1
0
mirror of https://github.com/TREX-CoE/qmc-lttc.git synced 2024-07-17 08:30:45 +02:00
qmc-lttc/QMC.org

2470 lines
71 KiB
Org Mode
Raw Normal View History

2021-01-03 18:45:58 +01:00
#+TITLE: Quantum Monte Carlo
#+AUTHOR: Anthony Scemama, Claudia Filippi
2021-01-11 18:41:36 +01:00
# SETUPFILE: https://fniessen.github.io/org-html-themes/org/theme-readtheorg.setup
# SETUPFILE: https://fniessen.github.io/org-html-themes/org/theme-bigblow.setup
2021-01-26 10:02:38 +01:00
#+LANGUAGE: en
#+INFOJS_OPT: toc:t mouse:underline path:http://orgmode.org/org-info.js
2021-01-03 18:45:58 +01:00
#+STARTUP: latexpreview
2021-01-21 12:49:12 +01:00
#+LATEX_CLASS: report
#+LATEX_HEADER_EXTRA: \usepackage{minted}
2021-01-11 20:54:40 +01:00
#+HTML_HEAD: <link rel="stylesheet" title="Standard" href="worg.css" type="text/css" />
2021-01-26 10:02:38 +01:00
2021-01-27 13:04:32 +01:00
#+OPTIONS: H:4 num:t toc:t \n:nil @:t ::t |:t ^:t -:t f:t *:t <:t
2021-01-21 12:49:12 +01:00
#+OPTIONS: TeX:t LaTeX:t skip:nil d:nil todo:t pri:nil tags:not-in-toc
2021-01-21 23:24:21 +01:00
# EXCLUDE_TAGS: Python solution
# EXCLUDE_TAGS: Fortran solution
2021-01-21 12:49:12 +01:00
#+BEGIN_SRC elisp :output none :exports none
(setq org-latex-listings 'minted
org-latex-packages-alist '(("" "minted"))
org-latex-pdf-process
'("pdflatex -shell-escape -interaction nonstopmode -output-directory %o %f"
"pdflatex -shell-escape -interaction nonstopmode -output-directory %o %f"
"pdflatex -shell-escape -interaction nonstopmode -output-directory %o %f"))
(setq org-latex-minted-options '(("breaklines" "true")
("breakanywhere" "true")))
(setq org-latex-minted-options
'(("frame" "lines")
("fontsize" "\\scriptsize")
("linenos" "")))
(org-beamer-export-to-pdf)
#+END_SRC
#+RESULTS:
: /home/scemama/TREX/qmc-lttc/QMC.pdf
2021-01-03 18:45:58 +01:00
* Introduction
2021-01-27 13:04:32 +01:00
This web site is the QMC tutorial of the LTTC winter school
[[https://www.irsamc.ups-tlse.fr/lttc/Luchon][Tutorials in Theoretical Chemistry]].
2021-01-07 11:07:18 +01:00
We propose different exercises to understand quantum Monte Carlo (QMC)
methods. In the first section, we propose to compute the energy of a
hydrogen atom using numerical integration. The goal of this section is
to introduce the /local energy/.
Then we introduce the variational Monte Carlo (VMC) method which
computes a statistical estimate of the expectation value of the energy
associated with a given wave function.
Finally, we introduce the diffusion Monte Carlo (DMC) method which
2021-01-25 23:52:53 +01:00
gives the exact energy of the hydrogen atom and of the $H_2$ molecule.
2021-01-07 11:07:18 +01:00
2021-01-25 23:52:53 +01:00
Code examples will be given in Python and Fortran. You can use
whatever language you prefer to write the program.
2021-01-11 18:41:36 +01:00
We consider the stationary solution of the Schrödinger equation, so
the wave functions considered here are real: for an $N$ electron
system where the electrons move in the 3-dimensional space,
$\Psi : \mathbb{R}^{3N} \rightarrow \mathbb{R}$. In addition, $\Psi$
is defined everywhere, continuous and infinitely differentiable.
2021-01-03 18:45:58 +01:00
2021-01-25 23:52:53 +01:00
All the quantities are expressed in /atomic units/ (energies,
coordinates, etc).
2021-01-03 18:45:58 +01:00
* Numerical evaluation of the energy
2021-01-07 11:07:18 +01:00
In this section we consider the Hydrogen atom with the following
wave function:
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
$$
\Psi(\mathbf{r}) = \exp(-a |\mathbf{r}|)
$$
2021-01-03 18:45:58 +01:00
2021-01-21 23:24:21 +01:00
We will first verify that, for a given value of $a$, $\Psi$ is an
eigenfunction of the Hamiltonian
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
$$
\hat{H} = \hat{T} + \hat{V} = - \frac{1}{2} \Delta - \frac{1}{|\mathbf{r}|}
$$
2021-01-03 18:45:58 +01:00
2021-01-21 23:24:21 +01:00
To do that, we will check if the local energy, defined as
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
$$
E_L(\mathbf{r}) = \frac{\hat{H} \Psi(\mathbf{r})}{\Psi(\mathbf{r})},
$$
2021-01-03 18:45:58 +01:00
2021-01-21 23:24:21 +01:00
is constant.
2021-01-03 18:45:58 +01:00
2021-01-11 18:41:36 +01:00
The probabilistic /expected value/ of an arbitrary function $f(x)$
with respect to a probability density function $p(x)$ is given by
2021-01-21 23:24:21 +01:00
$$ \langle f \rangle_p = \int_{-\infty}^\infty p(x)\, f(x)\,dx. $$
2021-01-11 18:41:36 +01:00
Recall that a probability density function $p(x)$ is non-negative
and integrates to one:
2021-01-21 23:24:21 +01:00
$$ \int_{-\infty}^\infty p(x)\,dx = 1. $$
2021-01-11 18:41:36 +01:00
The electronic energy of a system is the expectation value of the
2021-01-11 20:54:40 +01:00
local energy $E(\mathbf{r})$ with respect to the 3N-dimensional
2021-01-11 18:41:36 +01:00
electron density given by the square of the wave function:
2021-01-11 20:54:40 +01:00
\begin{eqnarray*}
E & = & \frac{\langle \Psi| \hat{H} | \Psi\rangle}{\langle \Psi |\Psi \rangle}
= \frac{\int \Psi(\mathbf{r})\, \hat{H} \Psi(\mathbf{r})\, d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}} \\
& = & \frac{\int \left[\Psi(\mathbf{r})\right]^2\, \frac{\hat{H} \Psi(\mathbf{r})}{\Psi(\mathbf{r})}\,d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}}
= \frac{\int \left[\Psi(\mathbf{r})\right]^2\, E_L(\mathbf{r})\,d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}}
2021-01-11 18:41:36 +01:00
= \langle E_L \rangle_{\Psi^2}
2021-01-11 20:54:40 +01:00
\end{eqnarray*}
2021-01-11 18:41:36 +01:00
2021-01-03 18:45:58 +01:00
** Local energy
2021-01-07 11:07:18 +01:00
:PROPERTIES:
:header-args:python: :tangle hydrogen.py
:header-args:f90: :tangle hydrogen.f90
:END:
2021-01-12 01:01:52 +01:00
2021-01-21 23:24:21 +01:00
Write all the functions of this section in a single file :
~hydrogen.py~ if you use Python, or ~hydrogen.f90~ is you use
Fortran.
2021-01-26 00:22:37 +01:00
#+begin_note
- When computing a square root in $\mathbb{R}$, *always* make sure
that the argument of the square root is non-negative.
- When you divide, *always* make sure that you will not divide by zero
If a /floating-point exception/ can occur, you should make a test
to catch the error.
#+end_note
2021-01-12 01:01:52 +01:00
*** Exercise 1
#+begin_exercise
Write a function which computes the potential at $\mathbf{r}$.
2021-01-07 11:07:18 +01:00
The function accepts a 3-dimensional vector =r= as input arguments
and returns the potential.
2021-01-12 01:01:52 +01:00
#+end_exercise
2021-01-03 18:45:58 +01:00
2021-01-11 20:54:40 +01:00
$\mathbf{r}=\left( \begin{array}{c} x \\ y\\ z\end{array} \right)$, so
2021-01-07 11:07:18 +01:00
$$
2021-01-11 20:54:40 +01:00
V(\mathbf{r}) = -\frac{1}{\sqrt{x^2 + y^2 + z^2}}
2021-01-07 11:07:18 +01:00
$$
2021-01-03 18:45:58 +01:00
2021-01-27 13:04:32 +01:00
*Python*
2021-01-21 23:24:21 +01:00
#+BEGIN_SRC python :results none :tangle none
import numpy as np
def potential(r):
# TODO
#+END_SRC
2021-01-27 13:04:32 +01:00
*Fortran*
#+BEGIN_SRC f90 :tangle none
double precision function potential(r)
implicit none
double precision, intent(in) :: r(3)
! TODO
end function potential
#+END_SRC
**** Solution :solution:
*Python*
2021-01-11 20:54:40 +01:00
#+BEGIN_SRC python :results none
2021-01-03 18:45:58 +01:00
import numpy as np
def potential(r):
2021-01-26 00:22:37 +01:00
distance = np.sqrt(np.dot(r,r))
assert (distance > 0)
return -1. / distance
2021-01-11 20:54:40 +01:00
#+END_SRC
2021-01-07 10:01:55 +01:00
2021-01-27 13:04:32 +01:00
*Fortran*
2021-01-11 20:54:40 +01:00
#+BEGIN_SRC f90
2021-01-03 18:45:58 +01:00
double precision function potential(r)
implicit none
double precision, intent(in) :: r(3)
2021-01-26 00:22:37 +01:00
double precision :: distance
distance = dsqrt( r(1)*r(1) + r(2)*r(2) + r(3)*r(3) )
if (distance > 0.d0) then
potential = -1.d0 / dsqrt( r(1)*r(1) + r(2)*r(2) + r(3)*r(3) )
else
stop 'potential at r=0.d0 diverges'
end if
2021-01-03 18:45:58 +01:00
end function potential
2021-01-11 20:54:40 +01:00
#+END_SRC
2021-01-03 18:45:58 +01:00
2021-01-27 13:04:32 +01:00
*** Exercise 2
2021-01-12 01:01:52 +01:00
#+begin_exercise
Write a function which computes the wave function at $\mathbf{r}$.
2021-01-07 11:07:18 +01:00
The function accepts a scalar =a= and a 3-dimensional vector =r= as
input arguments, and returns a scalar.
2021-01-12 01:01:52 +01:00
#+end_exercise
2021-01-11 20:54:40 +01:00
2021-01-27 13:04:32 +01:00
*Python*
2021-01-25 23:52:53 +01:00
#+BEGIN_SRC python :results none :tangle none
2021-01-21 23:24:21 +01:00
def psi(a, r):
# TODO
#+END_SRC
2021-01-27 13:04:32 +01:00
*Fortran*
2021-01-25 23:52:53 +01:00
#+BEGIN_SRC f90 :tangle none
2021-01-21 23:24:21 +01:00
double precision function psi(a, r)
implicit none
double precision, intent(in) :: a, r(3)
! TODO
end function psi
#+END_SRC
2021-01-27 13:04:32 +01:00
**** Solution :solution:
*Python*
#+BEGIN_SRC python :results none
def psi(a, r):
return np.exp(-a*np.sqrt(np.dot(r,r)))
#+END_SRC
*Fortran*
2021-01-11 20:54:40 +01:00
#+BEGIN_SRC f90
2021-01-03 18:45:58 +01:00
double precision function psi(a, r)
implicit none
double precision, intent(in) :: a, r(3)
psi = dexp(-a * dsqrt( r(1)*r(1) + r(2)*r(2) + r(3)*r(3) ))
end function psi
2021-01-11 20:54:40 +01:00
#+END_SRC
2021-01-03 18:45:58 +01:00
2021-01-27 13:04:32 +01:00
*** Exercise 3
2021-01-12 01:01:52 +01:00
#+begin_exercise
Write a function which computes the local kinetic energy at $\mathbf{r}$.
2021-01-07 11:07:18 +01:00
The function accepts =a= and =r= as input arguments and returns the
local kinetic energy.
2021-01-12 01:01:52 +01:00
#+end_exercise
2021-01-03 18:45:58 +01:00
2021-01-11 20:54:40 +01:00
The local kinetic energy is defined as $$-\frac{1}{2}\frac{\Delta \Psi}{\Psi}.$$
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
We differentiate $\Psi$ with respect to $x$:
2021-01-03 18:45:58 +01:00
2021-01-11 20:54:40 +01:00
\[\Psi(\mathbf{r}) = \exp(-a\,|\mathbf{r}|) \]
\[\frac{\partial \Psi}{\partial x}
= \frac{\partial \Psi}{\partial |\mathbf{r}|} \frac{\partial |\mathbf{r}|}{\partial x}
= - \frac{a\,x}{|\mathbf{r}|} \Psi(\mathbf{r}) \]
2021-01-07 11:07:18 +01:00
and we differentiate a second time:
$$
\frac{\partial^2 \Psi}{\partial x^2} =
2021-01-11 20:54:40 +01:00
\left( \frac{a^2\,x^2}{|\mathbf{r}|^2} -
\frac{a(y^2+z^2)}{|\mathbf{r}|^{3}} \right) \Psi(\mathbf{r}).
