is fine as long as you checked that, indeed, the
%results deteriorate ;-)}
%\manu{Should we add that, in the bi-ensemble case, the ensemble
%correlation derivative $\partial \epsilon^\bw_{\rm c}(n)/\partial w_2$
%is neglected (if this is really what you mean (?)). I guess that this is the reason why
%the second excitation energy would not be well described (?)}
2020-02-19 14:52:47 +01:00
2020-02-19 20:47:37 +01:00
As shown in Fig.~\ref { fig:EvsL} , all methods provide accurate estimates of the excitation energies in the weak correlation regime (\ie , small $ L $ ).
2019-06-16 22:35:10 +02:00
When the box gets larger, they start to deviate.
2020-02-18 16:08:34 +01:00
For the single excitation, TDLDA is extremely accurate up to $ L = 2 \pi $ , but yields more significant errors at larger $ L $ by underestimating the excitation energies.
2019-06-16 22:35:10 +02:00
TDA-TDLDA slightly corrects this trend thanks to error compensation.
2020-02-19 14:52:47 +01:00
Concerning the eLDA functional, our results clearly evidence that the equiweight [\ie , $ \bw = ( 1 / 3 , 1 / 3 ) $ ] excitation energies are much more accurate than the ones obtained in the zero-weight limit [\ie , $ \bw = ( 0 , 0 ) $ ].
2020-02-28 22:19:49 +01:00
This is especially true for the single excitation
which is significantly improved by using equal weights.
The effect on the double excitation is less pronounced.
Overall, one clearly sees that, with
equal weights, KS-eLDA yields accurate excitation energies for both single and double excitations.
2020-02-27 15:36:46 +01:00
This conclusion is verified for smaller and larger numbers of electrons
2020-03-07 13:07:07 +01:00
(see { \SI } ).
%\\
%\manu{Manu: now comes the question that is, I believe, central in this
%work. How important are the
%ensemble correlation derivatives $\partial \epsilon^\bw_{\rm
%c}(n)/\partial w_I$ that, unlike any functional
%in the literature, the eLDA functional contains. We have to discuss this
%point... I now see, after reading what follows that this question is
%addressed later on. We should say something here and then refer to the
%end of the section, or something like that ...}
2020-02-27 15:36:46 +01:00
2020-02-19 14:52:47 +01:00
2020-03-04 15:32:32 +01:00
%%% FIG 4 %%%
2020-02-19 14:52:47 +01:00
\begin { figure*}
\includegraphics [width=\linewidth] { EvsN}
\caption {
\label { fig:EvsN}
2020-02-19 20:47:37 +01:00
Error with respect to FCI in single and double excitation energies for $ \nEl $ -boxium for various methods and electron numbers $ \nEl $ at $ L = \pi / 8 $ (left), $ L = \pi $ (center), and $ L = 8 \pi $ (right).
2020-02-19 14:52:47 +01:00
}
\end { figure*}
%%% %%% %%%
2020-02-19 20:47:37 +01:00
For the same set of methods, Fig.~\ref { fig:EvsN} reports the error (in \% ) in excitation energies (as compared to FCI) as a function of $ \nEl $ for three values of $ L $ ($ \pi / 8 $ , $ \pi $ , and $ 8 \pi $ ).
2020-02-27 15:36:46 +01:00
We draw similar conclusions as above: irrespectively of the number of
2020-02-28 22:19:49 +01:00
electrons, the eLDA functional with equal
2020-02-27 15:36:46 +01:00
weights is able to accurately model single and double excitations, with
2020-02-28 22:19:49 +01:00
a very significant improvement brought by the
equiensemble KS-eLDA orbitals as compared to their zero-weight
(\ie , conventional ground-state) analogs.
