Manu: saving work in the theory section.
This commit is contained in:
parent
61c368748d
commit
3fb4919ad2
@ -832,9 +832,15 @@ following ensemble local density \textit{approximation} (eLDA) will be employed:
|
||||
\beq\label{eq:eLDA_corr_fun}
|
||||
\E{c}{\bw}[\n{}{}]\approx \int \n{}{}(\br{}) \e{c}{\bw}(\n{}{}(\br{})) d\br{},
|
||||
\eeq
|
||||
where the correlation energy per particle $\e{c}{\bw}(\n{}{})$ is \textit{weight dependent}.
|
||||
As shown in Sec.~\ref{sec:eDFA}, the latter can be constructed, for
|
||||
example, from a finite uniform electron gas model.
|
||||
\manu{
|
||||
where the ensemble correlation energy per particle
|
||||
\beq\label{eq:decomp_ens_correner_per_part}
|
||||
\e{c}{\bw}(\n{}{})=\sum_{K\geq 0}w_K\be{c}{(K)}(\n{}{})
|
||||
\eeq
|
||||
}
|
||||
is \textit{weight dependent}.
|
||||
As shown in Sec.~\ref{sec:eDFA}, the latter can be constructed
|
||||
from a finite uniform electron gas model.
|
||||
%\titou{Manu, I think we should clearly define here what the expression of the ensemble energy with and without GOC.
|
||||
%What do you think?}
|
||||
|
||||
@ -885,26 +891,19 @@ $\n{\bGam{\bw}}{}(\br{})-\n{\bGam{(I)}}{}(\br{})$:
|
||||
Therefore, it can be identified as
|
||||
an individual-density-functional correlation energy where the density-functional
|
||||
correlation energy per particle is approximated by the ensemble one for
|
||||
all the states within the ensemble. Note that the weighted sum of the
|
||||
individual KS-eLDA energy levels delivers a \manu{\it ghost-interaction-corrected (GIC)} version of
|
||||
the KS-eLDA ensemble energy:
|
||||
\beq\label{eq:Ew-eLDA}
|
||||
\begin{split}
|
||||
\E{GIC-eLDA}{\bw}&=\sum_{I\geq0}\ew{I}\E{{eLDA}}{(I)}
|
||||
\\
|
||||
&=
|
||||
\E{eLDA}{\bw}
|
||||
-\WHF[\bGam{\bw}]+\sum_{I\geq0}\ew{I}\WHF[ \bGam{(I)}].
|
||||
\end{split}
|
||||
\eeq
|
||||
all the states within the ensemble.
|
||||
|
||||
Let us finally stress that, to the best of our knowledge, eLDA is the first
|
||||
|
||||
Let us stress that, to the best of our knowledge, eLDA is the first
|
||||
density-functional approximation that incorporates ensemble weight
|
||||
dependencies explicitly, thus allowing for the description of derivative
|
||||
discontinuities [see Eq.~\eqref{eq:excited_ener_level_gs_lim} and the
|
||||
comment that follows] {\it via} the last term on the right-hand side
|
||||
of Eq.~\eqref{eq:EI-eLDA}.
|
||||
\manu{
|
||||
of Eq.~\eqref{eq:EI-eLDA}. \manu{According to the decomposition of
|
||||
the ensemble
|
||||
correlation energy per particle in Eq.
|
||||
\eqref{eq:decomp_ens_correner_per_part}, the latter can be recast as
|
||||
follows:
|
||||
\beq
|
||||
\begin{split}
|
||||
&
|
||||
@ -924,12 +923,13 @@ d\br{}
|
||||
-
|
||||
\e{c}{\bw}(\n{\bGam{\bw}}{}(\br{}))
|
||||
\Big)\,\n{\bGam{\bw}}{}(\br{})
|
||||
d\br{}
|
||||
d\br{},
|
||||
%\sum_{K>0}\delta_{IK}\left. \pdv{\e{c}{\bw}(\n{}{})}{\ew{K}} \right|_{\n{}{}=\n{\bGam{\bw}}{}(\br{})}
|
||||
\end{split}
|
||||
\eeq
|
||||
thus leading to the following Taylor expansion
|
||||
\beq
|
||||
thus leading to the following Taylor expansion through first order in
|
||||
$\n{\bGam{\bw}}{}(\br{})-\n{\bGam{(I)}}{}(\br{})$:
|
||||
\beq\label{eq:Taylor_exp_DDisc_term}
|
||||
\begin{split}
|
||||
&
|
||||
\int \sum_{K>0} \qty(\delta_{IK} - \ew{K} ) \n{\bGam{\bw}}{}(\br{})
|
||||
@ -958,6 +958,25 @@ d\br{}
|
||||
+\mathcal{O}\left([\n{\bGam{\bw}}{}-\n{\bGam{(I)}}{}]^2\right).
|
||||
\end{split}
|
||||
\eeq
|
||||
As readily seen from Eqs. \eqref{eq:Taylor_exp_ind_corr_ener_eLDA} and \eqref{eq:Taylor_exp_DDisc_term}, the
|
||||
role of the correlation ensemble derivative [last term on the right-hand side of Eq.
|
||||
\eqref{eq:EI-eLDA}] is, through zeroth order, to substitute the expected
|
||||
individual correlation energy per particle for the ensemble one.
|
||||
}
|
||||
|
||||
\manu{
|
||||
Let us finally note that the weighted sum of the
|
||||
individual KS-eLDA energy levels delivers a \manu{\it ghost-interaction-corrected (GIC)} version of
|
||||
the KS-eLDA ensemble energy:
|
||||
\beq\label{eq:Ew-eLDA}
|
||||
\begin{split}
|
||||
\E{GIC-eLDA}{\bw}&=\sum_{I\geq0}\ew{I}\E{{eLDA}}{(I)}
|
||||
\\
|
||||
&=
|
||||
\E{eLDA}{\bw}
|
||||
-\WHF[\bGam{\bw}]+\sum_{I\geq0}\ew{I}\WHF[ \bGam{(I)}].
|
||||
\end{split}
|
||||
\eeq
|
||||
}
|
||||
|
||||
\titou{
|
||||
|
Loading…
Reference in New Issue
Block a user