2021-01-07 11:07:18 +01:00
$$
The Laplacian operator $\Delta = \frac{\partial^2}{\partial x^2} +
\frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$
applied to the wave function gives:
$$
2021-01-11 20:54:40 +01:00
\Delta \Psi (\mathbf{r}) = \left(a^2 - \frac{2a}{\mathbf{|r|}} \right) \Psi(\mathbf{r})
2021-01-07 11:07:18 +01:00
$$
So the local kinetic energy is
$$
2021-01-11 20:54:40 +01:00
-\frac{1}{2} \frac{\Delta \Psi}{\Psi} (\mathbf{r}) = -\frac{1}{2}\left(a^2 - \frac{2a}{\mathbf{|r|}} \right)
2021-01-07 11:07:18 +01:00
$$
2021-01-03 18:45:58 +01:00
2021-01-27 13:04:32 +01:00
*Python*
2021-01-25 23:52:53 +01:00
#+BEGIN_SRC python :results none :tangle none
2021-01-21 23:24:21 +01:00
def kinetic(a,r):
# TODO
#+END_SRC
2021-01-27 13:04:32 +01:00
*Fortran*
2021-01-25 23:52:53 +01:00
#+BEGIN_SRC f90 :tangle none
2021-01-21 23:24:21 +01:00
double precision function kinetic(a,r)
implicit none
double precision, intent(in) :: a, r(3)
! TODO
end function kinetic
#+END_SRC
2021-01-27 13:04:32 +01:00
**** Solution :solution:
*Python*
#+BEGIN_SRC python :results none
def kinetic(a,r):
distance = np.sqrt(np.dot(r,r))
assert (distance > 0.)
return -0.5 * (a**2 - (2.*a)/distance)
#+END_SRC
*Fortran*
2021-01-11 20:54:40 +01:00
#+BEGIN_SRC f90
2021-01-03 18:45:58 +01:00
double precision function kinetic(a,r)
implicit none
double precision, intent(in) :: a, r(3)
2021-01-26 00:22:37 +01:00
double precision :: distance
distance = dsqrt( r(1)*r(1) + r(2)*r(2) + r(3)*r(3) )
if (distance > 0.d0) then
kinetic = -0.5d0 * (a*a - (2.d0*a) / distance)
else
stop 'kinetic energy diverges at r=0'
end if
2021-01-03 18:45:58 +01:00
end function kinetic
2021-01-11 20:54:40 +01:00
#+END_SRC
2021-01-03 18:45:58 +01:00
2021-01-27 13:04:32 +01:00
*** Exercise 4
2021-01-12 01:01:52 +01:00
#+begin_exercise
2021-01-21 23:24:21 +01:00
Write a function which computes the local energy at $\mathbf{r}$,
using the previously defined functions.
The function accepts =a= and =r= as input arguments and returns the
local kinetic energy.
2021-01-12 01:01:52 +01:00
#+end_exercise
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
$$
2021-01-11 20:54:40 +01:00
E_L(\mathbf{r}) = -\frac{1}{2} \frac{\Delta \Psi}{\Psi} (\mathbf{r}) + V(\mathbf{r})
2021-01-07 11:07:18 +01:00
$$
2021-01-03 18:45:58 +01:00
2021-01-11 20:54:40 +01:00
2021-01-27 13:04:32 +01:00
*Python*
2021-01-25 23:52:53 +01:00
#+BEGIN_SRC python :results none :tangle none
2021-01-21 23:24:21 +01:00
def e_loc(a,r):
#TODO
#+END_SRC
2021-01-27 13:04:32 +01:00
*Fortran*
2021-01-25 23:52:53 +01:00
#+BEGIN_SRC f90 :tangle none
2021-01-21 23:24:21 +01:00
double precision function e_loc(a,r)
implicit none
double precision, intent(in) :: a, r(3)
! TODO
end function e_loc
#+END_SRC
2021-01-27 13:04:32 +01:00
**** Solution :solution:
*Python*
#+BEGIN_SRC python :results none
def e_loc(a,r):
return kinetic(a,r) + potential(r)
#+END_SRC
*Fortran*
2021-01-11 20:54:40 +01:00
#+BEGIN_SRC f90
2021-01-03 18:45:58 +01:00
double precision function e_loc(a,r)
implicit none
double precision, intent(in) :: a, r(3)
double precision, external :: kinetic, potential
e_loc = kinetic(a,r) + potential(r)
end function e_loc
2021-01-11 20:54:40 +01:00
#+END_SRC
2021-01-03 18:45:58 +01:00
2021-01-27 13:04:32 +01:00
*** Exercise 5
#+begin_exercise
Find the theoretical value of $a$ for which $\Psi$ is an eigenfunction of $\hat{H}$.
#+end_exercise
**** Solution :solution:
\begin{eqnarray*}
E &=& \frac{\hat{H} \Psi}{\Psi} = - \frac{1}{2} \frac{\Delta \Psi}{\Psi} -
\frac{1}{|\mathbf{r}|} \\
&=& -\frac{1}{2}\left(a^2 - \frac{2a}{\mathbf{|r|}} \right) -
\frac{1}{|\mathbf{r}|} \\
&=&
-\frac{1}{2} a^2 + \frac{a-1}{\mathbf{|r|}}
\end{eqnarray*}
$a=1$ cancels the $1/|r|$ term, and makes the energy constant,
equal to -0.5 atomic units.
2021-01-11 18:41:36 +01:00
** Plot of the local energy along the $x$ axis
2021-01-07 11:07:18 +01:00
:PROPERTIES:
:header-args:python: :tangle plot_hydrogen.py
:header-args:f90: :tangle plot_hydrogen.f90
:END:
2021-01-12 01:01:52 +01:00
2021-01-26 00:22:37 +01:00
#+begin_note
The potential and the kinetic energy both diverge at $r=0$, so we
choose a grid which does not contain the origin.
#+end_note
2021-01-12 01:01:52 +01:00
*** Exercise
#+begin_exercise
For multiple values of $a$ (0.1, 0.2, 0.5, 1., 1.5, 2.), plot the
2021-01-21 23:24:21 +01:00
local energy along the $x$ axis. In Python, you can use matplotlib
for example. In Fortran, it is convenient to write in a text file
the values of $x$ and $E_L(\mathbf{r})$ for each point, and use
Gnuplot to plot the files.
2021-01-12 01:01:52 +01:00
#+end_exercise
2021-01-03 18:45:58 +01:00
2021-01-27 13:04:32 +01:00
*Python*
2021-01-25 23:52:53 +01:00
#+BEGIN_SRC python :results none :tangle none
2021-01-03 18:45:58 +01:00
import numpy as np
import matplotlib.pyplot as plt
from hydrogen import e_loc
x=np.linspace(-5,5)
2021-01-21 23:24:21 +01:00
plt.figure(figsize=(10,5))
2021-01-03 18:45:58 +01:00
2021-01-21 23:24:21 +01:00
# TODO
plt.tight_layout()
plt.legend()
plt.savefig("plot_py.png")
#+end_src
2021-01-27 13:04:32 +01:00
*Fortran*
2021-01-25 23:52:53 +01:00
#+begin_src f90 :tangle none
2021-01-21 23:24:21 +01:00
program plot
implicit none
double precision, external :: e_loc
2021-01-03 18:45:58 +01:00
2021-01-21 23:24:21 +01:00
double precision :: x(50), dx
integer :: i, j
dx = 10.d0/(size(x)-1)
do i=1,size(x)
x(i) = -5.d0 + (i-1)*dx
end do
! TODO
end program plot
2021-01-25 23:52:53 +01:00
#+end_src
2021-01-21 23:24:21 +01:00
2021-01-25 23:52:53 +01:00
To compile and run:
2021-01-21 23:24:21 +01:00
2021-01-25 23:52:53 +01:00
#+begin_src sh :exports both
2021-01-21 23:24:21 +01:00
gfortran hydrogen.f90 plot_hydrogen.f90 -o plot_hydrogen
./plot_hydrogen > data
2021-01-25 23:52:53 +01:00
#+end_src
2021-01-21 23:24:21 +01:00
2021-01-25 23:52:53 +01:00
To plot the data using Gnuplot:
2021-01-21 23:24:21 +01:00
2021-01-27 13:04:32 +01:00
#+begin_src gnuplot :file plot.png :exports code
2021-01-21 23:24:21 +01:00
set grid
set xrange [-5:5]
set yrange [-2:1]
plot './data' index 0 using 1:2 with lines title 'a=0.1', \
'./data' index 1 using 1:2 with lines title 'a=0.2', \
'./data' index 2 using 1:2 with lines title 'a=0.5', \
'./data' index 3 using 1:2 with lines title 'a=1.0', \
'./data' index 4 using 1:2 with lines title 'a=1.5', \
'./data' index 5 using 1:2 with lines title 'a=2.0'
2021-01-25 23:52:53 +01:00
#+end_src
2021-01-21 23:24:21 +01:00
2021-01-27 13:04:32 +01:00
**** Solution :solution:
*Python*
#+BEGIN_SRC python :results none
import numpy as np
import matplotlib.pyplot as plt
from hydrogen import e_loc
x=np.linspace(-5,5)
plt.figure(figsize=(10,5))
for a in [0.1, 0.2, 0.5, 1., 1.5, 2.]:
y=np.array([ e_loc(a, np.array([t,0.,0.]) ) for t in x])
plt.plot(x,y,label=f"a={a}")
plt.tight_layout()
plt.legend()
plt.savefig("plot_py.png")
#+end_src
#+RESULTS:
[[./plot_py.png]]
*Fortran*
2021-01-25 23:52:53 +01:00
#+begin_src f90
2021-01-03 18:45:58 +01:00
program plot
implicit none
double precision, external :: e_loc
double precision :: x(50), energy, dx, r(3), a(6)
integer :: i, j
a = (/ 0.1d0, 0.2d0, 0.5d0, 1.d0, 1.5d0, 2.d0 /)
dx = 10.d0/(size(x)-1)
do i=1,size(x)
x(i) = -5.d0 + (i-1)*dx
end do
r(:) = 0.d0
do j=1,size(a)
print *, '# a=', a(j)
do i=1,size(x)
r(1) = x(i)
energy = e_loc( a(j), r )
print *, x(i), energy
end do
print *, ''
print *, ''
end do
end program plot
2021-01-25 23:52:53 +01:00
#+end_src
2021-01-03 18:45:58 +01:00
2021-01-27 13:04:32 +01:00
#+begin_src sh :exports none
2021-01-03 18:45:58 +01:00
gfortran hydrogen.f90 plot_hydrogen.f90 -o plot_hydrogen
./plot_hydrogen > data
2021-01-25 23:52:53 +01:00
#+end_src
2021-01-03 18:45:58 +01:00
2021-01-27 13:04:32 +01:00
#+begin_src gnuplot :file plot.png :exports results
2021-01-03 18:45:58 +01:00
set grid
set xrange [-5:5]
set yrange [-2:1]
plot './data' index 0 using 1:2 with lines title 'a=0.1', \
'./data' index 1 using 1:2 with lines title 'a=0.2', \
'./data' index 2 using 1:2 with lines title 'a=0.5', \
'./data' index 3 using 1:2 with lines title 'a=1.0', \
'./data' index 4 using 1:2 with lines title 'a=1.5', \
'./data' index 5 using 1:2 with lines title 'a=2.0'
2021-01-25 23:52:53 +01:00
#+end_src
#+RESULTS:
[[file:plot.png]]
2021-01-03 18:45:58 +01:00
2021-01-25 23:52:53 +01:00
** Numerical estimation of the energy
2021-01-07 11:07:18 +01:00
:PROPERTIES:
:header-args:python: :tangle energy_hydrogen.py
:header-args:f90: :tangle energy_hydrogen.f90
:END:
2021-01-11 20:54:40 +01:00
If the space is discretized in small volume elements $\mathbf{r}_i$
of size $\delta \mathbf{r}$, the expression of $\langle E_L \rangle_{\Psi^2}$
becomes a weighted average of the local energy, where the weights
are the values of the probability density at $\mathbf{r}_i$
multiplied by the volume element:
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
$$
2021-01-11 18:41:36 +01:00
\langle E \rangle_{\Psi^2} \approx \frac{\sum_i w_i E_L(\mathbf{r}_i)}{\sum_i w_i}, \;\;
2021-01-07 11:07:18 +01:00
w_i = \left[\Psi(\mathbf{r}_i)\right]^2 \delta \mathbf{r}
$$
2021-01-03 18:45:58 +01:00
2021-01-11 20:54:40 +01:00
#+begin_note
The energy is biased because:
2021-01-11 18:41:36 +01:00
- The volume elements are not infinitely small (discretization error)
- The energy is evaluated only inside the box (incompleteness of the space)
2021-01-11 20:54:40 +01:00
#+end_note
2021-01-07 10:01:55 +01:00
2021-01-12 01:01:52 +01:00
*** Exercise
#+begin_exercise
Compute a numerical estimate of the energy in a grid of
$50\times50\times50$ points in the range $(-5,-5,-5) \le
\mathbf{r} \le (5,5,5)$.
#+end_exercise
2021-01-27 13:04:32 +01:00
*Python*
2021-01-25 23:52:53 +01:00
#+BEGIN_SRC python :results none :tangle none
import numpy as np
from hydrogen import e_loc, psi
interval = np.linspace(-5,5,num=50)
delta = (interval[1]-interval[0])**3
r = np.array([0.,0.,0.])
for a in [0.1, 0.2, 0.5, 0.9, 1., 1.5, 2.]:
# TODO
print(f"a = {a} \t E = {E}")
#+end_src
2021-01-27 13:04:32 +01:00
*Fortran*
#+begin_src f90
program energy_hydrogen
implicit none
double precision, external :: e_loc, psi
double precision :: x(50), w, delta, energy, dx, r(3), a(6), norm
integer :: i, k, l, j
a = (/ 0.1d0, 0.2d0, 0.5d0, 1.d0, 1.5d0, 2.d0 /)
dx = 10.d0/(size(x)-1)
do i=1,size(x)
x(i) = -5.d0 + (i-1)*dx
end do
do j=1,size(a)
! TODO
print *, 'a = ', a(j), ' E = ', energy
end do
end program energy_hydrogen
#+end_src
To compile the Fortran and run it:
#+begin_src sh :results output :exports code
gfortran hydrogen.f90 energy_hydrogen.f90 -o energy_hydrogen
./energy_hydrogen
#+end_src
**** Solution :solution:
*Python*
#+BEGIN_SRC python :results none :exports both
2021-01-03 18:45:58 +01:00
import numpy as np
from hydrogen import e_loc, psi
2021-01-11 18:41:36 +01:00
interval = np.linspace(-5,5,num=50)
delta = (interval[1]-interval[0])**3
2021-01-07 11:07:18 +01:00
2021-01-11 18:41:36 +01:00
r = np.array([0.,0.,0.])
