Manu: saving work
This commit is contained in:
parent
3bf0fca3ad
commit
bc03cae112
@ -52,7 +52,7 @@
|
||||
|
||||
% matrices/operator
|
||||
\newcommand{\br}{\bm{r}}
|
||||
\newcommand{\bw}{\bm{w}}
|
||||
\newcommand{\bw}{{\bm{w}}}
|
||||
\newcommand{\bG}{\bm{G}}
|
||||
\newcommand{\bS}{\bm{S}}
|
||||
\newcommand{\bGamma}[1]{\bm{\Gamma}^{#1}}
|
||||
@ -98,8 +98,8 @@
|
||||
\newcommand{\bmk}{\bm{\kappa}} % orbital rotation vector
|
||||
\newcommand{\bmg}{\bm{\Gamma}} % orbital rotation vector
|
||||
\newcommand{\bxi}{\bm{\xi}}
|
||||
\newcommand{\bfx}{\bf{x}}
|
||||
\newcommand{\bfr}{\bf{r}}
|
||||
\newcommand{\bfx}{{\bf{x}}}
|
||||
\newcommand{\bfr}{{\bf{r}}}
|
||||
\DeclareMathOperator*{\argmin}{arg\,min}
|
||||
\newcommand{\blue}[1]{{\textcolor{blue}{#1}}}
|
||||
%%%%
|
||||
@ -351,7 +351,35 @@ $\Phi^{(K)}$. We can then construct the ensemble density matrix
|
||||
{\bmg}^{{\bw}}=\sum_{K\geq 0}w_K{\bmg}^{(K)}
|
||||
\eeq
|
||||
and compute the ensemble density as follows:
|
||||
$n^{\bw}({\br})=$
|
||||
\blue{
|
||||
\beq
|
||||
n^{\bw}({\br})&=&\sum_{K\geq 0}\sum_{\sigma=\alpha,\beta}{\tt
|
||||
w}_Kn^{(K)}({\bfx})
|
||||
\nonumber\\
|
||||
&=&
|
||||
\sum_{K\geq 0}\sum_{\sigma=\alpha,\beta}{\tt
|
||||
w}_K\sum_{pq}\varphi_p({\bfx})\varphi_q({\bfx})\Gamma_{pq}^{(K)}
|
||||
\nonumber\\
|
||||
&=&
|
||||
\sum_{\sigma=\alpha,\beta}
|
||||
\sum_{K\geq 0}
|
||||
{\tt
|
||||
w}_K\sum_{p\in (K)}\varphi^2_p({\bfx})
|
||||
\nonumber\\
|
||||
&=&
|
||||
\sum_{\sigma=\alpha,\beta}
|
||||
\sum_{K\geq 0}
|
||||
{\tt
|
||||
w}_K
|
||||
\sum_{\mu\nu}
|
||||
\sum_{p\in (K)}c_{\mu p}c_{\nu p}\AO{\mu}({\bfx})\AO{\nu}({\bfx})
|
||||
\nonumber\\
|
||||
&=&\sum_{\sigma=\alpha,\beta}\sum_{\mu\nu}\AO{\mu}({\bfx})\AO{\nu}({\bfx}){\Gamma}^{\bw}_{\mu\nu}
|
||||
\eeq
|
||||
}
|
||||
\beq
|
||||
n^{\bw}({\br})=\sum_{\sigma=\alpha,\beta}\sum_{\mu\nu}\AO{\mu}({\br,\sigma})\AO{\nu}(\br,\sigma){\Gamma}^{\bw}_{\mu\nu}
|
||||
\eeq
|
||||
can be determined.
|
||||
%%%%%%%%%%%%%%%
|
||||
%\subsection{Hybrid GOK-DFT}
|
||||
|
Loading…
Reference in New Issue
Block a user