As a rule of thumb, in the weak and intermediate correlation regimes, we
see that the single
excitation obtained from equiensemble KS-eLDA is of
2020-02-27 15:36:46 +01:00
the same quality as the one obtained in the linear response formalism
2020-02-28 22:19:49 +01:00
(such as TDLDA). On the other hand, the double
2020-02-27 15:36:46 +01:00
excitation energy only deviates
2020-02-28 22:19:49 +01:00
from the FCI value by a few tenth of percent.
2020-03-10 14:40:19 +01:00
Moreover, we note that, in the strong correlation regime
2020-03-10 17:26:53 +01:00
(\titou { right} graph of Fig.~\ref { fig:EvsN} ), the single excitation
2020-02-27 15:36:46 +01:00
energy obtained at the equiensemble KS-eLDA level remains in good
agreement with FCI and is much more accurate than the TDLDA and TDA-TDLDA excitation energies which can deviate by up to $ 60 \% $ .
2020-02-28 22:19:49 +01:00
This also applies to the double excitation, the discrepancy
between FCI and equiensemble KS-eLDA remaining of the order of a few percents in the strong correlation regime.
2020-02-27 15:36:46 +01:00
These observations nicely illustrate the robustness of the
2020-02-28 22:19:49 +01:00
GOK-DFT scheme in any correlation regime for both single and double excitations.
2020-02-27 15:36:46 +01:00
This is definitely a very pleasing outcome, which additionally shows
that, even though we have designed the eLDA functional based on a
two-electron model system, the present methodology is applicable to any
2020-02-28 22:19:49 +01:00
1D electronic system, \ie , a system that has more than two
electrons.
2019-06-16 22:35:10 +02:00
2020-03-04 15:32:32 +01:00
%%% FIG 5 %%%
2020-03-10 20:00:23 +01:00
\begin { figure*}
\includegraphics [width=\linewidth] { EvsL_ DD}
2020-02-18 15:01:58 +01:00
\caption {
2020-03-09 09:25:11 +01:00
\label { fig:EvsL_ DD}
2020-03-10 20:00:23 +01:00
Error with respect to FCI (in \% ) associated with the single excitation $ \Ex { } { ( 1 ) } $ (bottom) and double excitation $ \Ex { } { ( 2 ) } $ (top) as a function of the box length $ L $ for 3-boxium (left), 5-boxium (center), and 7-boxium (right) at the KS-eLDA level with and without the contribution of the ensemble correlation derivative $ \DD { c } { ( I ) } $ .
2020-03-09 08:43:59 +01:00
Zero-weight (\ie , $ \ew { 1 } = \ew { 2 } = 0 $ , red lines) and equiweight (\ie , $ \ew { 1 } = \ew { 2 } = 1 / 3 $ , blue lines) calculations are reported.
2020-02-18 15:01:58 +01:00
}
2020-03-10 20:00:23 +01:00
\end { figure*}
2020-02-18 15:01:58 +01:00
%%% %%% %%%
2020-03-10 14:40:19 +01:00
It is also interesting to investigate the influence of the
2020-03-10 17:26:53 +01:00
correlation ensemble derivative contribution $ \DD { c } { ( I ) } $
to the $ I $ th excitation energy [see Eq.~\eqref { eq:DD-eLDA} ].
In our case, both single ($ I = 1 $ ) and double ($ I = 2 $ ) excitations are considered.
2020-03-09 09:25:11 +01:00
To do so, we have reported in Fig.~\ref { fig:EvsL_ DD} , in the case of 3-boxium, the error percentage (with respect to FCI) as a function of the box length $ L $
2020-03-09 10:44:21 +01:00
on the excitation energies obtained at the KS-eLDA with and without $ \DD { c } { ( I ) } $ [\ie , the last term in Eq.~\eqref { eq:Om-eLDA} ].