2021-01-07 11:07:18 +01:00
2021-01-11 18:41:36 +01:00
for a in [0.1, 0.2, 0.5, 0.9, 1., 1.5, 2.]:
E = 0.
norm = 0.
2021-01-25 23:52:53 +01:00
for x in interval:
r[0] = x
for y in interval:
r[1] = y
for z in interval:
r[2] = z
w = psi(a,r)
w = w * w * delta
E += w * e_loc(a,r)
norm += w
2021-01-11 18:41:36 +01:00
E = E / norm
print(f"a = {a} \t E = {E}")
2021-01-25 23:52:53 +01:00
#+end_src
2021-01-07 11:07:18 +01:00
2021-01-25 23:52:53 +01:00
#+RESULTS:
: a = 0.1 E = -0.24518438948809218
: a = 0.2 E = -0.26966057967803525
: a = 0.5 E = -0.3856357612517407
: a = 0.9 E = -0.49435709786716214
: a = 1.0 E = -0.5
: a = 1.5 E = -0.39242967082602226
: a = 2.0 E = -0.08086980667844901
2021-01-07 11:07:18 +01:00
2021-01-27 13:04:32 +01:00
*Fortran*
2021-01-25 23:52:53 +01:00
#+begin_src f90
2021-01-03 18:45:58 +01:00
program energy_hydrogen
implicit none
double precision, external :: e_loc, psi
double precision :: x(50), w, delta, energy, dx, r(3), a(6), norm
integer :: i, k, l, j
a = (/ 0.1d0, 0.2d0, 0.5d0, 1.d0, 1.5d0, 2.d0 /)
dx = 10.d0/(size(x)-1)
do i=1,size(x)
x(i) = -5.d0 + (i-1)*dx
end do
delta = dx**3
r(:) = 0.d0
do j=1,size(a)
energy = 0.d0
norm = 0.d0
do i=1,size(x)
r(1) = x(i)
do k=1,size(x)
r(2) = x(k)
do l=1,size(x)
r(3) = x(l)
w = psi(a(j),r)
w = w * w * delta
energy = energy + w * e_loc(a(j), r)
norm = norm + w
end do
end do
end do
energy = energy / norm
print *, 'a = ', a(j), ' E = ', energy
end do
end program energy_hydrogen
2021-01-25 23:52:53 +01:00
#+end_src
2021-01-03 18:45:58 +01:00
2021-01-27 13:04:32 +01:00
#+begin_src sh :results output :exports results
2021-01-03 18:45:58 +01:00
gfortran hydrogen.f90 energy_hydrogen.f90 -o energy_hydrogen
./energy_hydrogen
2021-01-25 23:52:53 +01:00
#+end_src
2021-01-03 18:45:58 +01:00
2021-01-25 23:52:53 +01:00
#+RESULTS:
: a = 0.10000000000000001 E = -0.24518438948809140
: a = 0.20000000000000001 E = -0.26966057967803236
: a = 0.50000000000000000 E = -0.38563576125173815
: a = 1.0000000000000000 E = -0.50000000000000000
: a = 1.5000000000000000 E = -0.39242967082602065
: a = 2.0000000000000000 E = -8.0869806678448772E-002
** Variance of the local energy
2021-01-07 11:07:18 +01:00
:PROPERTIES:
:header-args:python: :tangle variance_hydrogen.py
:header-args:f90: :tangle variance_hydrogen.f90
:END:
2021-01-11 18:41:36 +01:00
The variance of the local energy is a functional of $\Psi$
which measures the magnitude of the fluctuations of the local
2021-01-25 23:52:53 +01:00
energy associated with $\Psi$ around its average:
2021-01-07 11:07:18 +01:00
$$
\sigma^2(E_L) = \frac{\int \left[\Psi(\mathbf{r})\right]^2\, \left[
E_L(\mathbf{r}) - E \right]^2 \, d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}}
$$
2021-01-19 10:45:36 +01:00
which can be simplified as
2021-01-25 23:52:53 +01:00
$$ \sigma^2(E_L) = \langle E_L^2 \rangle_{\Psi^2} - \langle E_L \rangle_{\Psi^2}^2.$$
2021-01-07 11:07:18 +01:00
2021-01-11 18:41:36 +01:00
If the local energy is constant (i.e. $\Psi$ is an eigenfunction of
$\hat{H}$) the variance is zero, so the variance of the local
energy can be used as a measure of the quality of a wave function.
2021-01-19 10:45:36 +01:00
*** Exercise (optional)
#+begin_exercise
Prove that :
2021-01-25 23:52:53 +01:00
$$\left( \langle E - \langle E \rangle_{\Psi^2} \rangle_{\Psi^2} \right)^2 = \langle E^2 \rangle_{\Psi^2} - \langle E \rangle_{\Psi^2}^2 $$
2021-01-19 10:45:36 +01:00
#+end_exercise
2021-01-27 13:04:32 +01:00
**** TODO Solution :solution:
2021-01-12 01:01:52 +01:00
*** Exercise
#+begin_exercise
2021-01-19 10:45:36 +01:00
Add the calculation of the variance to the previous code, and
compute a numerical estimate of the variance of the local energy
2021-01-12 01:01:52 +01:00
in a grid of $50\times50\times50$ points in the range
$(-5,-5,-5)
\le \mathbf{r} \le (5,5,5)$ for different values of $a$.
#+end_exercise
2021-01-03 18:45:58 +01:00
2021-01-27 13:04:32 +01:00
*Python*
2021-01-25 23:52:53 +01:00
#+begin_src python :results none :tangle none
import numpy as np
from hydrogen import e_loc, psi
interval = np.linspace(-5,5,num=50)
delta = (interval[1]-interval[0])**3
r = np.array([0.,0.,0.])
for a in [0.1, 0.2, 0.5, 0.9, 1., 1.5, 2.]:
# TODO
print(f"a = {a} \t E = {E:10.8f} \t \sigma^2 = {s2:10.8f}")
#+end_src
2021-01-27 13:04:32 +01:00
*Fortran*
#+begin_src f90 :tangle none
program variance_hydrogen
implicit none
double precision, external :: e_loc, psi
double precision :: x(50), w, delta, energy, dx, r(3), a(6), norm, s2
double precision :: e, energy2
integer :: i, k, l, j
a = (/ 0.1d0, 0.2d0, 0.5d0, 1.d0, 1.5d0, 2.d0 /)
dx = 10.d0/(size(x)-1)
do i=1,size(x)
x(i) = -5.d0 + (i-1)*dx
end do
delta = dx**3
r(:) = 0.d0
do j=1,size(a)
! TODO
print *, 'a = ', a(j), ' E = ', energy, ' s2 = ', s2
end do
end program variance_hydrogen
#+end_src
To compile and run:
#+begin_src sh :results output :exports both
gfortran hydrogen.f90 variance_hydrogen.f90 -o variance_hydrogen
./variance_hydrogen
#+end_src
**** Solution :solution:
*Python*
#+begin_src python :results none :exports both
2021-01-03 18:45:58 +01:00
import numpy as np
from hydrogen import e_loc, psi
interval = np.linspace(-5,5,num=50)
delta = (interval[1]-interval[0])**3
r = np.array([0.,0.,0.])
for a in [0.1, 0.2, 0.5, 0.9, 1., 1.5, 2.]:
E = 0.
2021-01-19 10:45:36 +01:00
E2 = 0.
2021-01-03 18:45:58 +01:00
norm = 0.
for x in interval:
r[0] = x
for y in interval:
r[1] = y
for z in interval:
r[2] = z
w = psi(a, r)
w = w * w * delta
El = e_loc(a, r)
E += w * El
2021-01-19 10:45:36 +01:00
E2 += w * El*El
2021-01-03 18:45:58 +01:00
norm += w
2021-01-11 20:54:40 +01:00
E = E / norm
2021-01-19 10:45:36 +01:00
E2 = E2 / norm
s2 = E2 - E*E
2021-01-11 20:54:40 +01:00
print(f"a = {a} \t E = {E:10.8f} \t \sigma^2 = {s2:10.8f}")
2021-01-25 23:52:53 +01:00
#+end_src
2021-01-07 11:07:18 +01:00
2021-01-25 23:52:53 +01:00
#+RESULTS:
: a = 0.1 E = -0.24518439 \sigma^2 = 0.02696522
: a = 0.2 E = -0.26966058 \sigma^2 = 0.03719707
: a = 0.5 E = -0.38563576 \sigma^2 = 0.05318597
: a = 0.9 E = -0.49435710 \sigma^2 = 0.00577812
: a = 1.0 E = -0.50000000 \sigma^2 = 0.00000000
: a = 1.5 E = -0.39242967 \sigma^2 = 0.31449671
: a = 2.0 E = -0.08086981 \sigma^2 = 1.80688143
2021-01-27 13:04:32 +01:00
*Fortran*
2021-01-25 23:52:53 +01:00
#+begin_src f90
2021-01-03 18:45:58 +01:00
program variance_hydrogen
implicit none
double precision, external :: e_loc, psi
double precision :: x(50), w, delta, energy, dx, r(3), a(6), norm, s2
2021-01-20 21:18:22 +01:00
double precision :: e, energy2
2021-01-03 18:45:58 +01:00
integer :: i, k, l, j
a = (/ 0.1d0, 0.2d0, 0.5d0, 1.d0, 1.5d0, 2.d0 /)
dx = 10.d0/(size(x)-1)
do i=1,size(x)
x(i) = -5.d0 + (i-1)*dx
end do
delta = dx**3
r(:) = 0.d0
do j=1,size(a)
energy = 0.d0
2021-01-20 21:18:22 +01:00
energy2 = 0.d0
2021-01-03 18:45:58 +01:00
norm = 0.d0
do i=1,size(x)
r(1) = x(i)
do k=1,size(x)
r(2) = x(k)
do l=1,size(x)
r(3) = x(l)
w = psi(a(j),r)
w = w * w * delta
2021-01-20 21:18:22 +01:00
e = e_loc(a(j), r)
energy = energy + w * e
energy2 = energy2 + w * e * e
2021-01-03 18:45:58 +01:00
norm = norm + w
end do
end do
end do
2021-01-20 21:18:22 +01:00
energy = energy / norm
energy2 = energy2 / norm
s2 = energy2 - energy*energy
2021-01-03 18:45:58 +01:00
print *, 'a = ', a(j), ' E = ', energy, ' s2 = ', s2
end do
2021-01-07 10:01:55 +01:00
2021-01-03 18:45:58 +01:00
end program variance_hydrogen
2021-01-25 23:52:53 +01:00
#+end_src
2021-01-03 18:45:58 +01:00
2021-01-27 13:04:32 +01:00
#+begin_src sh :results output :exports results
2021-01-03 18:45:58 +01:00
gfortran hydrogen.f90 variance_hydrogen.f90 -o variance_hydrogen
./variance_hydrogen
2021-01-25 23:52:53 +01:00
#+end_src
2021-01-03 18:45:58 +01:00
2021-01-25 23:52:53 +01:00
#+RESULTS:
: a = 0.10000000000000001 E = -0.24518438948809140 s2 = 2.6965218719722767E-002
: a = 0.20000000000000001 E = -0.26966057967803236 s2 = 3.7197072370201284E-002
: a = 0.50000000000000000 E = -0.38563576125173815 s2 = 5.3185967578480653E-002
: a = 1.0000000000000000 E = -0.50000000000000000 s2 = 0.0000000000000000
: a = 1.5000000000000000 E = -0.39242967082602065 s2 = 0.31449670909172917
: a = 2.0000000000000000 E = -8.0869806678448772E-002 s2 = 1.8068814270846534
2021-01-03 18:45:58 +01:00
2021-01-26 00:22:37 +01:00
* Variational Monte Carlo
2021-01-03 18:45:58 +01:00
2021-01-11 18:41:36 +01:00
Numerical integration with deterministic methods is very efficient
2021-01-11 20:54:40 +01:00
in low dimensions. When the number of dimensions becomes large,
instead of computing the average energy as a numerical integration
on a grid, it is usually more efficient to do a Monte Carlo sampling.
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
Moreover, a Monte Carlo sampling will alow us to remove the bias due
to the discretization of space, and compute a statistical confidence
interval.
2021-01-07 10:01:55 +01:00
2021-01-26 00:22:37 +01:00
** Computation of the statistical error
2021-01-07 11:07:18 +01:00
:PROPERTIES:
:header-args:python: :tangle qmc_stats.py
:header-args:f90: :tangle qmc_stats.f90
:END:
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
To compute the statistical error, you need to perform $M$
independent Monte Carlo calculations. You will obtain $M$ different
estimates of the energy, which are expected to have a Gaussian
2021-01-26 00:22:37 +01:00
distribution according to the [[https://en.wikipedia.org/wiki/Central_limit_theorem][Central Limit Theorem]].
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
The estimate of the energy is
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
$$
E = \frac{1}{M} \sum_{i=1}^M E_M
$$
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
The variance of the average energies can be computed as
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
$$
\sigma^2 = \frac{1}{M-1} \sum_{i=1}^{M} (E_M - E)^2
$$
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
And the confidence interval is given by
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
$$
E \pm \delta E, \text{ where } \delta E = \frac{\sigma}{\sqrt{M}}
$$
2021-01-03 18:45:58 +01:00
2021-01-12 01:01:52 +01:00
*** Exercise
#+begin_exercise
2021-01-07 11:07:18 +01:00
Write a function returning the average and statistical error of an
input array.
