Manu: saving work

This commit is contained in:
Emmanuel Fromager 2020-02-11 15:00:44 +01:00
parent 3bf0fca3ad
commit bc03cae112

View File

@ -52,7 +52,7 @@
% matrices/operator
\newcommand{\br}{\bm{r}}
\newcommand{\bw}{\bm{w}}
\newcommand{\bw}{{\bm{w}}}
\newcommand{\bG}{\bm{G}}
\newcommand{\bS}{\bm{S}}
\newcommand{\bGamma}[1]{\bm{\Gamma}^{#1}}
@ -98,8 +98,8 @@
\newcommand{\bmk}{\bm{\kappa}} % orbital rotation vector
\newcommand{\bmg}{\bm{\Gamma}} % orbital rotation vector
\newcommand{\bxi}{\bm{\xi}}
\newcommand{\bfx}{\bf{x}}
\newcommand{\bfr}{\bf{r}}
\newcommand{\bfx}{{\bf{x}}}
\newcommand{\bfr}{{\bf{r}}}
\DeclareMathOperator*{\argmin}{arg\,min}
\newcommand{\blue}[1]{{\textcolor{blue}{#1}}}
%%%%
@ -351,7 +351,35 @@ $\Phi^{(K)}$. We can then construct the ensemble density matrix
{\bmg}^{{\bw}}=\sum_{K\geq 0}w_K{\bmg}^{(K)}
\eeq
and compute the ensemble density as follows:
$n^{\bw}({\br})=$
\blue{
\beq
n^{\bw}({\br})&=&\sum_{K\geq 0}\sum_{\sigma=\alpha,\beta}{\tt
w}_Kn^{(K)}({\bfx})
\nonumber\\
&=&
\sum_{K\geq 0}\sum_{\sigma=\alpha,\beta}{\tt
w}_K\sum_{pq}\varphi_p({\bfx})\varphi_q({\bfx})\Gamma_{pq}^{(K)}
\nonumber\\
&=&
\sum_{\sigma=\alpha,\beta}
\sum_{K\geq 0}
{\tt
w}_K\sum_{p\in (K)}\varphi^2_p({\bfx})
\nonumber\\
&=&
\sum_{\sigma=\alpha,\beta}
\sum_{K\geq 0}
{\tt
w}_K
\sum_{\mu\nu}
\sum_{p\in (K)}c_{\mu p}c_{\nu p}\AO{\mu}({\bfx})\AO{\nu}({\bfx})
\nonumber\\
&=&\sum_{\sigma=\alpha,\beta}\sum_{\mu\nu}\AO{\mu}({\bfx})\AO{\nu}({\bfx}){\Gamma}^{\bw}_{\mu\nu}
\eeq
}
\beq
n^{\bw}({\br})=\sum_{\sigma=\alpha,\beta}\sum_{\mu\nu}\AO{\mu}({\br,\sigma})\AO{\nu}(\br,\sigma){\Gamma}^{\bw}_{\mu\nu}
\eeq
can be determined.
%%%%%%%%%%%%%%%
%\subsection{Hybrid GOK-DFT}