Manu: saving work

This commit is contained in:
Emmanuel Fromager 2020-02-11 16:25:39 +01:00
parent bc03cae112
commit 8be0c43be5

View File

@ -316,7 +316,7 @@ with $\Phi^{(K)}=\Phi^{(K),\bw}$ [note that, when the minimum is reached
in Eq.~(\ref{eq:var_ener_gokdft}), $n_{\opGamma{\bw}}=n^{\bw,\bw}$],
we finally recover from Eqs.~(\ref{eq:KS_ens_density}) and
(\ref{eq:indiv_ener_from_ens}) the {\it exact} expression of Ref.~\cite{} for the $I$th energy level:
\beq
\beq\label{eq:exact_ener_level_dets}
E^{(I)}&=&\bra{\Phi^{(I)}}\hat{H}\ket{\Phi^{(I)}}+{E}^{{\bw}}_{\rm
c}\left[n_{\opGamma{\bw}}\right]
\nonumber\\
@ -346,11 +346,45 @@ determinant $\Phi^{(K)}$ can be expressed as follows in the AO basis:
\Gamma_{\mu\nu}^{(K)}=\sum_{p\in (K)}c_{\mu p}c_{\nu p},
\eeq
where the summation runs over the spin-orbitals that are occupied in
$\Phi^{(K)}$. We can then construct the ensemble density matrix
$\Phi^{(K)}$. Note that the density of the $K$th KS state reads
\beq
n_{\bmg^{(K)}}(\br)=\sum_{\sigma=\alpha,\beta}\sum_{\mu\nu}\AO{\mu}({\br,
\sigma})\AO{\nu}(\br,\sigma){\Gamma}^{(K)}_{\mu\nu}.
\eeq
We can then construct the ensemble density matrix
and the ensemble density as follows:
\beq
{\bmg}^{{\bw}}=\sum_{K\geq 0}w_K{\bmg}^{(K)}
\eeq
and compute the ensemble density as follows:
and
\beq
n_{\bmg^\bw}({\br})=\sum_{\sigma=\alpha,\beta}\sum_{\mu\nu}\AO{\mu}({\br,\sigma})\AO{\nu}(\br,\sigma){\Gamma}^{\bw}_{\mu\nu},
\eeq
respectively. The exact energy level expression in Eq.~(\ref{eq:exact_ener_level_dets}) can be
rewritten as follows:
\beq
E^{(I)}&&={\rm
Tr}\left[{\bmg}^{(I)}{\bm h}\right]
+\frac{1}{2} \Tr(\bmg^{(I)} \, \bG \,
\bmg^{(I)})
\nonumber\\
&&+{E}^{{\bw}}_{\rm
c}\left[n_{\bmg^{\bw}}\right]
+\int d\br\,\dfrac{\delta {E}^{{\bw}}_{\rm
c}\left[n_{\bmg^{\bw}}\right]}{\delta
n({\br})}\left(n_{\bmg^{(I)}}(\br)-n_{\bmg^{\bw}}(\br)\right)
\nonumber\\
&&+\sum_{K>0}\left(\delta_{IK}-w_K\right)\left. \dfrac{\partial {E}^{{\bw}}_{\rm
c}\left[n\right]}{\partial w_K}\right|_{n=n_{\bmg^{\bw}}}
,
\eeq
where ${\bm
h}\equiv\langle\AO{\mu}\vert-\frac{1}{2}\nabla_{\br}^2+v_{\rm
ne}(\br)\vert\AO{\nu}\rangle$ and ${\bm G}\equiv{\bm J}-{\bm K}$ denote
the Coulomb-exchange
integrals.
%%%%%%%%%%%%%%%%%%%%%
\iffalse%%%% Manu's derivation ...
\blue{
\beq
n^{\bw}({\br})&=&\sum_{K\geq 0}\sum_{\sigma=\alpha,\beta}{\tt
@ -377,10 +411,7 @@ w}_K
&=&\sum_{\sigma=\alpha,\beta}\sum_{\mu\nu}\AO{\mu}({\bfx})\AO{\nu}({\bfx}){\Gamma}^{\bw}_{\mu\nu}
\eeq
}
\beq
n^{\bw}({\br})=\sum_{\sigma=\alpha,\beta}\sum_{\mu\nu}\AO{\mu}({\br,\sigma})\AO{\nu}(\br,\sigma){\Gamma}^{\bw}_{\mu\nu}
\eeq
can be determined.
\fi%%%%%%%% end
%%%%%%%%%%%%%%%
%\subsection{Hybrid GOK-DFT}
%%%%%%%%%%%%%%%