Manu: saving work

This commit is contained in:
Emmanuel Fromager 2019-10-28 14:47:19 +01:00
parent 34607cf900
commit 04211afeae

View File

@ -97,6 +97,7 @@
\newcommand{\bmg}{\bm{\Gamma}} % orbital rotation vector
\newcommand{\bfx}{\bf{x}}
\newcommand{\bfr}{\bf{r}}
\DeclareMathOperator*{\argmin}{arg\,min}
%%%%
\begin{document}
@ -636,7 +637,16 @@ functional where (i) the ghost-interaction correction functional $\overline{E}^{
Hx}[n]$ in
Eq.~(\ref{eq:exact_GIC}) is
neglected, for simplicity, and (ii) the weight-dependent correlation
energy is descrive at the local density level of approximation. More
energy is described at the local density level of approximation.
At this
level of approximation, the two correlation functionals $\overline{E}^{{\bw}}_{\rm
c}[n]$ and ${E}^{{\bw}}_{\rm
c}[n]$ are actually identical and can be expressed as
\beq
{E}^{{\bw}}_{\rm
c}[n]=\int d\br\;n(\br)\epsilon_{c}^{\bw}(n(\br)).
\eeq
More
details about the construction of such a functional will be given in the
following. In order to remove ghost interactions from the variational energy
expression used in the first step, we then employ the (in-principle-exact)
@ -645,6 +655,36 @@ step, the response of the individual density matrices to weight
variations (last term on the right-hand side of
Eq.~(\ref{eq:exact_ind_ener_OEP-like})) is neglected. The complete GIC
procedure can be summarized as follows,
\beq
{\bmg}^{\bw}\approx\argmin_{{\bm\gamma}^{\bw}}
\Big\{
{\rm
Tr}\left[{\bm \gamma}^{{\bw}}{\bm h}\right]+W_{\rm
HF}\left[{\bm\gamma}^{\bw}\right]
+
{E}^{{\bw}}_{\rm
c}\left[n_{\bm\gamma^{\bw}}\right]
%+E^{{\bw}}_{\rm c}\left[n_{\hat{\Gamma}^{{\bw}}}\right]
\Big\},
\nonumber\\
\eeq
and
\beq
E^{(I)}&&\approx{\rm
Tr}\left[{\bmg}^{(I)}{\bm h}\right]
+\frac{1}{2} \Tr(\bmg^{(I)} \, \bG \,
\bmg^{(I)})
\nonumber\\
&&+{E}^{{\bw}}_{\rm
c}\left[n_{\bmg^{\bw}}\right]
+\int d\br\,\dfrac{\delta {E}^{{\bw}}_{\rm
c}\left[n_{\bmg^{\bw}}\right]}{\delta
n({\br})}\left(n_{\bmg^{(I)}}(\br)-n_{\bmg^{\bw}}(\br)\right)
\nonumber\\
&&+\sum_{K>0}\left(\delta_{IK}-w_K\right)\left. \dfrac{\partial {E}^{{\bw}}_{\rm
c}\left[n\right]}{\partial w_K}\right|_{n=n_{\bmg^{\bw}}}
.
\eeq
\alert{Secs. \ref{sec:KS-eDFT}-\ref{sec:E_I} should maybe be moved to an appendix or merged
with the theory section (?)}