Manu: first fully written version of the exact theory section
This commit is contained in:
parent
4d5b0948a9
commit
3f165a8bb8
@ -97,6 +97,7 @@
|
||||
\newcommand{\eeq}{\end{eqnarray}}
|
||||
\newcommand{\bmk}{\bm{\kappa}} % orbital rotation vector
|
||||
\newcommand{\bmg}{\bm{\Gamma}} % orbital rotation vector
|
||||
\newcommand{\bxi}{\bm{\xi}}
|
||||
\newcommand{\bfx}{\bf{x}}
|
||||
\newcommand{\bfr}{\bf{r}}
|
||||
\DeclareMathOperator*{\argmin}{arg\,min}
|
||||
@ -206,12 +207,12 @@ Tr}$ denotes the trace and the trial ensemble density matrix operator reads
|
||||
\opGamma{{\bw}}=\sum_{K\geq 0}w_K\ket{\Phi^{(K)}}\bra{\Phi^{(K)}}.
|
||||
\eeq
|
||||
The determinants (or configuration state functions) $\Phi^{(K)}$ are all constructed from the same set of (ensemble Kohn--Sham) orbitals that is optimized variationally and the trial ensemble density is simply the weighted sum of the individual densities:
|
||||
\beq
|
||||
\beq\label{eq:KS_ens_density}
|
||||
n_{\opGamma{\bw}}(\br)=\sum_{K\geq 0}w_Kn_{\Phi^{(K)}}(\br).
|
||||
\eeq
|
||||
As readily seen from Eq.~(\ref{eq:var_ener_gokdft}), both Hartree-exchange and
|
||||
correlation energies are described with density functionals that are {\it weight-dependent}. We focus here on the (exact) Hx part which is defined as follows:
|
||||
\beq
|
||||
\beq\label{eq:exact_ens_Hx}
|
||||
{E}^{{\bw}}_{\rm
|
||||
Hx}[n]=\sum_{K\geq 0}w_K\bra{\Phi^{(K)}[n]}\hat{W}_{\rm
|
||||
ee}\ket{\Phi^{(K)}[n]}
|
||||
@ -227,8 +228,112 @@ In practice, one is not much interested in ensemble energies but rather in excit
|
||||
E^{(I)}&=&E^{{\bw}}+\sum_{K>0}\left(\delta_{IK}-w_K\right)\dfrac{\partial
|
||||
E^{{\bw}}}{\partial w_K},
|
||||
\eeq
|
||||
where, according to the variational ensemble energy expression of Eq.~(\ref{eq:var_ener_gokdft}),
|
||||
where, according to the {\it variational} ensemble energy expression of Eq.~(\ref{eq:var_ener_gokdft}), the derivative in $w_K$ can be evaluated from the minimizing KS wavefunctions $\Phi^{(K)}=\Phi^{(K),\bw}$ as follows:
|
||||
\beq\label{eq:deriv_Ew_wk}
|
||||
&&\dfrac{\partial
|
||||
E^{{\bw}}}{\partial w_K}=\bra{\Phi^{(K)}}\hat{h}\ket{\Phi^{(K)}}-\bra{\Phi^{(0)}}\hat{h}\ket{\Phi^{(0)}}
|
||||
\nonumber\\
|
||||
&&+\Bigg[\int d\br\,\dfrac{\delta {E}^{{\bw}}_{\rm
|
||||
Hx}\left[n\right]}{\delta
|
||||
n({\br})}\left(n_{\Phi^{(K)}}(\br)-n_{\Phi^{(0)}}(\br)\right)
|
||||
%\nonumber\\
|
||||
%&&
|
||||
+
|
||||
%\left.
|
||||
\dfrac{\partial {E}^{{\bw}}_{\rm
|
||||
Hx}\left[n\right]}{\partial w_K}
|
||||
%\right|_{n=n_{\opGamma{\bw}}}
|
||||
\nonumber\\
|
||||
&&+\int d\br\,\dfrac{\delta {E}^{{\bw}}_{\rm
|
||||
c}\left[n\right]}{\delta
|
||||
n({\br})}\left(n_{\Phi^{(K)}}(\br)-n_{\Phi^{(0)}}(\br)\right)
|
||||
%\nonumber\\
|
||||
%&&
|
||||
+
|
||||
%\left.
|
||||
\dfrac{\partial {E}^{{\bw}}_{\rm
|
||||
c}\left[n\right]}{\partial w_K}
|
||||
%\right|
|
||||
\Bigg]_{n=n_{\opGamma{\bw}}}
|
||||
.
|
||||
\nonumber\\
|
||||
\eeq
|
||||
The Hx contribution to Eq.~(\ref{eq:deriv_Ew_wk}) can be rewritten as follows:
|
||||
\beq\label{eq:_deriv_wk_Hx}
|
||||
\left.\dfrac{\partial
|
||||
}{\partial \xi_K}
|
||||
\left({E}^{{\bxi}}_{\rm
|
||||
Hx}\left[n^{\bxi,\bxi}\right]
|
||||
-
|
||||
{E}^{{\bw}}_{\rm
|
||||
Hx}\left[n^{\bw,\bxi}\right]
|
||||
\right)\right|_{\bxi=\bw},
|
||||
\eeq
|
||||
where $\bxi\equiv (\xi_1,\xi_2,\ldots,\xi_K,\ldots)$ and
|
||||
\beq
|
||||
n^{\bw,\bxi}(\br)=\sum_{K\geq 0}w_Kn_{\Phi^{(K),\bxi}}(\br).