2021-01-12 01:01:52 +01:00
#+end_exercise
2021-01-03 18:45:58 +01:00
2021-01-27 13:04:32 +01:00
*Python*
2021-01-26 00:22:37 +01:00
#+BEGIN_SRC python :results none :tangle none
from math import sqrt
def ave_error(arr):
#TODO
return (average, error)
#+END_SRC
2021-01-27 13:04:32 +01:00
*Fortran*
#+BEGIN_SRC f90
subroutine ave_error(x,n,ave,err)
implicit none
integer, intent(in) :: n
double precision, intent(in) :: x(n)
double precision, intent(out) :: ave, err
! TODO
end subroutine ave_error
#+END_SRC
**** Solution :solution:
*Python*
#+BEGIN_SRC python :results none :exports code
2021-01-07 10:01:55 +01:00
from math import sqrt
2021-01-03 18:45:58 +01:00
def ave_error(arr):
M = len(arr)
2021-01-26 00:22:37 +01:00
assert(M>0)
if M == 1:
return (arr[0], 0.)
else:
average = sum(arr)/M
variance = 1./(M-1) * sum( [ (x - average)**2 for x in arr ] )
error = sqrt(variance/M)
return (average, error)
#+END_SRC
2021-01-27 13:04:32 +01:00
*Fortran*
#+BEGIN_SRC f90 :exports both
2021-01-07 10:01:55 +01:00
subroutine ave_error(x,n,ave,err)
implicit none
integer, intent(in) :: n
double precision, intent(in) :: x(n)
double precision, intent(out) :: ave, err
double precision :: variance
2021-01-26 00:22:37 +01:00
if (n < 1) then
stop 'n<1 in ave_error'
else if (n == 1) then
2021-01-07 10:01:55 +01:00
ave = x(1)
err = 0.d0
else
ave = sum(x(:)) / dble(n)
variance = sum( (x(:) - ave)**2 ) / dble(n-1)
err = dsqrt(variance/dble(n))
endif
end subroutine ave_error
2021-01-26 00:22:37 +01:00
#+END_SRC
2021-01-03 18:45:58 +01:00
2021-01-26 10:02:38 +01:00
** Uniform sampling in the box
2021-01-07 11:07:18 +01:00
:PROPERTIES:
:header-args:python: :tangle qmc_uniform.py
:header-args:f90: :tangle qmc_uniform.f90
:END:
2021-01-03 18:45:58 +01:00
2021-01-12 01:01:52 +01:00
We will now do our first Monte Carlo calculation to compute the
energy of the hydrogen atom.
2021-01-26 10:02:38 +01:00
At every Monte Carlo iteration:
2021-01-03 18:45:58 +01:00
2021-01-12 01:01:52 +01:00
- Draw a random point $\mathbf{r}_i$ in the box $(-5,-5,-5) \le
2021-01-07 11:07:18 +01:00
(x,y,z) \le (5,5,5)$
2021-01-12 01:01:52 +01:00
- Compute $[\Psi(\mathbf{r}_i)]^2$ and accumulate the result in a
variable =normalization=
- Compute $[\Psi(\mathbf{r}_i)]^2 \times E_L(\mathbf{r}_i)$, and accumulate the
result in a variable =energy=
2021-01-26 10:02:38 +01:00
One Monte Carlo run will consist of $N$ Monte Carlo iterations. Once all the
iterations have been computed, the run returns the average energy
$\bar{E}_k$ over the $N$ iterations of the run.
2021-01-12 01:01:52 +01:00
2021-01-26 10:02:38 +01:00
To compute the statistical error, perform $M$ independent runs. The
final estimate of the energy will be the average over the
$\bar{E}_k$, and the variance of the $\bar{E}_k$ will be used to
compute the statistical error.
2021-01-12 01:01:52 +01:00
*** Exercise
2021-01-03 18:45:58 +01:00
2021-01-12 01:01:52 +01:00
#+begin_exercise
Parameterize the wave function with $a=0.9$. Perform 30
independent Monte Carlo runs, each with 100 000 Monte Carlo
steps. Store the final energies of each run and use this array to
compute the average energy and the associated error bar.
#+end_exercise
2021-01-07 10:01:55 +01:00
2021-01-27 13:04:32 +01:00
*Python*
2021-01-26 10:02:38 +01:00
#+begin_note
To draw a uniform random number in Python, you can use
the [[https://numpy.org/doc/stable/reference/random/generated/numpy.random.uniform.html][~random.uniform~]] function of Numpy.
#+end_note
2021-01-27 13:04:32 +01:00
#+BEGIN_SRC python :tangle none :exports code
from hydrogen import *
from qmc_stats import *
def MonteCarlo(a, nmax):
# TODO
2021-01-11 18:41:36 +01:00
a = 0.9
nmax = 100000
2021-01-27 13:04:32 +01:00
#TODO
2021-01-11 18:41:36 +01:00
print(f"E = {E} +/- {deltaE}")
2021-01-26 10:02:38 +01:00
#+END_SRC
2021-01-07 11:07:18 +01:00
2021-01-27 13:04:32 +01:00
*Fortran*
2021-01-26 10:02:38 +01:00
#+begin_note
To draw a uniform random number in Fortran, you can use
the [[https://gcc.gnu.org/onlinedocs/gfortran/RANDOM_005fNUMBER.html][~RANDOM_NUMBER~]] subroutine.
#+end_note
#+begin_note
When running Monte Carlo calculations, the number of steps is
usually very large. We expect =nmax= to be possibly larger than 2
billion, so we use 8-byte integers (=integer*8=) to represent it, as
well as the index of the current step.
#+end_note
2021-01-12 10:55:00 +01:00
2021-01-26 10:02:38 +01:00
#+BEGIN_SRC f90 :tangle none
subroutine uniform_montecarlo(a,nmax,energy)
implicit none
double precision, intent(in) :: a
integer*8 , intent(in) :: nmax
double precision, intent(out) :: energy
integer*8 :: istep
double precision :: norm, r(3), w
double precision, external :: e_loc, psi
! TODO
end subroutine uniform_montecarlo
program qmc
implicit none
double precision, parameter :: a = 0.9
integer*8 , parameter :: nmax = 100000
integer , parameter :: nruns = 30
integer :: irun
double precision :: X(nruns)
double precision :: ave, err
!TODO
print *, 'E = ', ave, '+/-', err
end program qmc
#+END_SRC
2021-01-27 13:04:32 +01:00
#+begin_src sh :results output :exports code
2021-01-26 10:02:38 +01:00
gfortran hydrogen.f90 qmc_stats.f90 qmc_uniform.f90 -o qmc_uniform
./qmc_uniform
#+end_src
2021-01-27 13:04:32 +01:00
**** Solution :solution:
*Python*
#+BEGIN_SRC python :results output :exports both
from hydrogen import *
from qmc_stats import *
def MonteCarlo(a, nmax):
energy = 0.
normalization = 0.
for istep in range(nmax):
r = np.random.uniform(-5., 5., (3))
w = psi(a,r)
w = w*w
normalization += w
energy += w * e_loc(a,r)
return energy/normalization
a = 0.9
nmax = 100000
X = [MonteCarlo(a,nmax) for i in range(30)]
E, deltaE = ave_error(X)
print(f"E = {E} +/- {deltaE}")
#+END_SRC
#+RESULTS:
: E = -0.4956255109300764 +/- 0.0007082875482711226
*Fortran*
#+begin_note
When running Monte Carlo calculations, the number of steps is
usually very large. We expect =nmax= to be possibly larger than 2
billion, so we use 8-byte integers (=integer*8=) to represent it, as
well as the index of the current step.
#+end_note
2021-01-26 10:02:38 +01:00
2021-01-27 13:04:32 +01:00
#+BEGIN_SRC f90 :exports code
2021-01-07 10:01:55 +01:00
subroutine uniform_montecarlo(a,nmax,energy)
implicit none
double precision, intent(in) :: a
2021-01-12 10:55:00 +01:00
integer*8 , intent(in) :: nmax
2021-01-07 10:01:55 +01:00
double precision, intent(out) :: energy
2021-01-07 11:07:18 +01:00
2021-01-07 10:01:55 +01:00
integer*8 :: istep
2021-01-07 11:07:18 +01:00
2021-01-07 10:01:55 +01:00
double precision :: norm, r(3), w
double precision, external :: e_loc, psi
energy = 0.d0
norm = 0.d0
do istep = 1,nmax
call random_number(r)
r(:) = -5.d0 + 10.d0*r(:)
w = psi(a,r)
w = w*w
norm = norm + w
energy = energy + w * e_loc(a,r)
end do
energy = energy / norm
end subroutine uniform_montecarlo
program qmc
implicit none
double precision, parameter :: a = 0.9
2021-01-12 10:55:00 +01:00
integer*8 , parameter :: nmax = 100000
2021-01-07 10:01:55 +01:00
integer , parameter :: nruns = 30
integer :: irun
double precision :: X(nruns)
double precision :: ave, err
do irun=1,nruns
call uniform_montecarlo(a,nmax,X(irun))
enddo
call ave_error(X,nruns,ave,err)
print *, 'E = ', ave, '+/-', err
end program qmc
2021-01-27 13:04:32 +01:00
#+END_SRC
2021-01-07 10:01:55 +01:00
2021-01-27 13:04:32 +01:00
#+begin_src sh :results output :exports results
2021-01-07 10:01:55 +01:00
gfortran hydrogen.f90 qmc_stats.f90 qmc_uniform.f90 -o qmc_uniform
./qmc_uniform
2021-01-27 13:04:32 +01:00
#+end_src
2021-01-07 10:01:55 +01:00
2021-01-27 13:04:32 +01:00
#+RESULTS:
: E = -0.49588321986667677 +/- 7.1758863546737969E-004
2021-01-07 10:01:55 +01:00
2021-01-26 10:02:38 +01:00
** Metropolis sampling with $\Psi^2$
2021-01-07 11:07:18 +01:00
:PROPERTIES:
2021-01-20 18:31:49 +01:00
:header-args:python: :tangle qmc_metropolis.py
:header-args:f90: :tangle qmc_metropolis.f90
2021-01-07 11:07:18 +01:00
:END:
2021-01-03 18:45:58 +01:00
2021-01-20 18:31:49 +01:00
We will now use the square of the wave function to sample random
points distributed with the probability density
2021-01-07 11:07:18 +01:00
\[
2021-01-20 18:31:49 +01:00
P(\mathbf{r}) = \left[\Psi(\mathbf{r})\right]^2
2021-01-07 11:07:18 +01:00
\]
2021-01-12 01:01:52 +01:00
2021-01-26 10:02:38 +01:00
The expression of the average energy is now simplified as the average of
2021-01-20 18:31:49 +01:00
the local energies, since the weights are taken care of by the
sampling :
2021-01-12 01:01:52 +01:00
2021-01-20 18:31:49 +01:00
$$
E \approx \frac{1}{M}\sum_{i=1}^M E_L(\mathbf{r}_i)
$$
2021-01-07 11:07:18 +01:00
2021-01-20 18:31:49 +01:00
To sample a chosen probability density, an efficient method is the
[[https://en.wikipedia.org/wiki/Metropolis%E2%80%93Hastings_algorithm][Metropolis-Hastings sampling algorithm]]. Starting from a random
initial position $\mathbf{r}_0$, we will realize a random walk as follows:
2021-01-07 11:07:18 +01:00
$$
2021-01-20 18:31:49 +01:00
\mathbf{r}_{n+1} = \mathbf{r}_{n} + \tau \mathbf{u}
2021-01-07 11:07:18 +01:00
$$
2021-01-20 18:31:49 +01:00
where $\tau$ is a fixed constant (the so-called /time-step/), and
$\mathbf{u}$ is a uniform random number in a 3-dimensional box
$(-1,-1,-1) \le \mathbf{u} \le (1,1,1)$. We will then add the
2021-01-26 10:02:38 +01:00
accept/reject step that guarantees that the distribution of the
2021-01-20 18:31:49 +01:00
$\mathbf{r}_n$ is $\Psi^2$:
2021-01-26 10:02:38 +01:00
1) Compute $\Psi$ at a new position $\mathbf{r'} = \mathbf{r}_n +
\tau \mathbf{u}$
2) Compute the ratio $R = \frac{\left[\Psi(\mathbf{r'})\right]^2}{\left[\Psi(\mathbf{r}_{n})\right]^2}$
3) Draw a uniform random number $v \in [0,1]$
4) if $v \le R$, accept the move : set $\mathbf{r}_{n+1} = \mathbf{r'}$
5) else, reject the move : set $\mathbf{r}_{n+1} = \mathbf{r}_n$
6) evaluate the local energy at $\mathbf{r}_{n+1}$
2021-01-12 01:01:52 +01:00
2021-01-20 18:31:49 +01:00
#+begin_note
A common error is to remove the rejected samples from the
calculation of the average. *Don't do it!*
2021-01-12 01:01:52 +01:00
2021-01-20 18:31:49 +01:00
All samples should be kept, from both accepted and rejected moves.
#+end_note
If the time step is infinitely small, the ratio will be very close
to one and all the steps will be accepted. But the trajectory will
be infinitely too short to have statistical significance.
On the other hand, as the time step increases, the number of
accepted steps will decrease because the ratios might become
small. If the number of accepted steps is close to zero, then the
space is not well sampled either.
The time step should be adjusted so that it is as large as
possible, keeping the number of accepted steps not too small. To
2021-01-26 10:02:38 +01:00
achieve that, we define the acceptance rate as the number of
2021-01-20 18:31:49 +01:00
accepted steps over the total number of steps. Adjusting the time
step such that the acceptance rate is close to 0.5 is a good compromise.
*** Exercise
2021-01-12 01:01:52 +01:00
#+begin_exercise
2021-01-26 10:02:38 +01:00
Modify the program of the previous section to compute the energy,
sampled with $\Psi^2$.