2020-03-08 22:38:15 +01:00
%\manu{Manu: there is something I do not understand. If you want to
%evaluate the importance of the ensemble correlation derivatives you
%should only remove the following contribution from the $K$th KS-eLDA
%excitation energy:
%\beq\label{eq:DD_term_to_compute}
%\int \n{\bGam{\bw}}{}(\br{})
% \left. \pdv{\e{c}{\bw}(\n{}{})}{\ew{K}} \right|_{\n{}{}=\n{\bGam{\bw}}{}(\br{})} d\br{}
%\eeq
%%rather than $E^{(I)}_{\rm HF}$
%}
2020-03-10 15:49:31 +01:00
\manu { We first stress that both single and double excitation energies are
systematically improved, as the strength of electron correlation
increases, when
taking into account
the correlation ensemble derivative. This statement holds in both
zero-weight and equal-weight limits.
The influence of the correlation ensemble derivative becomes substantial in the strong correlation regime.
}
\manu { In the zero-weight limit, its contribution is also significantly larger in the case of the single
excitation; the reverse is observed in the equal-weight triensemble
case.} \trashEF { the correlation ensemble derivative hardly
influences the double excitation} .
Importantly, one realizes that the magnitude of the correlation ensemble
derivative is much smaller in the case of equal-weight calculations (as
compared to the zero-weight calculations).\manu { Manu: well, this is not
really the case for the double excitation, right? I would remove this
sentence or mention the single excitation explicitly.}
2020-02-28 08:43:39 +01:00
This could explain why equiensemble calculations are clearly more
accurate as it reduces the influence of the ensemble correlation derivative:
for a given method, equiensemble orbitals partially remove the burden
2020-03-10 15:49:31 +01:00
of modeling properly the ensemble correlation derivative.\manu { Manu: I
do not like this statement. As I wrote above, the ensemble derivative is
still substantial in the strongly correlated limit of the equi
triensemble for the double
excitation.
}
2020-03-10 17:26:53 +01:00
Note also that, in our case, the second term in
2020-03-10 15:49:31 +01:00
Eq.~\eqref { eq:Om-eLDA} , which involves the weight-dependent correlation
potential and the density difference between ground and excited states,
2020-03-10 17:26:53 +01:00
has a negligible effect on the excitation energies \titou { (results not shown)} .
%\manu{Manu: Is this
%something that you checked but did not show? It feels like we can see
%this in the Figure but we cannot, right?}
2020-03-08 22:38:15 +01:00
%\manu{Manu: well, we
%would need the exact derivative value to draw such a conclusion. We can
%only speculate. Let us first see how important the contribution in
%Eq.~\eqref{eq:DD_term_to_compute} is. What follows should also be
%updated in the light of the new results.}
2020-02-18 16:08:34 +01:00
2020-03-04 15:32:32 +01:00
%%% FIG 6 %%%
2020-02-19 14:52:47 +01:00
\begin { figure}
2020-03-09 09:25:11 +01:00
\includegraphics [width=\linewidth] { EvsN_ DD}
2019-09-09 11:44:30 +02:00
\caption {
2020-03-09 09:25:11 +01:00
\label { fig:EvsN_ DD}
Error with respect to FCI in single and double excitation energies for $ \nEl $ -boxium (with a box length of $ L = 8 \pi $ ) as a function of the number of electrons $ \nEl $ at the KS-eLDA level with and without the contribution of the ensemble correlation derivative $ \DD { c } { ( I ) } $ .
Zero-weight (\ie , $ \ew { 1 } = \ew { 2 } = 0 $ , red lines) and equiweight (\ie , $ \ew { 1 } = \ew { 2 } = 1 / 3 $ , blue lines) calculations are reported.
2019-09-09 11:44:30 +02:00
}
2020-02-19 14:52:47 +01:00
\end { figure}
2019-09-09 11:44:30 +02:00
%%% %%% %%%
2020-03-09 09:25:11 +01:00
Finally, in Fig.~\ref { fig:EvsN_ DD} , we report the same quantities as a function of the electron number for a box of length $ 8 \pi $ (\ie , in the strong correlation regime).