|
||||
\eeq
|
||||
Since, for given ensemble weight $\bw$ and $\bxi$ values, the ensemble densities $n^{\bxi,\bxi}$ and $n^{\bw,\bxi}$ are generated from the {\it same} KS potential (which is unique up to a constant), it comes
|
||||
from the exact expression in Eq.~(\ref{eq:exact_ens_Hx}) that
|
||||
\beq
|
||||
{E}^{{\bxi}}_{\rm
|
||||
Hx}\left[n^{\bxi,\bxi}\right]=\sum_{K\geq 0}\xi_K\bra{\Phi^{(K),\bxi}}\hat{W}_{\rm
|
||||
ee}\ket{\Phi^{(K),\bxi}}
|
||||
\eeq
|
||||
with $\xi_0=1-\sum_{K>0}\xi_K$
|
||||
and
|
||||
\beq
|
||||
{E}^{{\bw}}_{\rm
|
||||
Hx}\left[n^{\bw,\bxi}\right]=\sum_{K\geq 0}w_K\bra{\Phi^{(K),\bxi}}\hat{W}_{\rm
|
||||
ee}\ket{\Phi^{(K),\bxi}},
|
||||
\eeq
|
||||
thus leading, according to Eqs.~(\ref{eq:deriv_Ew_wk}) and (\ref{eq:_deriv_wk_Hx}), to the simplified expression
|
||||
\beq\label{eq:deriv_Ew_wk_simplified}
|
||||
&&\dfrac{\partial
|
||||
E^{{\bw}}}{\partial w_K}=\bra{\Phi^{(K)}}\hat{H}\ket{\Phi^{(K)}}-\bra{\Phi^{(0)}}\hat{H}\ket{\Phi^{(0)}}
|
||||
\nonumber\\
|
||||
&&+\Bigg[
|
||||
\int d\br\,\dfrac{\delta {E}^{{\bw}}_{\rm
|
||||
c}\left[n\right]}{\delta
|
||||
n({\br})}\left(n_{\Phi^{(K)}}(\br)-n_{\Phi^{(0)}}(\br)\right)
|
||||
%\nonumber\\
|
||||
%&&
|
||||
+
|
||||
%\left.
|
||||
\dfrac{\partial {E}^{{\bw}}_{\rm
|
||||
c}\left[n\right]}{\partial w_K}
|
||||
%\right|
|
||||
\Bigg]_{n=n_{\opGamma{\bw}}}
|
||||
.
|
||||
\nonumber\\
|
||||
\eeq
|
||||
Since the ensemble energy can be evaluated as follows:
|
||||
\beq
|
||||
E^{{\bw}}=\sum_{K\geq 0}w_K\bra{\Phi^{(K)}}\hat{H}\ket{\Phi^{(K)}}+{E}^{{\bw}}_{\rm
|
||||
c}\left[n_{\opGamma{\bw}}\right],
|
||||
\eeq
|
||||
with $\Phi^{(K)}=\Phi^{(K),\bw}$ [note that, when the minimum is reached
|
||||
in Eq.~(\ref{eq:var_ener_gokdft}), $n_{\opGamma{\bw}}=n^{\bw,\bw}$],
|
||||
we finally recover from Eqs.~(\ref{eq:KS_ens_density}) and
|
||||
(\ref{eq:indiv_ener_from_ens}) the {\it exact} expression of Ref.~\cite{} for the $I$th energy level:
|
||||
\beq
|
||||
E^{(I)}&=&\bra{\Phi^{(I)}}\hat{H}\ket{\Phi^{(I)}}+{E}^{{\bw}}_{\rm
|
||||
c}\left[n_{\opGamma{\bw}}\right]
|
||||
\nonumber\\
|
||||
&&+
|
||||
\int d\br\,\dfrac{\delta {E}^{{\bw}}_{\rm
|
||||
c}\left[n_{\opGamma{\bw}}\right]}{\delta
|
||||
n({\br})}\left(n_{\Phi^{(I)}}(\br)-n_{\opGamma{\bw}}(\br)\right)
|
||||
\nonumber\\
|
||||
&&+
|
||||
\sum_{K>0}\left(\delta_{IK}-w_K\right)\left.\dfrac{\partial {E}^{{\bw}}_{\rm
|
||||
c}\left[n\right]}{\partial w_K}
|
||||
\right|
|
||||
_{n=n_{\opGamma{\bw}}}.
|
||||
\eeq
|
||||
%%%%%%%%%%%%%%%
|
||||
%\subsection{Hybrid GOK-DFT}
|
||||
%%%%%%%%%%%%%%%
|
||||
|
||||
|
||||
\subsection{Approximations}
|
||||
|
Loading…
Reference in New Issue
Block a user