2021-01-20 18:31:49 +01:00
Compute also the acceptance rate, so that you can adapt the time
step in order to have an acceptance rate close to 0.5 .
2021-01-26 10:02:38 +01:00
2021-01-20 18:31:49 +01:00
Can you observe a reduction in the statistical error?
2021-01-12 01:01:52 +01:00
#+end_exercise
2021-01-27 13:04:32 +01:00
*Python*
2021-01-26 10:02:38 +01:00
#+BEGIN_SRC python :results output :tangle none
2021-01-07 11:07:18 +01:00
from hydrogen import *
from qmc_stats import *
2021-01-07 10:01:55 +01:00
2021-01-20 18:31:49 +01:00
def MonteCarlo(a,nmax,tau):
2021-01-26 10:02:38 +01:00
# TODO
return energy/nmax, N_accep/nmax
# Run simulation
a = 0.9
nmax = 100000
tau = 1.3
X0 = [ MonteCarlo(a,nmax,tau) for i in range(30)]
# Energy
X = [ x for (x, _) in X0 ]
E, deltaE = ave_error(X)
print(f"E = {E} +/- {deltaE}")
# Acceptance rate
X = [ x for (_, x) in X0 ]
A, deltaA = ave_error(X)
print(f"A = {A} +/- {deltaA}")
#+END_SRC
2021-01-27 13:04:32 +01:00
*Fortran*
2021-01-26 10:02:38 +01:00
#+BEGIN_SRC f90 :tangle none
subroutine metropolis_montecarlo(a,nmax,tau,energy,accep)
implicit none
double precision, intent(in) :: a
integer*8 , intent(in) :: nmax
double precision, intent(in) :: tau
double precision, intent(out) :: energy
double precision, intent(out) :: accep
integer*8 :: istep
double precision :: r_old(3), r_new(3), psi_old, psi_new
double precision :: v, ratio
integer*8 :: n_accep
double precision, external :: e_loc, psi, gaussian
! TODO
end subroutine metropolis_montecarlo
program qmc
implicit none
double precision, parameter :: a = 0.9d0
double precision, parameter :: tau = 1.3d0
integer*8 , parameter :: nmax = 100000
integer , parameter :: nruns = 30
integer :: irun
double precision :: X(nruns), Y(nruns)
double precision :: ave, err
2021-01-07 11:07:18 +01:00
2021-01-26 10:02:38 +01:00
do irun=1,nruns
call metropolis_montecarlo(a,nmax,tau,X(irun),Y(irun))
enddo
2021-01-03 18:45:58 +01:00
2021-01-26 10:02:38 +01:00
call ave_error(X,nruns,ave,err)
print *, 'E = ', ave, '+/-', err
call ave_error(Y,nruns,ave,err)
print *, 'A = ', ave, '+/-', err
end program qmc
#+END_SRC
#+begin_src sh :results output :exports both
gfortran hydrogen.f90 qmc_stats.f90 qmc_metropolis.f90 -o qmc_metropolis
./qmc_metropolis
#+end_src
2021-01-27 13:04:32 +01:00
**** Solution :solution:
*Python*
#+BEGIN_SRC python :results output :exports both
from hydrogen import *
from qmc_stats import *
def MonteCarlo(a,nmax,tau):
energy = 0.
N_accep = 0
r_old = np.random.uniform(-tau, tau, (3))
psi_old = psi(a,r_old)
for istep in range(nmax):
r_new = r_old + np.random.uniform(-tau,tau,(3))
psi_new = psi(a,r_new)
ratio = (psi_new / psi_old)**2
v = np.random.uniform()
if v <= ratio:
N_accep += 1
r_old = r_new
psi_old = psi_new
energy += e_loc(a,r_old)
return energy/nmax, N_accep/nmax
# Run simulation
a = 0.9
nmax = 100000
tau = 1.3
X0 = [ MonteCarlo(a,nmax,tau) for i in range(30)]
# Energy
X = [ x for (x, _) in X0 ]
E, deltaE = ave_error(X)
print(f"E = {E} +/- {deltaE}")
# Acceptance rate
X = [ x for (_, x) in X0 ]
A, deltaA = ave_error(X)
print(f"A = {A} +/- {deltaA}")
#+END_SRC
#+RESULTS:
: E = -0.4950720838131573 +/- 0.00019089638602238043
: A = 0.5172960000000001 +/- 0.0003443446549306529
*Fortran*
#+BEGIN_SRC f90 :exports code
2021-01-20 18:31:49 +01:00
subroutine metropolis_montecarlo(a,nmax,tau,energy,accep)
2021-01-07 11:07:18 +01:00
implicit none
double precision, intent(in) :: a
2021-01-12 10:55:00 +01:00
integer*8 , intent(in) :: nmax
2021-01-20 18:31:49 +01:00
double precision, intent(in) :: tau
2021-01-07 11:07:18 +01:00
double precision, intent(out) :: energy
2021-01-20 18:31:49 +01:00
double precision, intent(out) :: accep
2021-01-07 11:07:18 +01:00
integer*8 :: istep
2021-01-26 10:02:38 +01:00
double precision :: r_old(3), r_new(3), psi_old, psi_new
double precision :: v, ratio
integer*8 :: n_accep
2021-01-07 11:07:18 +01:00
double precision, external :: e_loc, psi, gaussian
energy = 0.d0
2021-01-26 10:02:38 +01:00
n_accep = 0_8
2021-01-20 18:31:49 +01:00
call random_number(r_old)
r_old(:) = tau * (2.d0*r_old(:) - 1.d0)
psi_old = psi(a,r_old)
2021-01-07 11:07:18 +01:00
do istep = 1,nmax
2021-01-20 18:31:49 +01:00
call random_number(r_new)
r_new(:) = r_old(:) + tau * (2.d0*r_new(:) - 1.d0)
psi_new = psi(a,r_new)
ratio = (psi_new / psi_old)**2
call random_number(v)
2021-01-26 10:02:38 +01:00
if (v <= ratio) then
2021-01-20 18:31:49 +01:00
r_old(:) = r_new(:)
psi_old = psi_new
2021-01-26 10:02:38 +01:00
n_accep = n_accep + 1_8
2021-01-20 18:31:49 +01:00
endif
energy = energy + e_loc(a,r_old)
2021-01-07 11:07:18 +01:00
end do
2021-01-26 10:02:38 +01:00
energy = energy / dble(nmax)
accep = dble(n_accep) / dble(nmax)
2021-01-20 18:31:49 +01:00
end subroutine metropolis_montecarlo
2021-01-07 11:07:18 +01:00
program qmc
implicit none
2021-01-20 18:31:49 +01:00
double precision, parameter :: a = 0.9d0
double precision, parameter :: tau = 1.3d0
2021-01-12 10:55:00 +01:00
integer*8 , parameter :: nmax = 100000
2021-01-07 11:07:18 +01:00
integer , parameter :: nruns = 30
integer :: irun
2021-01-20 18:31:49 +01:00
double precision :: X(nruns), Y(nruns)
2021-01-07 11:07:18 +01:00
double precision :: ave, err
do irun=1,nruns
2021-01-20 18:31:49 +01:00
call metropolis_montecarlo(a,nmax,tau,X(irun),Y(irun))
2021-01-07 11:07:18 +01:00
enddo
2021-01-26 10:02:38 +01:00
2021-01-07 11:07:18 +01:00
call ave_error(X,nruns,ave,err)
print *, 'E = ', ave, '+/-', err
2021-01-26 10:02:38 +01:00
2021-01-20 18:31:49 +01:00
call ave_error(Y,nruns,ave,err)
print *, 'A = ', ave, '+/-', err
2021-01-07 11:07:18 +01:00
end program qmc
2021-01-26 10:02:38 +01:00
#+END_SRC
2021-01-07 11:07:18 +01:00
2021-01-27 13:04:32 +01:00
#+begin_src sh :results output :exports results
2021-01-20 18:31:49 +01:00
gfortran hydrogen.f90 qmc_stats.f90 qmc_metropolis.f90 -o qmc_metropolis
./qmc_metropolis
2021-01-26 10:02:38 +01:00
#+end_src
#+RESULTS:
: E = -0.49515370205041676 +/- 1.7660819245720729E-004
: A = 0.51713866666666664 +/- 3.7072551835783688E-004
2021-01-20 18:31:49 +01:00
2021-01-26 13:11:57 +01:00
** Gaussian random number generator
2021-01-20 19:12:05 +01:00
To obtain Gaussian-distributed random numbers, you can apply the
[[https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform][Box Muller transform]] to uniform random numbers:
2021-01-11 18:41:36 +01:00
2021-01-20 19:12:05 +01:00
\begin{eqnarray*}
z_1 &=& \sqrt{-2 \ln u_1} \cos(2 \pi u_2) \\
z_2 &=& \sqrt{-2 \ln u_1} \sin(2 \pi u_2)
\end{eqnarray*}
2021-01-03 18:45:58 +01:00
2021-01-20 19:12:05 +01:00
Below is a Fortran implementation returning a Gaussian-distributed
n-dimensional vector $\mathbf{z}$. This will be useful for the
following sections.
2021-01-03 18:45:58 +01:00
2021-01-20 19:12:05 +01:00
*Fortran*
#+BEGIN_SRC f90 :tangle qmc_stats.f90
subroutine random_gauss(z,n)
implicit none
integer, intent(in) :: n
double precision, intent(out) :: z(n)
double precision :: u(n+1)
double precision, parameter :: two_pi = 2.d0*dacos(-1.d0)
integer :: i
2021-01-03 18:45:58 +01:00
2021-01-20 19:12:05 +01:00
call random_number(u)
if (iand(n,1) == 0) then
! n is even
do i=1,n,2
z(i) = dsqrt(-2.d0*dlog(u(i)))
z(i+1) = z(i) * dsin( two_pi*u(i+1) )
z(i) = z(i) * dcos( two_pi*u(i+1) )
end do
else
! n is odd
do i=1,n-1,2
z(i) = dsqrt(-2.d0*dlog(u(i)))
z(i+1) = z(i) * dsin( two_pi*u(i+1) )
z(i) = z(i) * dcos( two_pi*u(i+1) )
end do
z(n) = dsqrt(-2.d0*dlog(u(n)))
z(n) = z(n) * dcos( two_pi*u(n+1) )
end if
end subroutine random_gauss
#+END_SRC
2021-01-03 18:45:58 +01:00
2021-01-26 13:11:57 +01:00
In Python, you can use the [[https://numpy.org/doc/stable/reference/random/generated/numpy.random.normal.html][~random.normal~]] function of Numpy.
** Generalized Metropolis algorithm
2021-01-12 10:55:00 +01:00
:PROPERTIES:
2021-01-20 19:12:05 +01:00
:header-args:python: :tangle vmc_metropolis.py
:header-args:f90: :tangle vmc_metropolis.f90
2021-01-12 10:55:00 +01:00
:END:
2021-01-12 01:01:52 +01:00
2021-01-26 13:11:57 +01:00
One can use more efficient numerical schemes to move the electrons,
but the Metropolis accepation step has to be adapted accordingly:
the acceptance
2021-01-20 19:12:05 +01:00
probability $A$ is chosen so that it is consistent with the
probability of leaving $\mathbf{r}_n$ and the probability of
entering $\mathbf{r}_{n+1}$:
\[ A(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) = \min \left( 1,
\frac{T(\mathbf{r}_{n+1} \rightarrow \mathbf{r}_{n}) P(\mathbf{r}_{n+1})}
{T(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) P(\mathbf{r}_{n})}
\right)
\]
where $T(\mathbf{r}_n \rightarrow \mathbf{r}_{n+1})$ is the
probability of transition from $\mathbf{r}_n$ to
$\mathbf{r}_{n+1}$.
2021-01-12 01:01:52 +01:00
2021-01-20 19:12:05 +01:00
In the previous example, we were using uniform random
numbers. Hence, the transition probability was
2021-01-12 01:01:52 +01:00
2021-01-20 19:12:05 +01:00
\[
2021-01-26 13:11:57 +01:00
T(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) =
2021-01-20 19:12:05 +01:00
\text{constant}
\]
2021-01-12 01:01:52 +01:00
2021-01-26 13:11:57 +01:00
so the expression of $A$ was simplified to the ratios of the squared
2021-01-20 19:12:05 +01:00
wave functions.
2021-01-26 13:11:57 +01:00
Now, if instead of drawing uniform random numbers we
choose to draw Gaussian random numbers with zero mean and variance
2021-01-20 19:12:05 +01:00
$\tau$, the transition probability becomes:
\[
2021-01-26 13:11:57 +01:00
T(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) =
2021-01-20 19:12:05 +01:00
\frac{1}{(2\pi\,\tau)^{3/2}} \exp \left[ - \frac{\left(
\mathbf{r}_{n+1} - \mathbf{r}_{n} \right)^2}{2\tau} \right]
\]
2021-01-11 18:41:36 +01:00
2021-01-20 19:12:05 +01:00
To sample even better the density, we can "push" the electrons
into in the regions of high probability, and "pull" them away from
the low-probability regions. This will mechanically increase the
acceptance ratios and improve the sampling.
2021-01-11 18:41:36 +01:00
2021-01-20 19:12:05 +01:00
To do this, we can add the drift vector
2021-01-11 18:41:36 +01:00
2021-01-20 19:12:05 +01:00
\[
2021-01-26 13:11:57 +01:00
\frac{\nabla [ \Psi^2 ]}{\Psi^2} = 2 \frac{\nabla \Psi}{\Psi}.
\]
2021-01-20 19:12:05 +01:00
The numerical scheme becomes a drifted diffusion:
2021-01-11 18:41:36 +01:00
2021-01-20 19:12:05 +01:00
\[
\mathbf{r}_{n+1} = \mathbf{r}_{n} + \tau \frac{\nabla
\Psi(\mathbf{r})}{\Psi(\mathbf{r})} + \chi
\]
2021-01-11 18:41:36 +01:00
2021-01-20 19:12:05 +01:00
where $\chi$ is a Gaussian random variable with zero mean and
variance $\tau$.
