Manu: done with self-teaching. Will clean the all thing after lunch
This commit is contained in:
parent
3b9c09ce2e
commit
20780fe96b
@ -546,31 +546,122 @@ c}\left[n_{\bm\gamma^{\bw}}\right]
|
||||
\eeq
|
||||
% Manu's derivation %%%%
|
||||
\color{blue}
|
||||
Fock operator:\\
|
||||
I am teaching myself ...\\
|
||||
Stationarity condition
|
||||
\beq
|
||||
&&\sum_{t^\sigma}\Big(f_{p^\sigma\sigma,t^\sigma\sigma}\Gamma^{(K)\sigma}_{t^\sigma
|
||||
&&0=\sum_{K\geq 0}w_K\sum_{t^\sigma}\Big(f_{p^\sigma\sigma,t^\sigma\sigma}\Gamma^{(K)\sigma}_{t^\sigma
|
||||
q^\sigma}-\Gamma^{(K)\sigma}_{p^\sigma
|
||||
t^\sigma}f_{t^\sigma\sigma,q^\sigma\sigma}\Big)
|
||||
\nonumber\\
|
||||
&&=
|
||||
f_{p^\sigma\sigma,q^\sigma\sigma}n^{(K)\sigma}_{q^\sigma}-n^{(K)\sigma}_{p^\sigma}f_{p^\sigma\sigma,q^\sigma\sigma}
|
||||
&&=\sum_{K\geq 0}w_K
|
||||
\Big(f_{p^\sigma\sigma,q^\sigma\sigma}n^{(K)\sigma}_{q^\sigma}-n^{(K)\sigma}_{p^\sigma}f_{p^\sigma\sigma,q^\sigma\sigma}\Big)
|
||||
\nonumber\\
|
||||
&&=
|
||||
&&
|
||||
=\sum_{\mu\nu}\sum_{K\geq 0}w_KF_{\mu\nu}^\sigma c^\sigma_{\mu
|
||||
p}c^\sigma_{\nu q}\left(n^{(K)\sigma}_{q^\sigma}-n^{(K)\sigma}_{p^\sigma}\right)
|
||||
\eeq
|
||||
thus leading to
|
||||
\beq
|
||||
&&0=\sum_{p^\sigma q^\sigma}c^\sigma_{\lambda
|
||||
p}c^\sigma_{\omega q}\left(\sum_{\mu\nu}\sum_{K\geq 0}w_KF_{\mu\nu}^\sigma c^\sigma_{\mu
|
||||
p}c^\sigma_{\nu q}\left(n^{(K)\sigma}_{q^\sigma}-n^{(K)\sigma}_{p^\sigma}\right)\right)
|
||||
\nonumber\\
|
||||
&&=\sum_{\mu\nu}\sum_{K\geq 0}w_K
|
||||
F_{\mu\nu}^\sigma\left(\Gamma^{(K)\sigma}_{\nu\omega}\sum_{p^\sigma}c^\sigma_{\lambda
|
||||
p}c^\sigma_{\mu
|
||||
p}-\Gamma^{(K)\sigma}_{\mu\lambda}\sum_{q^\sigma}c^\sigma_{\omega q}c^\sigma_{\nu q}\right)
|
||||
\nonumber\\
|
||||
\eeq
|
||||
If we denote $M^\sigma_{\lambda\mu}=\sum_{p^\sigma}c^\sigma_{\lambda
|
||||
p}c^\sigma_{\mu
|
||||
p}$ it comes
|
||||
\beq
|
||||
S_{\mu\nu}=\sum_{\lambda\omega}S_{\mu\lambda}M^\sigma_{\lambda\omega}S_{\omega\nu}
|
||||
\eeq
|
||||
which simply means that
|
||||
\beq
|
||||
{\bm S}={\bm S}{\bm M}{\bm S}
|
||||
\eeq
|
||||
or, equivalently,
|
||||
\beq
|
||||
{\bm M}={\bm S}^{-1}.
|
||||
\eeq
|
||||
The stationarity condition simply reads
|
||||
\beq
|
||||
\sum_{\mu\nu}F_{\mu\nu}^\sigma\left(\Gamma^{\bw\sigma}_{\nu\omega}
|
||||
\left[{\bm S}^{-1}\right]_{\lambda\mu}
|
||||
-\Gamma^{\bw\sigma}_{\mu\lambda}\left[{\bm S}^{-1}\right]_{\omega\nu}\right)
|
||||
=0
|
||||
\eeq
|
||||
thus leading to
|
||||
\beq
|
||||
{\bm S}^{-1}{{\bm F}^\sigma}{\bm \Gamma}^{\bw\sigma}={\bm \Gamma}^{\bw\sigma}{{\bm F}^\sigma}{\bm S}^{-1}
|
||||
\eeq
|
||||
or, equivalently,
|
||||
\beq
|
||||
{{\bm F}^\sigma}{\bm \Gamma}^{\bw\sigma}{\bm S}={\bm S}{\bm
|
||||
\Gamma}^{\bw\sigma}{{\bm F}^\sigma}.
