Manu: saving work

This commit is contained in:
Emmanuel Fromager 2020-02-14 10:03:34 +01:00
parent 3a480b0adc
commit 3b9c09ce2e

View File

@ -544,6 +544,37 @@ c}\left[n_{\bm\gamma^{\bw}}\right]
\Big\}.
\nonumber\\
\eeq
% Manu's derivation %%%%
\color{blue}
Fock operator:\\
Stationarity condition
\beq
&&\sum_{t^\sigma}\Big(f_{p^\sigma\sigma,t^\sigma\sigma}\Gamma^{(K)\sigma}_{t^\sigma
q^\sigma}-\Gamma^{(K)\sigma}_{p^\sigma
t^\sigma}f_{t^\sigma\sigma,q^\sigma\sigma}\Big)
\nonumber\\
&&=
f_{p^\sigma\sigma,q^\sigma\sigma}n^{(K)\sigma}_{q^\sigma}-n^{(K)\sigma}_{p^\sigma}f_{p^\sigma\sigma,q^\sigma\sigma}
\nonumber\\
&&=
\eeq
%%%%%
\beq
&&f_{p^\sigma\sigma,q^\sigma\sigma}=\langle\varphi_p^\sigma\vert\hat{h}\vert\varphi_q^\sigma\rangle
\nonumber\\
&&+\sum_{L\geq 0}w_L\sum_{\tau}\sum_{r^\tau s^\tau}
\nonumber\\
&&\Big(\langle p^\sigma r^\tau\vert
q^\sigma s^\tau\rangle\Gamma^{(L)\tau}_{r^\tau
s^\tau}
-\delta_{\sigma\tau}\langle p^\sigma r^\sigma\vert
s^\sigma q^\sigma\rangle\Gamma^{(L)\tau}_{r^\tau
s^\tau}
\Big)
\eeq
\color{black}
\\
%%%%%
Note that this approximation, where the ensemble density matrix is
optimized from a non-local exchange potential [rather than a local one,
as expected from Eq.~(\ref{eq:var_ener_gokdft})] is applicable to real