The transition probability becomes:
\[
2021-01-26 13:11:57 +01:00
T(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) =
2021-01-20 19:12:05 +01:00
\frac{1}{(2\pi\,\tau)^{3/2}} \exp \left[ - \frac{\left(
\mathbf{r}_{n+1} - \mathbf{r}_{n} - \frac{\nabla
\Psi(\mathbf{r}_n)}{\Psi(\mathbf{r}_n)} \right)^2}{2\,\tau} \right]
\]
2021-01-03 18:45:58 +01:00
2021-01-20 19:12:05 +01:00
*** Exercise 1
2021-01-26 13:11:57 +01:00
2021-01-20 19:12:05 +01:00
#+begin_exercise
Write a function to compute the drift vector $\frac{\nabla \Psi(\mathbf{r})}{\Psi(\mathbf{r})}$.
#+end_exercise
2021-01-03 18:45:58 +01:00
2021-01-27 13:04:32 +01:00
*Python*
2021-01-26 13:11:57 +01:00
#+BEGIN_SRC python :tangle hydrogen.py :tangle none
def drift(a,r):
# TODO
#+END_SRC
2021-01-27 13:04:32 +01:00
*Fortran*
2021-01-26 13:11:57 +01:00
#+BEGIN_SRC f90 :tangle hydrogen.f90 :tangle none
subroutine drift(a,r,b)
implicit none
double precision, intent(in) :: a, r(3)
double precision, intent(out) :: b(3)
! TODO
end subroutine drift
2021-01-20 19:12:05 +01:00
#+END_SRC
2021-01-03 18:45:58 +01:00
2021-01-27 13:04:32 +01:00
**** Solution :solution:
*Python*
#+BEGIN_SRC python :tangle hydrogen.py
def drift(a,r):
ar_inv = -a/np.sqrt(np.dot(r,r))
return r * ar_inv
#+END_SRC
*Fortran*
2021-01-20 19:12:05 +01:00
#+BEGIN_SRC f90 :tangle hydrogen.f90
2021-01-11 18:41:36 +01:00
subroutine drift(a,r,b)
implicit none
double precision, intent(in) :: a, r(3)
double precision, intent(out) :: b(3)
double precision :: ar_inv
ar_inv = -a / dsqrt(r(1)*r(1) + r(2)*r(2) + r(3)*r(3))
b(:) = r(:) * ar_inv
end subroutine drift
2021-01-20 19:12:05 +01:00
#+END_SRC
2021-01-12 01:01:52 +01:00
2021-01-20 19:12:05 +01:00
*** Exercise 2
2021-01-12 01:01:52 +01:00
2021-01-20 19:12:05 +01:00
#+begin_exercise
Modify the previous program to introduce the drifted diffusion scheme.
(This is a necessary step for the next section).
#+end_exercise
2021-01-12 01:01:52 +01:00
2021-01-27 13:04:32 +01:00
*Python*
2021-01-26 13:11:57 +01:00
#+BEGIN_SRC python :results output :tangle none
2021-01-12 11:23:13 +01:00
from hydrogen import *
from qmc_stats import *
2021-01-26 13:11:57 +01:00
def MonteCarlo(a,nmax,tau):
# TODO
# Run simulation
a = 0.9
nmax = 100000
tau = 1.3
X0 = [ MonteCarlo(a,nmax,tau) for i in range(30)]
# Energy
X = [ x for (x, _) in X0 ]
E, deltaE = ave_error(X)
print(f"E = {E} +/- {deltaE}")
# Acceptance rate
X = [ x for (_, x) in X0 ]
A, deltaA = ave_error(X)
print(f"A = {A} +/- {deltaA}")
#+END_SRC
2021-01-27 13:04:32 +01:00
*Fortran*
#+BEGIN_SRC f90 :tangle none
subroutine variational_montecarlo(a,tau,nmax,energy,accep_rate)
implicit none
double precision, intent(in) :: a, tau
integer*8 , intent(in) :: nmax
double precision, intent(out) :: energy, accep_rate
integer*8 :: istep
double precision :: sq_tau, chi(3)
double precision :: psi_old, psi_new
double precision :: r_old(3), r_new(3)
double precision :: d_old(3), d_new(3)
double precision, external :: e_loc, psi
! TODO
end subroutine variational_montecarlo
program qmc
implicit none
double precision, parameter :: a = 0.9
double precision, parameter :: tau = 1.0
integer*8 , parameter :: nmax = 100000
integer , parameter :: nruns = 30
integer :: irun
double precision :: X(nruns), accep(nruns)
double precision :: ave, err
do irun=1,nruns
call variational_montecarlo(a,tau,nmax,X(irun),accep(irun))
enddo
call ave_error(X,nruns,ave,err)
print *, 'E = ', ave, '+/-', err
call ave_error(accep,nruns,ave,err)
print *, 'A = ', ave, '+/-', err
end program qmc
#+END_SRC
#+begin_src sh :results output :exports code
gfortran hydrogen.f90 qmc_stats.f90 vmc_metropolis.f90 -o vmc_metropolis
./vmc_metropolis
#+end_src
**** Solution :solution:
*Python*
#+BEGIN_SRC python :results output :exports both
2021-01-26 13:11:57 +01:00
from hydrogen import *
from qmc_stats import *
def MonteCarlo(a,nmax,tau):
energy = 0.
2021-01-12 11:23:13 +01:00
accep_rate = 0.
2021-01-12 01:01:52 +01:00
sq_tau = np.sqrt(tau)
2021-01-11 20:54:40 +01:00
r_old = np.random.normal(loc=0., scale=1.0, size=(3))
d_old = drift(a,r_old)
d2_old = np.dot(d_old,d_old)
psi_old = psi(a,r_old)
for istep in range(nmax):
2021-01-12 11:23:13 +01:00
chi = np.random.normal(loc=0., scale=1.0, size=(3))
r_new = r_old + tau * d_old + sq_tau * chi
2021-01-11 20:54:40 +01:00
d_new = drift(a,r_new)
d2_new = np.dot(d_new,d_new)
psi_new = psi(a,r_new)
# Metropolis
prod = np.dot((d_new + d_old), (r_new - r_old))
argexpo = 0.5 * (d2_new - d2_old)*tau + prod
q = psi_new / psi_old
q = np.exp(-argexpo) * q*q
if np.random.uniform() < q:
2021-01-12 11:23:13 +01:00
accep_rate += 1.
2021-01-11 20:54:40 +01:00
r_old = r_new
d_old = d_new
d2_old = d2_new
psi_old = psi_new
2021-01-26 13:11:57 +01:00
energy += e_loc(a,r_old)
return energy/nmax, accep_rate/nmax
2021-01-11 20:54:40 +01:00
2021-01-26 13:11:57 +01:00
# Run simulation
2021-01-12 11:23:13 +01:00
a = 0.9
2021-01-11 20:54:40 +01:00
nmax = 100000
2021-01-26 13:11:57 +01:00
tau = 1.3
X0 = [ MonteCarlo(a,nmax,tau) for i in range(30)]
# Energy
X = [ x for (x, _) in X0 ]
E, deltaE = ave_error(X)
print(f"E = {E} +/- {deltaE}")
# Acceptance rate
X = [ x for (_, x) in X0 ]
A, deltaA = ave_error(X)
print(f"A = {A} +/- {deltaA}")
#+END_SRC
2021-01-11 20:54:40 +01:00
2021-01-26 13:11:57 +01:00
#+RESULTS:
: E = -0.4951317910667116 +/- 0.00014045774335059988
: A = 0.7200673333333333 +/- 0.00045942791345632793
2021-01-11 20:54:40 +01:00
2021-01-27 13:04:32 +01:00
*Fortran*
2021-01-26 13:11:57 +01:00
#+BEGIN_SRC f90
subroutine variational_montecarlo(a,tau,nmax,energy,accep_rate)
implicit none
double precision, intent(in) :: a, tau
integer*8 , intent(in) :: nmax
double precision, intent(out) :: energy, accep_rate
integer*8 :: istep
double precision :: sq_tau, chi(3), d2_old, prod, u
2021-01-12 11:23:13 +01:00
double precision :: psi_old, psi_new, d2_new, argexpo, q
double precision :: r_old(3), r_new(3)
double precision :: d_old(3), d_new(3)
double precision, external :: e_loc, psi
2021-01-11 18:41:36 +01:00
2021-01-12 11:23:13 +01:00
sq_tau = dsqrt(tau)
2021-01-20 19:12:05 +01:00
2021-01-12 11:23:13 +01:00
! Initialization
2021-01-11 18:41:36 +01:00
energy = 0.d0
2021-01-12 11:23:13 +01:00
accep_rate = 0.d0
call random_gauss(r_old,3)
call drift(a,r_old,d_old)
d2_old = d_old(1)*d_old(1) + d_old(2)*d_old(2) + d_old(3)*d_old(3)
psi_old = psi(a,r_old)
2021-01-11 18:41:36 +01:00
do istep = 1,nmax
2021-01-12 11:23:13 +01:00
call random_gauss(chi,3)
r_new(:) = r_old(:) + tau * d_old(:) + chi(:)*sq_tau
call drift(a,r_new,d_new)
d2_new = d_new(1)*d_new(1) + d_new(2)*d_new(2) + d_new(3)*d_new(3)
psi_new = psi(a,r_new)
! Metropolis
prod = (d_new(1) + d_old(1))*(r_new(1) - r_old(1)) + &
2021-01-26 13:11:57 +01:00
(d_new(2) + d_old(2))*(r_new(2) - r_old(2)) + &
(d_new(3) + d_old(3))*(r_new(3) - r_old(3))
2021-01-12 11:23:13 +01:00
argexpo = 0.5d0 * (d2_new - d2_old)*tau + prod
q = psi_new / psi_old
q = dexp(-argexpo) * q*q
call random_number(u)
if (u<q) then
accep_rate = accep_rate + 1.d0
r_old(:) = r_new(:)
d_old(:) = d_new(:)
d2_old = d2_new
psi_old = psi_new
end if
energy = energy + e_loc(a,r_old)
2021-01-11 18:41:36 +01:00
end do
2021-01-26 13:11:57 +01:00
energy = energy / dble(nmax)
accep_rate = dble(accep_rate) / dble(nmax)
2021-01-11 18:41:36 +01:00
end subroutine variational_montecarlo
program qmc
implicit none
double precision, parameter :: a = 0.9
2021-01-12 11:23:13 +01:00
double precision, parameter :: tau = 1.0
integer*8 , parameter :: nmax = 100000
2021-01-11 18:41:36 +01:00
integer , parameter :: nruns = 30
integer :: irun
2021-01-12 11:23:13 +01:00
double precision :: X(nruns), accep(nruns)
2021-01-11 18:41:36 +01:00
double precision :: ave, err
do irun=1,nruns
2021-01-12 11:23:13 +01:00
call variational_montecarlo(a,tau,nmax,X(irun),accep(irun))
2021-01-11 18:41:36 +01:00
enddo
call ave_error(X,nruns,ave,err)
print *, 'E = ', ave, '+/-', err
2021-01-12 11:23:13 +01:00
call ave_error(accep,nruns,ave,err)
print *, 'A = ', ave, '+/-', err
2021-01-11 18:41:36 +01:00
end program qmc
2021-01-26 13:11:57 +01:00
#+END_SRC
2021-01-11 18:41:36 +01:00
2021-01-27 13:04:32 +01:00
#+begin_src sh :results output :exports results
2021-01-12 11:23:13 +01:00
gfortran hydrogen.f90 qmc_stats.f90 vmc_metropolis.f90 -o vmc_metropolis
./vmc_metropolis
2021-01-26 13:11:57 +01:00
#+end_src
2021-01-12 10:55:00 +01:00
2021-01-26 13:11:57 +01:00
#+RESULTS:
: E = -0.49495906384751226 +/- 1.5257646086088266E-004
: A = 0.78861366666666666 +/- 3.7855335138754813E-004
2021-01-12 01:01:52 +01:00
2021-01-27 00:56:36 +01:00
* Diffusion Monte Carlo
2021-01-12 10:55:00 +01:00
:PROPERTIES:
:header-args:python: :tangle dmc.py
:header-args:f90: :tangle dmc.f90
:END:
2021-01-13 17:59:48 +01:00
2021-01-26 17:06:12 +01:00
2021-01-27 13:04:32 +01:00
** Schrödinger equation in imaginary time
Consider the time-dependent Schrödinger equation:
2021-01-26 17:06:12 +01:00
2021-01-27 13:04:32 +01:00
\[
i\frac{\partial \Psi(\mathbf{r},t)}{\partial t} = \hat{H} \Psi(\mathbf{r},t)
\]
2021-01-26 17:06:12 +01:00
2021-01-27 13:04:32 +01:00
We can expand $\Psi(\mathbf{r},0)$, in the basis of the eigenstates
of the time-independent Hamiltonian:
2021-01-26 17:06:12 +01:00
2021-01-27 13:04:32 +01:00
\[
\Psi(\mathbf{r},0) = \sum_k a_k\, \Phi_k(\mathbf{r}).
\]
2021-01-26 17:06:12 +01:00
2021-01-27 13:04:32 +01:00
The solution of the Schrödinger equation at time $t$ is
2021-01-26 17:06:12 +01:00
2021-01-27 13:04:32 +01:00
\[
\Psi(\mathbf{r},t) = \sum_k a_k \exp \left( -i\, E_k\, t \right) \Phi_k(\mathbf{r}).