|
||||
\eeq
|
||||
%%%%%
|
||||
|
||||
Fock operator:\\
|
||||
\beq
|
||||
&&f_{p^\sigma\sigma,q^\sigma\sigma}=\langle\varphi_p^\sigma\vert\hat{h}\vert\varphi_q^\sigma\rangle
|
||||
&&f_{p^\sigma\sigma,q^\sigma\sigma}-\langle\varphi_p^\sigma\vert\hat{h}\vert\varphi_q^\sigma\rangle
|
||||
\nonumber\\
|
||||
&&+\sum_{L\geq 0}w_L\sum_{\tau}\sum_{r^\tau s^\tau}
|
||||
&&=\sum_{L\geq 0}w_L\sum_{\tau}\sum_{r^\tau s^\tau}
|
||||
\nonumber\\
|
||||
&&\Big(\langle p^\sigma r^\tau\vert
|
||||
q^\sigma s^\tau\rangle\Gamma^{(L)\tau}_{r^\tau
|
||||
s^\tau}
|
||||
&&
|
||||
\Big(\langle p^\sigma r^\tau\vert
|
||||
q^\sigma s^\tau\rangle
|
||||
-\delta_{\sigma\tau}\langle p^\sigma r^\sigma\vert
|
||||
s^\sigma q^\sigma\rangle\Gamma^{(L)\tau}_{r^\tau
|
||||
s^\tau}
|
||||
s^\sigma q^\sigma\rangle
|
||||
\Big)
|
||||
\Gamma^{(L)\tau}_{r^\tau
|
||||
s^\tau}
|
||||
\nonumber\\
|
||||
&&
|
||||
=\sum_{L\geq 0}w_L\sum_{\tau}\sum_{r^\tau}\Big(\langle p^\sigma r^\tau\vert
|
||||
q^\sigma r^\tau\rangle
|
||||
-\delta_{\sigma\tau}\langle p^\sigma r^\tau\vert
|
||||
r^\tau q^\sigma\rangle
|
||||
\Big)
|
||||
n^{(L)\tau}_{r^\tau}
|
||||
\nonumber\\
|
||||
&&=\sum_{L\geq 0}w_L
|
||||
\sum_{\lambda\omega}\sum_{\tau}\Big[\langle
|
||||
p^\sigma\lambda\vert q^\sigma\omega\rangle
|
||||
-\delta_{\sigma\tau}
|
||||
\langle
|
||||
p^\sigma\lambda\vert \omega q^\sigma\rangle\Big]
|
||||
\Gamma^{(L)\tau}_{\lambda\omega}
|
||||
\nonumber\\
|
||||
&&=
|
||||
\sum_{\lambda\omega}\sum_{\tau}\Big[\langle
|
||||
p^\sigma\lambda\vert q^\sigma\omega\rangle
|
||||
-\delta_{\sigma\tau}
|
||||
\langle
|
||||
p^\sigma\lambda\vert \omega q^\sigma\rangle\Big]
|
||||
\Gamma^{\bw\tau}_{\lambda\omega}
|
||||
\nonumber\\
|
||||
&&=\sum_{\mu\nu\lambda\omega}\sum_{\tau}
|
||||
\Big(\langle{\mu}{\lambda}\vert{\nu}{\omega}\rangle
|
||||
-\delta_{\sigma\tau}\langle\mu\lambda\vert\omega\nu\rangle
|
||||
\Big)\Gamma^{\bw\tau}_{\lambda\omega}c^\sigma_{\mu p}c^\sigma_{\nu q}
|
||||
\nonumber\\
|
||||
\eeq
|
||||
or, equivalently,
|
||||
\beq
|
||||
f_{p^\sigma\sigma,q^\sigma\sigma}=\sum_{\mu\nu}F_{\mu\nu}^\sigma c^\sigma_{\mu p}c^\sigma_{\nu q}
|
||||
\eeq
|
||||
where
|
||||
\beq
|
||||
F_{\mu\nu}^\sigma=h_{\mu\nu}+\sum_{\lambda\omega}\sum_\tau
|
||||
G_{\mu\nu\lambda\omega}^{\sigma\tau}\Gamma^{\bw\tau}_{\lambda\omega}
|
||||
\eeq
|
||||
and
|
||||
\beq
|
||||
G_{\mu\nu\lambda\omega}^{\sigma\tau}=({\mu}{\nu}\vert{\lambda}{\omega})
|
||||
-\delta_{\sigma\tau}(\mu\omega\vert\lambda\nu)
|
||||
\eeq
|
||||
\color{black}
|
||||
\\
|
||||
|
Loading…
Reference in New Issue
Block a user