Manu: reformulated the discussion on derivative discontinuities
This commit is contained in:
parent
f59a20c26a
commit
9e7fb1453f
@ -346,50 +346,43 @@ Eq.~(\ref{eq:exact_ener_level_dets}) for the ground-state energy:
|
||||
\eeq
|
||||
or, equivalently,
|
||||
\beq\label{eq:gs_ener_level_gs_lim}
|
||||
\begin{split}
|
||||
\E{}{(0)}&=\mel*{\Det{(0)}}{\hat{H}[\n{\Det{(0)}}{}]}{\Det{(0)}}
|
||||
\\
|
||||
&
|
||||
+
|
||||
\E{c}{}[\n{\Det{(0)}}{}]
|
||||
-\int \fdv{\E{c}{}[\n{\Det{(0)}}{}]}{\n{}{}(\br{})}\n{\Det{(0)}}{}(\br{})
|
||||
\E{}{(0)}=\mel*{\Det{(0)}}{\hat{H}[\n{\Det{(0)}}{}]}{\Det{(0)}}
|
||||
,
|
||||
\end{split}
|
||||
\eeq
|
||||
where the ground-state-density-functional Hamiltonian reads
|
||||
\beq
|
||||
\hat{H}[\n{\Det{(0)}}{}]=\hH+
|
||||
\sum^N_{i=1}\fdv{\E{c}{}[\n{\Det{(0)}}{}]}{\n{}{}(\br{i})}.
|
||||
where the density-functional Hamiltonian reads
|
||||
\beq\label{eq:dens_func_Hamilt}
|
||||
\hat{H}[n]=\hH+
|
||||
\sum^N_{i=1}\left(\fdv{\E{c}{}[n]}{\n{}{}(\br{i})}
|
||||
+C_{\rm c}[n]
|
||||
\right),
|
||||
\eeq
|
||||
Note that, when divided by the total number $N$ of electrons, the sum of
|
||||
the last two terms on the right-hand side of
|
||||
Eq.~(\ref{eq:gs_ener_level_gs_lim}) match the correlation component of
|
||||
Levy--Zahariev's shift in the KS potential~\cite{Levy_2014}.
|
||||
The excited-state ($I>0$) energy level expressions
|
||||
can also be simplified, thus leading to
|
||||
and
|
||||
\beq\label{eq:corr_LZ_shift}
|
||||
C_{\rm c}[n]=\dfrac{\E{c}{}[n]
|
||||
-\int
|
||||
\fdv{\E{c}{}[n]}{\n{}{}(\br{})}n(\br{})d\br{}}{\int n(\br{})d\br{}}
|
||||
\eeq
|
||||
is the correlation component of
|
||||
Levy--Zahariev's constant shift in potential~\cite{Levy_2014}.
|
||||
Similarly, the excited-state ($I>0$) energy level expressions
|
||||
can be recast as follows:
|
||||
\beq\label{eq:excited_ener_level_gs_lim}
|
||||
\begin{split}
|
||||
\E{}{(I)}
|
||||
& = \mel*{\Det{(I)}}{\hat{H}[\n{\Det{(0)}}{}]}{\Det{(I)}}
|
||||
= \mel*{\Det{(I)}}{\hat{H}[\n{\Det{(0)}}{}]}{\Det{(I)}}
|
||||
+
|
||||
\left.
|
||||
\pdv{\E{c}{\bw}[\n{\Det{(0)}}{}]}{\ew{I}}
|
||||
\right|_{\bw=0}.
|
||||
\\
|
||||
&
|
||||
+
|
||||
\E{c}{}[\n{\Det{(0)}}{}]
|
||||
-\int \fdv{\E{c}{}[\n{\Det{(0)}}{}]}{\n{}{}(\br{})}\n{\Det{(0)}}{}(\br{})
|
||||
\end{split}
|
||||
\eeq
|
||||
As readily seen from Eqs.~(\ref{eq:gs_ener_level_gs_lim}) and
|
||||
(\ref{eq:excited_ener_level_gs_lim}), any constant shift $\delta
|
||||
As readily seen from Eqs.~(\ref{eq:dens_func_Hamilt}) and
|
||||
(\ref{eq:corr_LZ_shift}), introducing any constant shift $\delta
|
||||
\E{c}{}[\n{\Det{(0)}}{}]/\delta n({\bf r})\rightarrow \delta
|
||||
\E{c}{}[\n{\Det{(0)}}{}]/\delta n({\bf r})+C$ in the correlation
|
||||
potential leaves the individual energy levels unchanged. As a result, in
|
||||
\E{c}{}[\n{\Det{(0)}}{}]/\delta n({\bf r})+C$ into the correlation
|
||||
potential leaves the density-functional Hamiltonian $\hat{H}[n]$ (and
|
||||
therefore the individual energy levels) unchanged. As a result, in
|
||||
this context,
|
||||
the correlation derivative discontinuities that is expected to appear when the
|
||||
excitation process occurs~\cite{Levy_1995} are fully described by the ensemble
|
||||
the correlation derivative discontinuities induced by the
|
||||
excitation process~\cite{Levy_1995} will be fully described by the ensemble
|
||||
correlation derivatives [second term on the right-hand side of
|
||||
Eq.~(\ref{eq:excited_ener_level_gs_lim})].
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user