\]
2021-01-26 17:06:12 +01:00
2021-01-27 13:04:32 +01:00
Now, let's replace the time variable $t$ by an imaginary time variable
$\tau=i\,t$, we obtain
2021-01-26 17:06:12 +01:00
2021-01-27 13:04:32 +01:00
\[
-\frac{\partial \psi(\mathbf{r}, \tau)}{\partial \tau} = \hat{H} \psi(\mathbf{r}, \tau)
\]
2021-01-26 17:06:12 +01:00
2021-01-27 13:04:32 +01:00
where $\psi(\mathbf{r},\tau) = \Psi(\mathbf{r},-i\tau) = \Psi(\mathbf{r},t)$
and
\[
\psi(\mathbf{r},\tau) = \sum_k a_k \exp( -E_k\, \tau) \phi_k(\mathbf{r}).
\]
For large positive values of $\tau$, $\psi$ is dominated by the
$k=0$ term, namely the lowest eigenstate.
So we can expect that simulating the differetial equation in
imaginary time will converge to the exact ground state of the
system.
2021-01-27 00:56:36 +01:00
2021-01-27 13:04:32 +01:00
** Diffusion and branching
2021-01-27 00:56:36 +01:00
2021-01-27 13:04:32 +01:00
The [[https://en.wikipedia.org/wiki/Diffusion_equation][diffusion equation]] of particles is given by
2021-01-27 00:56:36 +01:00
2021-01-27 13:04:32 +01:00
\[
\frac{\partial \phi(\mathbf{r},t)}{\partial t} = D\, \Delta \phi(\mathbf{r},t).
\]
2021-01-27 00:56:36 +01:00
2021-01-27 13:04:32 +01:00
The [[https://en.wikipedia.org/wiki/Reaction_rate][rate of reaction]] $v$ is the speed at which a chemical reaction
takes place. In a solution, the rate is given as a function of the
concentration $[A]$ by
2021-01-27 00:56:36 +01:00
2021-01-27 13:04:32 +01:00
\[
v = \frac{d[A]}{dt},
\]
2021-01-27 00:56:36 +01:00
2021-01-27 13:04:32 +01:00
where the concentration $[A]$ is proportional to the number of particles.
2021-01-27 00:56:36 +01:00
2021-01-27 13:04:32 +01:00
These two equations allow us to interpret the Schrödinger equation
in imaginary time as the combination of:
- a diffusion equation with a diffusion coefficient $D=1/2$ for the
kinetic energy, and
- a rate equation for the potential.
2021-01-27 00:56:36 +01:00
2021-01-27 13:04:32 +01:00
The diffusion equation can be simulated by a Brownian motion:
\[ \mathbf{r}_{n+1} = \mathbf{r}_{n} + \sqrt{\tau}\, \chi \]
where $\chi$ is a Gaussian random variable, and the rate equation
can be simulated by creating or destroying particles over time (a
so-called branching process).
2021-01-27 00:56:36 +01:00
2021-01-27 13:04:32 +01:00
/Diffusion Monte Carlo/ (DMC) consists in obtaining the ground state of a
system by simulating the Schrödinger equation in imaginary time, by
the combination of a diffusion process and a branching process.
** Importance sampling
2021-01-27 00:56:36 +01:00
2021-01-27 13:04:32 +01:00
In a molecular system, the potential is far from being constant,
and diverges at inter-particle coalescence points. Hence, when the
rate equation is simulated, it results in very large fluctuations
in the numbers of particles, making the calculations impossible in
practice.
Fortunately, if we multiply the Schrödinger equation by a chosen
/trial wave function/ $\Psi_T(\mathbf{r})$ (Hartree-Fock, Kohn-Sham
determinant, CI wave function, /etc/), one obtains
\[
-\frac{\partial \psi(\mathbf{r},\tau)}{\partial \tau} \Psi_T(\mathbf{r}) =
\left[ -\frac{1}{2} \Delta \psi(\mathbf{r},\tau) + V(\mathbf{r}) \psi(\mathbf{r},\tau) \right] \Psi_T(\mathbf{r})
\]
Defining $\Pi(\mathbf{r},t) = \psi(\mathbf{r},\tau)
\Psi_T(\mathbf{r})$,
\[
-\frac{\partial \Pi(\mathbf{r},\tau)}{\partial \tau}
= -\frac{1}{2} \Delta \Pi(\mathbf{r},\tau) +
\nabla \left[ \Pi(\mathbf{r},\tau) \frac{\nabla \Psi_T(\mathbf{r})}{\Psi_T(\mathbf{r})}
\right] + E_L(\mathbf{r}) \Pi(\mathbf{r},\tau)
\]
The new "potential" is the local energy, which has smaller fluctuations
as $\Psi_T$ tends to the exact wave function. The new "kinetic energy"
can be simulated by the drifted diffusion scheme presented in the
previous section (VMC).
2021-01-27 00:56:36 +01:00
2021-01-27 13:04:32 +01:00
*** Appendix : Details of the Derivation
\[
-\frac{\partial \psi(\mathbf{r},\tau)}{\partial \tau} \Psi_T(\mathbf{r}) =
\left[ -\frac{1}{2} \Delta \psi(\mathbf{r},\tau) + V(\mathbf{r}) \psi(\mathbf{r},\tau) \right] \Psi_T(\mathbf{r})
\]
\[
-\frac{\partial \big[ \psi(\mathbf{r},\tau) \Psi_T(\mathbf{r}) \big]}{\partial \tau}
= -\frac{1}{2} \Big( \Delta \big[
\psi(\mathbf{r},\tau) \Psi_T(\mathbf{r}) \big] -
\psi(\mathbf{r},\tau) \Delta \Psi_T(\mathbf{r}) - 2
\nabla \psi(\mathbf{r},\tau) \nabla \Psi_T(\mathbf{r}) \Big) + V(\mathbf{r}) \psi(\mathbf{r},\tau) \Psi_T(\mathbf{r})
\]
\[
-\frac{\partial \big[ \psi(\mathbf{r},\tau) \Psi_T(\mathbf{r}) \big]}{\partial \tau}
= -\frac{1}{2} \Delta \big[\psi(\mathbf{r},\tau) \Psi_T(\mathbf{r}) \big] +
\frac{1}{2} \psi(\mathbf{r},\tau) \Delta \Psi_T(\mathbf{r}) +
\Psi_T(\mathbf{r})\nabla \psi(\mathbf{r},\tau) \frac{\nabla \Psi_T(\mathbf{r})}{\Psi_T(\mathbf{r})} + V(\mathbf{r}) \psi(\mathbf{r},\tau) \Psi_T(\mathbf{r})
\]
\[
-\frac{\partial \big[ \psi(\mathbf{r},\tau) \Psi_T(\mathbf{r}) \big]}{\partial \tau}
= -\frac{1}{2} \Delta \big[\psi(\mathbf{r},\tau) \Psi_T(\mathbf{r}) \big] +
\psi(\mathbf{r},\tau) \Delta \Psi_T(\mathbf{r}) +
\Psi_T(\mathbf{r})\nabla \psi(\mathbf{r},\tau) \frac{\nabla \Psi_T(\mathbf{r})}{\Psi_T(\mathbf{r})} + E_L(\mathbf{r}) \psi(\mathbf{r},\tau) \Psi_T(\mathbf{r})
\]
\[
-\frac{\partial \big[ \psi(\mathbf{r},\tau) \Psi_T(\mathbf{r}) \big]}{\partial \tau}
= -\frac{1}{2} \Delta \big[\psi(\mathbf{r},\tau) \Psi_T(\mathbf{r}) \big] +
\nabla \left[ \psi(\mathbf{r},\tau) \Psi_T(\mathbf{r})
\frac{\nabla \Psi_T(\mathbf{r})}{\Psi_T(\mathbf{r})}
\right] + E_L(\mathbf{r}) \psi(\mathbf{r},\tau) \Psi_T(\mathbf{r})
\]
Defining $\Pi(\mathbf{r},t) = \psi(\mathbf{r},\tau)
\Psi_T(\mathbf{r})$,
\[
-\frac{\partial \Pi(\mathbf{r},\tau)}{\partial \tau}
= -\frac{1}{2} \Delta \Pi(\mathbf{r},\tau) +
\nabla \left[ \Pi(\mathbf{r},\tau) \frac{\nabla \Psi_T(\mathbf{r})}{\Psi_T(\mathbf{r})}
\right] + E_L(\mathbf{r}) \Pi(\mathbf{r},\tau)
\]
2021-01-26 17:06:12 +01:00
2021-01-21 23:24:21 +01:00
** TODO Hydrogen atom
2021-01-13 17:59:48 +01:00
2021-01-21 23:24:21 +01:00
*** Exercise
2021-01-03 18:45:58 +01:00
2021-01-13 17:59:48 +01:00
#+begin_exercise
Modify the Metropolis VMC program to introduce the PDMC weight.
In the limit $\tau \rightarrow 0$, you should recover the exact
energy of H for any value of $a$.
#+end_exercise
2021-01-27 00:56:36 +01:00
**** Python
#+BEGIN_SRC python :results output
2021-01-13 17:59:48 +01:00
from hydrogen import *
from qmc_stats import *
2021-01-03 18:45:58 +01:00
2021-01-26 13:11:57 +01:00
def MonteCarlo(a,nmax,tau,Eref):
energy = 0.
normalization = 0.
accep_rate = 0
2021-01-13 17:59:48 +01:00
sq_tau = np.sqrt(tau)
r_old = np.random.normal(loc=0., scale=1.0, size=(3))
d_old = drift(a,r_old)
d2_old = np.dot(d_old,d_old)
psi_old = psi(a,r_old)
w = 1.0
for istep in range(nmax):
chi = np.random.normal(loc=0., scale=1.0, size=(3))
el = e_loc(a,r_old)
w *= np.exp(-tau*(el - Eref))
2021-01-26 13:11:57 +01:00
normalization += w
energy += w * el
2021-01-13 17:59:48 +01:00
r_new = r_old + tau * d_old + sq_tau * chi
d_new = drift(a,r_new)
d2_new = np.dot(d_new,d_new)
psi_new = psi(a,r_new)
# Metropolis
prod = np.dot((d_new + d_old), (r_new - r_old))
argexpo = 0.5 * (d2_new - d2_old)*tau + prod
q = psi_new / psi_old
q = np.exp(-argexpo) * q*q
# PDMC weight
if np.random.uniform() < q:
2021-01-26 13:11:57 +01:00
accep_rate += 1
2021-01-13 17:59:48 +01:00
r_old = r_new
d_old = d_new
d2_old = d2_new
psi_old = psi_new
2021-01-26 13:11:57 +01:00
return energy/normalization, accep_rate/nmax
2021-01-13 17:59:48 +01:00
a = 0.9
nmax = 10000
tau = .1
2021-01-26 13:11:57 +01:00
E_ref = -0.5
X = [MonteCarlo(a,nmax,tau,E_ref) for i in range(30)]
2021-01-13 17:59:48 +01:00
E, deltaE = ave_error([x[0] for x in X])
A, deltaA = ave_error([x[1] for x in X])
print(f"E = {E} +/- {deltaE}\nA = {A} +/- {deltaA}")
2021-01-27 00:56:36 +01:00
#+END_SRC
2021-01-13 17:59:48 +01:00
2021-01-27 00:56:36 +01:00
#+RESULTS:
: E = -0.49654807434947584 +/- 0.0006868522447409156
: A = 0.9876193891840709 +/- 0.00041857361650995804
2021-01-13 17:59:48 +01:00
2021-01-26 13:11:57 +01:00
**** Fortran
#+BEGIN_SRC f90
2021-01-13 17:59:48 +01:00
subroutine variational_montecarlo(a,tau,nmax,energy,accep_rate)
implicit none
double precision, intent(in) :: a, tau
integer*8 , intent(in) :: nmax
double precision, intent(out) :: energy, accep_rate
integer*8 :: istep
double precision :: norm, sq_tau, chi(3), d2_old, prod, u
double precision :: psi_old, psi_new, d2_new, argexpo, q
double precision :: r_old(3), r_new(3)
double precision :: d_old(3), d_new(3)
double precision, external :: e_loc, psi
sq_tau = dsqrt(tau)
! Initialization
energy = 0.d0
norm = 0.d0
accep_rate = 0.d0
call random_gauss(r_old,3)
call drift(a,r_old,d_old)
d2_old = d_old(1)*d_old(1) + d_old(2)*d_old(2) + d_old(3)*d_old(3)
psi_old = psi(a,r_old)
do istep = 1,nmax
call random_gauss(chi,3)
r_new(:) = r_old(:) + tau * d_old(:) + chi(:)*sq_tau
call drift(a,r_new,d_new)
d2_new = d_new(1)*d_new(1) + d_new(2)*d_new(2) + d_new(3)*d_new(3)
psi_new = psi(a,r_new)
! Metropolis
prod = (d_new(1) + d_old(1))*(r_new(1) - r_old(1)) + &
(d_new(2) + d_old(2))*(r_new(2) - r_old(2)) + &
(d_new(3) + d_old(3))*(r_new(3) - r_old(3))
argexpo = 0.5d0 * (d2_new - d2_old)*tau + prod
q = psi_new / psi_old
q = dexp(-argexpo) * q*q
call random_number(u)
if (u<q) then
accep_rate = accep_rate + 1.d0
r_old(:) = r_new(:)
d_old(:) = d_new(:)
d2_old = d2_new
psi_old = psi_new
end if
norm = norm + 1.d0
energy = energy + e_loc(a,r_old)
end do
energy = energy / norm
accep_rate = accep_rate / norm
end subroutine variational_montecarlo
program qmc
implicit none
double precision, parameter :: a = 0.9
double precision, parameter :: tau = 1.0
integer*8 , parameter :: nmax = 100000
integer , parameter :: nruns = 30
integer :: irun
double precision :: X(nruns), accep(nruns)
double precision :: ave, err
do irun=1,nruns
call variational_montecarlo(a,tau,nmax,X(irun),accep(irun))
enddo
call ave_error(X,nruns,ave,err)
print *, 'E = ', ave, '+/-', err
call ave_error(accep,nruns,ave,err)
print *, 'A = ', ave, '+/-', err
end program qmc
2021-01-26 13:11:57 +01:00
#+END_SRC
2021-01-13 17:59:48 +01:00
2021-01-26 13:11:57 +01:00
#+begin_src sh :results output :exports both
2021-01-13 17:59:48 +01:00
gfortran hydrogen.f90 qmc_stats.f90 vmc_metropolis.f90 -o vmc_metropolis
./vmc_metropolis
2021-01-26 13:11:57 +01:00
#+end_src
2021-01-13 17:59:48 +01:00
2021-01-26 13:11:57 +01:00
#+RESULTS:
: E = -0.49499990423528023 +/- 1.5958250761863871E-004
: A = 0.78861366666666655 +/- 3.5096729498002445E-004
2021-01-13 17:59:48 +01:00
2021-01-21 23:24:21 +01:00
** TODO Dihydrogen
2021-01-13 17:59:48 +01:00
We will now consider the H_2 molecule in a minimal basis composed of the
$1s$ orbitals of the hydrogen atoms:
$$
\Psi(\mathbf{r}_1, \mathbf{r}_2) =
\exp(-(\mathbf{r}_1 - \mathbf{R}_A)) +
$$
where $\mathbf{r}_1$ and $\mathbf{r}_2$ denote the electron
coordinates and $\mathbf{R}_A$ and $\mathbf{R}_B$ the coordinates of
the nuclei.