2020-03-09 10:44:21 +01:00
The difference between the solid and dashed curves
2020-02-28 08:43:39 +01:00
undoubtedly show that, even in the strong correlation regime, the
ensemble correlation derivative has a small impact on the double
2020-03-10 15:49:31 +01:00
excitations \manu { Manu: well, the impact is larger than the one on the single
excitation in the equiensemble} with a slight tendency of worsening the excitation energies
2020-03-10 17:26:53 +01:00
in the case of equal weights, as the number of electrons
increases. It has a rather large influence on the single
2020-02-28 08:43:39 +01:00
excitation energies obtained in the zero-weight limit, showing once
again that the usage of equal weights has the benefit of significantly reducing the magnitude of the ensemble correlation derivative.
2020-02-19 20:47:37 +01:00
2019-06-16 22:35:10 +02:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2019-09-05 10:37:42 +02:00
\section { Concluding remarks}
2020-02-15 18:00:58 +01:00
\label { sec:conclusion}
2019-06-16 22:35:10 +02:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2020-02-28 09:59:41 +01:00
A local and ensemble-weight-dependent correlation density-functional approximation
(eLDA) has been constructed in the context of GOK-DFT for spin-polarized
triensembles in
1D. The approach is actually general and can be extended to real
(three-dimensional)
systems~\cite { Loos_ 2009,Loos_ 2009c,Loos_ 2010,Loos_ 2010d,Loos_ 2017a}
and larger ensembles in order to
model excited states in molecules and solids. Work is currently in
progress in this direction.
Unlike any standard functional, eLDA incorporates derivative
discontinuities through its weight dependence. The latter originates
from the finite uniform electron gas eLDA is
(partially) based on. The KS-eLDA scheme, where exact exchange is
combined with eLDA, delivers accurate excitation energies for both
single and double excitations, especially when an equiensemble is used.
In the latter case, the same weights are assigned to each state belonging to the ensemble.
2020-03-10 17:26:53 +01:00
The improvement on the excitation energies brought by the KS-eLDA scheme is particularly impressive in the strong correlation regime where usual methods, such as TDLDA, fail.
2020-03-09 10:44:21 +01:00
We have observed that, although the ensemble correlation discontinuity has a
2020-02-28 09:59:41 +01:00
non-negligible effect on the excitation energies (especially for the
single excitations), its magnitude can be significantly reduced by
2020-03-09 10:44:21 +01:00
performing equiweight calculations instead of zero-weight
2020-03-10 17:26:53 +01:00
calculations.
2020-02-28 09:59:41 +01:00
Let us finally stress that the present methodology can be extended
straightforwardly to other types of ensembles like, for example, the
2020-02-28 22:19:49 +01:00
$ \nEl $ -centered ones, \cite { Senjean_ 2018,Senjean_ 2020} thus allowing for the design of a LDA-type functional for the
2020-02-28 09:59:41 +01:00
calculation of ionization potentials, electron affinities, and
2020-02-28 10:02:33 +01:00
fundamental gaps.
2020-02-28 09:59:41 +01:00
Like in the present
eLDA, such a functional would incorporate the infamous derivative
2020-02-28 22:19:49 +01:00
discontinuity contribution to the fundamental gap through its explicit weight
2020-02-28 09:59:41 +01:00
dependence. We hope to report on this in the near future.
2019-09-05 10:37:42 +02:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section * { Supplementary material}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
See { \SI } for the additional details about the construction of the functionals, raw data and additional graphs.
2019-06-16 22:35:10 +02:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2019-09-05 10:37:42 +02:00
\begin { acknowledgements}
2020-03-10 17:26:53 +01:00
The authors thank Bruno Senjean and Clotilde Marut for stimulating discussions.
2020-02-28 22:19:49 +01:00
This work has been supported through the EUR grant NanoX ANR-17-EURE-0009 in the framework of the \textit { ``Programme des Investissements d'Avenir''.}
2019-09-05 10:37:42 +02:00
\end { acknowledgements}
2019-06-16 22:35:10 +02:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\bibliography { eDFT}
\end { document}