Manu: polished theory and eLDA

This commit is contained in:
Emmanuel Fromager 2020-02-27 10:05:46 +01:00
parent 9b03c58962
commit 5d87582f71

View File

@ -457,7 +457,7 @@ and
\n{\bGam{\bw}}{}(\br{}) = \sum_{\mu\nu} \AO{\mu}(\br{}) \eGam{\mu\nu}{\bw} \AO{\nu}(\br{}),
\eeq
respectively.
The individual energy expression in Eq.~\eqref{eq:exact_ener_level_dets} can then be rewritten as
The exact individual energy expression in Eq.~\eqref{eq:exact_ener_level_dets} can then be rewritten as
\beq\label{eq:exact_ind_ener_rdm}
\begin{split}
\E{}{(I)}
@ -936,7 +936,8 @@ Equation \eqref{eq:ec} provides three state-specific correlation DFAs based on a
Combining these, one can build the following three-state weight-dependent correlation eDFA:
\begin{equation}
\label{eq:ecw}
\e{c}{\bw}(\n{}{}) = (1-\ew{1}-\ew{2}) \e{c}{(0)}(\n{}{}) + \ew{1} \e{c}{(1)}(\n{}{}) + \ew{2} \e{c}{(2)}(\n{}{}).
%\e{c}{\bw}(\n{}{})
\tilde{\epsilon}_{\rm c}^\bw(n)= (1-\ew{1}-\ew{2}) \e{c}{(0)}(\n{}{}) + \ew{1} \e{c}{(1)}(\n{}{}) + \ew{2} \e{c}{(2)}(\n{}{}).
\end{equation}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@ -949,7 +950,7 @@ The weight-dependence of the correlation functional is then carried exclusively
Following this simple strategy, which can be further theoretically justified by the generalized adiabatic connection formalism for ensembles (GACE) originally derived by Franck and Fromager, \cite{Franck_2014} we propose to \emph{shift} the two-electron-based eDFA defined in Eq.~\eqref{eq:ecw} as follows:
\begin{equation}
\label{eq:becw}
\titou{\e{c}{\bw}(\n{}{})} = (1-\ew{1}-\ew{2}) \be{c}{(0)}(\n{}{}) + \ew{1} \be{c}{(1)}(\n{}{}) + \ew{2} \be{c}{(2)}(\n{}{}),
\tilde{\epsilon}_{\rm c}^\bw(n)\rightarrow{\e{c}{\bw}(\n{}{})} = (1-\ew{1}-\ew{2}) \be{c}{(0)}(\n{}{}) + \ew{1} \be{c}{(1)}(\n{}{}) + \ew{2} \be{c}{(2)}(\n{}{}),
\end{equation}
where
\begin{equation}
@ -979,7 +980,7 @@ recast Eq.~\eqref{eq:becw} as
\begin{equation}
\label{eq:eLDA}
\begin{split}
\titou{\e{c}{\bw}(\n{}{})}
{\e{c}{\bw}(\n{}{})}
& = \e{c}{\text{LDA}}(\n{}{})
\\
& + \ew{1} \qty[\e{c}{(1)}(\n{}{})-\e{c}{(0)}(\n{}{})] + \ew{2} \qty[\e{c}{(2)}(\n{}{})-\e{c}{(0)}(\n{}{})],
@ -988,7 +989,7 @@ recast Eq.~\eqref{eq:becw} as
or, equivalently,
\begin{equation}
\label{eq:eLDA_gace}
\titou{\e{c}{\bw}(\n{}{})}
{\e{c}{\bw}(\n{}{})}
= \e{c}{\text{LDA}}(\n{}{})
+ \sum_{K>0}\int_0^{\ew{K}}
\qty[\e{c}{(K)}(\n{}{})-\e{c}{(0)}(\n{}{})]d\xi_K,
@ -996,18 +997,14 @@ or, equivalently,
where the $K$th correlation excitation energy (per electron) is integrated over the
ensemble weight $\xi_K$ at fixed (uniform) density $\n{}{}$.
Equation \eqref{eq:eLDA_gace} nicely highlights the centrality of the LDA in the present eDFA.
In particular, $\titou{\e{c}{(0,0)}(\n{}{})} = \e{c}{\text{LDA}}(\n{}{})$.
In particular, ${\e{c}{(0,0)}(\n{}{})} = \e{c}{\text{LDA}}(\n{}{})$.
Consequently, in the following, we name this correlation functional ``eLDA'' as it is a natural extension of the LDA for ensembles.
Finally, we note that, by construction,
\begin{equation}
\titou{\pdv{\e{c}{\bw}(\n{}{})}{\ew{J}} = \e{c}{(J)}(\n{}{}) - \e{c}{(0)}(\n{}{}).}
{\pdv{\e{c}{\bw}(\n{}{})}{\ew{J}} = \e{c}{(J)}(\n{}{}) - \e{c}{(0)}(\n{}{}).}
\end{equation}
%Manu: I guess that the "overlines" and the dependence in $\bf r$ of the
%densities on the RHS should be removed. The final expression should be
%\beq
%\pdv{\be{c}{\bw}(\n{}{})}{\ew{J}} = \e{c}{(J)}(\n{}{}) - \e{c}{(0)}(\n{}{}).
%\eeq
%}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Computational details}
\label{sec:comp_details}