2021-01-03 18:45:58 +01:00
2021-01-20 18:31:49 +01:00
2021-01-20 19:12:05 +01:00
* Appendix :noexport:
2021-01-20 18:31:49 +01:00
** Gaussian sampling :noexport:
:PROPERTIES:
:header-args:python: :tangle qmc_gaussian.py
:header-args:f90: :tangle qmc_gaussian.f90
:END:
We will now improve the sampling and allow to sample in the whole
3D space, correcting the bias related to the sampling in the box.
Instead of drawing uniform random numbers, we will draw Gaussian
random numbers centered on 0 and with a variance of 1.
2021-01-20 19:12:05 +01:00
2021-01-20 18:31:49 +01:00
Now the sampling probability can be inserted into the equation of the energy:
\[
E = \frac{\int P(\mathbf{r}) \frac{\left[\Psi(\mathbf{r})\right]^2}{P(\mathbf{r})}\, \frac{\hat{H} \Psi(\mathbf{r})}{\Psi(\mathbf{r})}\,d\mathbf{r}}{\int P(\mathbf{r}) \frac{\left[\Psi(\mathbf{r}) \right]^2}{P(\mathbf{r})} d\mathbf{r}}
\]
with the Gaussian probability
\[
P(\mathbf{r}) = \frac{1}{(2 \pi)^{3/2}}\exp\left( -\frac{\mathbf{r}^2}{2} \right).
\]
As the coordinates are drawn with probability $P(\mathbf{r})$, the
average energy can be computed as
$$
E \approx \frac{\sum_i w_i E_L(\mathbf{r}_i)}{\sum_i w_i}, \;\;
w_i = \frac{\left[\Psi(\mathbf{r}_i)\right]^2}{P(\mathbf{r}_i)} \delta \mathbf{r}
$$
*** Exercise
#+begin_exercise
Modify the program of the previous section to sample with
Gaussian-distributed random numbers. Can you see an reduction in
the statistical error?
#+end_exercise
2021-01-26 13:11:57 +01:00
**** Python
#+BEGIN_SRC python :results output
2021-01-20 18:31:49 +01:00
from hydrogen import *
from qmc_stats import *
norm_gauss = 1./(2.*np.pi)**(1.5)
def gaussian(r):
return norm_gauss * np.exp(-np.dot(r,r)*0.5)
def MonteCarlo(a,nmax):
E = 0.
N = 0.
for istep in range(nmax):
r = np.random.normal(loc=0., scale=1.0, size=(3))
w = psi(a,r)
w = w*w / gaussian(r)
N += w
E += w * e_loc(a,r)
return E/N
a = 0.9
nmax = 100000
X = [MonteCarlo(a,nmax) for i in range(30)]
E, deltaE = ave_error(X)
print(f"E = {E} +/- {deltaE}")
2021-01-26 13:11:57 +01:00
#+END_SRC
2021-01-20 18:31:49 +01:00
2021-01-26 13:11:57 +01:00
#+RESULTS:
: E = -0.49511014287471955 +/- 0.00012402022172236656
2021-01-20 18:31:49 +01:00
2021-01-26 13:11:57 +01:00
**** Fortran
#+BEGIN_SRC f90
2021-01-20 18:31:49 +01:00
double precision function gaussian(r)
implicit none
double precision, intent(in) :: r(3)
double precision, parameter :: norm_gauss = 1.d0/(2.d0*dacos(-1.d0))**(1.5d0)
gaussian = norm_gauss * dexp( -0.5d0 * (r(1)*r(1) + r(2)*r(2) + r(3)*r(3) ))
end function gaussian
subroutine gaussian_montecarlo(a,nmax,energy)
implicit none
double precision, intent(in) :: a
integer*8 , intent(in) :: nmax
double precision, intent(out) :: energy
integer*8 :: istep
double precision :: norm, r(3), w
double precision, external :: e_loc, psi, gaussian
energy = 0.d0
norm = 0.d0
do istep = 1,nmax
call random_gauss(r,3)
w = psi(a,r)
w = w*w / gaussian(r)
norm = norm + w
energy = energy + w * e_loc(a,r)
end do
energy = energy / norm
end subroutine gaussian_montecarlo
program qmc
implicit none
double precision, parameter :: a = 0.9
integer*8 , parameter :: nmax = 100000
integer , parameter :: nruns = 30
integer :: irun
double precision :: X(nruns)
double precision :: ave, err
do irun=1,nruns
call gaussian_montecarlo(a,nmax,X(irun))
enddo
call ave_error(X,nruns,ave,err)
print *, 'E = ', ave, '+/-', err
end program qmc
2021-01-26 13:11:57 +01:00
#+END_SRC
2021-01-20 18:31:49 +01:00
2021-01-26 13:11:57 +01:00
#+begin_src sh :results output :exports both
2021-01-20 18:31:49 +01:00
gfortran hydrogen.f90 qmc_stats.f90 qmc_gaussian.f90 -o qmc_gaussian
./qmc_gaussian
2021-01-26 13:11:57 +01:00
#+end_src
2021-01-20 18:31:49 +01:00
2021-01-26 13:11:57 +01:00
#+RESULTS:
: E = -0.49517104619091717 +/- 1.0685523607878961E-004
2021-01-20 19:12:05 +01:00
** Improved sampling with $\Psi^2$ :noexport:
*** Importance sampling
:PROPERTIES:
:header-args:python: :tangle vmc.py
:header-args:f90: :tangle vmc.f90
:END:
To generate the probability density $\Psi^2$, we consider a
diffusion process characterized by a time-dependent density
$[\Psi(\mathbf{r},t)]^2$, which obeys the Fokker-Planck equation:
\[
\frac{\partial \Psi^2}{\partial t} = \sum_i D
\frac{\partial}{\partial \mathbf{r}_i} \left(
\frac{\partial}{\partial \mathbf{r}_i} - F_i(\mathbf{r}) \right)
[\Psi(\mathbf{r},t)]^2.
\]
$D$ is the diffusion constant and $F_i$ is the i-th component of a
drift velocity caused by an external potential. For a stationary
density, \( \frac{\partial \Psi^2}{\partial t} = 0 \), so
\begin{eqnarray*}
0 & = & \sum_i D
\frac{\partial}{\partial \mathbf{r}_i} \left(
\frac{\partial}{\partial \mathbf{r}_i} - F_i(\mathbf{r}) \right)
[\Psi(\mathbf{r})]^2 \\
0 & = & \sum_i D
\frac{\partial}{\partial \mathbf{r}_i} \left(
\frac{\partial [\Psi(\mathbf{r})]^2}{\partial \mathbf{r}_i} -
F_i(\mathbf{r})\,[\Psi(\mathbf{r})]^2 \right) \\
0 & = &
\frac{\partial^2 \Psi^2}{\partial \mathbf{r}_i^2} -
\frac{\partial F_i }{\partial \mathbf{r}_i}[\Psi(\mathbf{r})]^2 -
\frac{\partial \Psi^2}{\partial \mathbf{r}_i} F_i(\mathbf{r})
\end{eqnarray*}
we search for a drift function which satisfies
\[
\frac{\partial^2 \Psi^2}{\partial \mathbf{r}_i^2} =
[\Psi(\mathbf{r})]^2 \frac{\partial F_i }{\partial \mathbf{r}_i} +
\frac{\partial \Psi^2}{\partial \mathbf{r}_i} F_i(\mathbf{r})
\]
to obtain a second derivative on the left, we need the drift to be
of the form
\[
F_i(\mathbf{r}) = g(\mathbf{r}) \frac{\partial \Psi^2}{\partial \mathbf{r}_i}
\]
\[
\frac{\partial^2 \Psi^2}{\partial \mathbf{r}_i^2} =
[\Psi(\mathbf{r})]^2 \frac{\partial
g(\mathbf{r})}{\partial \mathbf{r}_i}\frac{\partial \Psi^2}{\partial \mathbf{r}_i} +
[\Psi(\mathbf{r})]^2 g(\mathbf{r}) \frac{\partial^2
\Psi^2}{\partial \mathbf{r}_i^2} +
\frac{\partial \Psi^2}{\partial \mathbf{r}_i}
g(\mathbf{r}) \frac{\partial \Psi^2}{\partial \mathbf{r}_i}
\]
$g = 1 / \Psi^2$ satisfies this equation, so
\[
F(\mathbf{r}) = \frac{\nabla [\Psi(\mathbf{r})]^2}{[\Psi(\mathbf{r})]^2} = 2 \frac{\nabla
\Psi(\mathbf{r})}{\Psi(\mathbf{r})} = 2 \nabla \left( \log \Psi(\mathbf{r}) \right)
\]
In statistical mechanics, Fokker-Planck trajectories are generated
by a Langevin equation:
\[
\frac{\partial \mathbf{r}(t)}{\partial t} = 2D \frac{\nabla
\Psi(\mathbf{r}(t))}{\Psi} + \eta
\]
where $\eta$ is a normally-distributed fluctuating random force.
Discretizing this differential equation gives the following drifted
diffusion scheme:
\[
\mathbf{r}_{n+1} = \mathbf{r}_{n} + \tau\, 2D \frac{\nabla
\Psi(\mathbf{r})}{\Psi(\mathbf{r})} + \chi
\]
where $\chi$ is a Gaussian random variable with zero mean and
variance $\tau\,2D$.
**** Exercise 2
#+begin_exercise
Sample $\Psi^2$ approximately using the drifted diffusion scheme,
with a diffusion constant $D=1/2$. You can use a time step of
0.001 a.u.
#+end_exercise
*Python*
#+BEGIN_SRC python :results output
from hydrogen import *
from qmc_stats import *
def MonteCarlo(a,tau,nmax):
sq_tau = np.sqrt(tau)
# Initialization
E = 0.
N = 0.
r_old = np.random.normal(loc=0., scale=1.0, size=(3))
for istep in range(nmax):
d_old = drift(a,r_old)
chi = np.random.normal(loc=0., scale=1.0, size=(3))
r_new = r_old + tau * d_old + chi*sq_tau
N += 1.
E += e_loc(a,r_new)
r_old = r_new
return E/N
a = 0.9
nmax = 100000
tau = 0.2
X = [MonteCarlo(a,tau,nmax) for i in range(30)]
E, deltaE = ave_error(X)
print(f"E = {E} +/- {deltaE}")
#+END_SRC
#+RESULTS:
: E = -0.4858534479298907 +/- 0.00010203236131158794
*Fortran*
#+BEGIN_SRC f90
subroutine variational_montecarlo(a,tau,nmax,energy)
implicit none
double precision, intent(in) :: a, tau
integer*8 , intent(in) :: nmax
double precision, intent(out) :: energy
integer*8 :: istep
double precision :: norm, r_old(3), r_new(3), d_old(3), sq_tau, chi(3)
double precision, external :: e_loc
sq_tau = dsqrt(tau)
! Initialization
energy = 0.d0
norm = 0.d0
call random_gauss(r_old,3)
do istep = 1,nmax
call drift(a,r_old,d_old)
call random_gauss(chi,3)
r_new(:) = r_old(:) + tau * d_old(:) + chi(:)*sq_tau
norm = norm + 1.d0
energy = energy + e_loc(a,r_new)
r_old(:) = r_new(:)
end do
energy = energy / norm
end subroutine variational_montecarlo
program qmc
implicit none
double precision, parameter :: a = 0.9
double precision, parameter :: tau = 0.2
integer*8 , parameter :: nmax = 100000
integer , parameter :: nruns = 30
integer :: irun
double precision :: X(nruns)
double precision :: ave, err
do irun=1,nruns
call variational_montecarlo(a,tau,nmax,X(irun))
enddo
call ave_error(X,nruns,ave,err)
print *, 'E = ', ave, '+/-', err
end program qmc
#+END_SRC
#+begin_src sh :results output :exports both
gfortran hydrogen.f90 qmc_stats.f90 vmc.f90 -o vmc
./vmc
#+end_src
#+RESULTS:
: E = -0.48584030499187431 +/- 1.0411743995438257E-004
2021-01-25 23:52:53 +01:00
* TODO [0/1] Last things to do
- [ ] Prepare 4 questions for the exam: multiple-choice questions
with 4 possible answers. Questions should be independent because
they will be asked in a random order.
- [ ] Propose a project for the students to continue the
programs. Idea: Modify the program to compute the exact energy of
the H$_2$ molecule at $R$=1.4010 bohr. Answer: 0.17406 a.u.