mirror of
https://github.com/TREX-CoE/qmc-lttc.git
synced 2024-12-21 11:53:58 +01:00
Initial commit
This commit is contained in:
parent
3e12d0b651
commit
7d2310bc86
788
QMC.org
Normal file
788
QMC.org
Normal file
@ -0,0 +1,788 @@
|
||||
#+TITLE: Quantum Monte Carlo
|
||||
#+AUTHOR: Anthony Scemama, Claudia Filippi
|
||||
#+SETUPFILE: https://fniessen.github.io/org-html-themes/org/theme-readtheorg.setup
|
||||
|
||||
#+STARTUP: latexpreview
|
||||
#+STARTUP: indent
|
||||
|
||||
|
||||
* Introduction
|
||||
|
||||
We propose different exercises to understand quantum Monte Carlo (QMC)
|
||||
methods. In the first section, we propose to compute the energy of a
|
||||
hydrogen atom using numerical integration. The goal of this section is
|
||||
to introduce the /local energy/.
|
||||
Then we introduce the variational Monte Carlo (VMC) method which
|
||||
computes a statistical estimate of the expectation value of the energy
|
||||
associated with a given wave function.
|
||||
Finally, we introduce the diffusion Monte Carlo (DMC) method which
|
||||
gives the exact energy of the H$_2$ molecule.
|
||||
|
||||
Code examples will be given in Python and Fortran. Whatever language
|
||||
can be chosen.
|
||||
** Python
|
||||
|
||||
** Fortran
|
||||
|
||||
- 1.d0
|
||||
- external
|
||||
- r(:) = 0.d0
|
||||
- a = (/ 0.1, 0.2 /)
|
||||
- size(x)
|
||||
|
||||
|
||||
* Numerical evaluation of the energy
|
||||
|
||||
In this section we consider the Hydrogen atom with the following
|
||||
wave function:
|
||||
|
||||
$$
|
||||
\Psi(\mathbf{r}) = \exp(-a |\mathbf{r}|)
|
||||
$$
|
||||
|
||||
We will first verify that $\Psi$ is an eigenfunction of the Hamiltonian
|
||||
|
||||
$$
|
||||
\hat{H} = \hat{T} + \hat{V} = - \frac{1}{2} \Delta - \frac{1}{|\mathbf{r}|}
|
||||
$$
|
||||
|
||||
when $a=1$, by checking that $\hat{H}\Psi(\mathbf{r}) = E\Psi(\mathbf{r})$ for
|
||||
all $\mathbf{r}$: we will check that the local energy, defined as
|
||||
|
||||
$$
|
||||
E_L(\mathbf{r}) = \frac{\hat{H} \Psi(\mathbf{r})}{\Psi(\mathbf{r})},
|
||||
$$
|
||||
|
||||
is constant.
|
||||
|
||||
|
||||
** Local energy
|
||||
:PROPERTIES:
|
||||
:header-args:python: :tangle hydrogen.py
|
||||
:header-args:f90: :tangle hydrogen.f90
|
||||
:END:
|
||||
*** Write a function which computes the potential at $\mathbf{r}$
|
||||
The function accepts q 3-dimensional vector =r= as input arguments
|
||||
and returns the potential.
|
||||
|
||||
$\mathbf{r}=\sqrt{x^2 + y^2 + z^2})$, so
|
||||
$$
|
||||
V(x,y,z) = -\frac{1}{\sqrt{x^2 + y^2 + z^2})$
|
||||
$$
|
||||
|
||||
#+BEGIN_SRC python
|
||||
import numpy as np
|
||||
|
||||
def potential(r):
|
||||
return -1. / np.sqrt(np.dot(r,r))
|
||||
#+END_SRC
|
||||
|
||||
#+BEGIN_SRC f90
|
||||
double precision function potential(r)
|
||||
implicit none
|
||||
double precision, intent(in) :: r(3)
|
||||
potential = -1.d0 / dsqrt( r(1)*r(1) + r(2)*r(2) + r(3)*r(3) )
|
||||
end function potential
|
||||
#+END_SRC
|
||||
|
||||
*** Write a function which computes the wave function at $\mathbf{r}$
|
||||
The function accepts a scalar =a= and a 3-dimensional vector =r= as
|
||||
input arguments, and returns a scalar.
|
||||
|
||||
#+BEGIN_SRC python
|
||||
def psi(a, r):
|
||||
return np.exp(-a*np.sqrt(np.dot(r,r)))
|
||||
#+END_SRC
|
||||
|
||||
#+BEGIN_SRC f90
|
||||
double precision function psi(a, r)
|
||||
implicit none
|
||||
double precision, intent(in) :: a, r(3)
|
||||
psi = dexp(-a * dsqrt( r(1)*r(1) + r(2)*r(2) + r(3)*r(3) ))
|
||||
end function psi
|
||||
#+END_SRC
|
||||
|
||||
*** Write a function which computes the local kinetic energy at $\mathbf{r}$
|
||||
The function accepts =a= and =r= as input arguments and returns the
|
||||
local kinetic energy.
|
||||
|
||||
The local kinetic energy is defined as $$-\frac{1}{2}\frac{\Delta \Psi}{\Psi}$$.
|
||||
|
||||
$$
|
||||
\Psi(x,y,z) = \exp(-a\,\sqrt{x^2 + y^2 + z^2}).
|
||||
$$
|
||||
|
||||
We differentiate $\Psi$ with respect to $x$:
|
||||
|
||||
$$
|
||||
\frac{\partial \Psi}{\partial x}
|
||||
= \frac{\partial \Psi}{\partial r} \frac{\partial r}{\partial x}
|
||||
= - \frac{a\,x}{|\mathbf{r}|} \Psi(x,y,z)
|
||||
$$
|
||||
|
||||
and we differentiate a second time:
|
||||
|
||||
$$
|
||||
\frac{\partial^2 \Psi}{\partial x^2} =
|
||||
\left( \frac{a^2\,x^2}{|\mathbf{r}|^2} - \frac{a(y^2+z^2)}{|\mathbf{r}|^{3}} \right) \Psi(x,y,z).
|
||||
$$
|
||||
|
||||
The Laplacian operator $\Delta = \frac{\partial^2}{\partial x^2} +
|
||||
\frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$
|
||||
applied to the wave function gives:
|
||||
|
||||
$$
|
||||
\Delta \Psi (x,y,z) = \left(a^2 - \frac{2a}{\mathbf{|r|}} \right) \Psi(x,y,z)
|
||||
$$
|
||||
|
||||
So the local kinetic energy is
|
||||
$$
|
||||
-\frac{1}{2} \frac{\Delta \Psi}{\Psi} (x,y,z) = -\frac{1}{2}\left(a^2 - \frac{2a}{\mathbf{|r|}} \right)
|
||||
$$
|
||||
|
||||
#+BEGIN_SRC python
|
||||
def kinetic(a,r):
|
||||
return -0.5 * (a**2 - (2.*a)/np.sqrt(np.dot(r,r)))
|
||||
#+END_SRC
|
||||
|
||||
#+BEGIN_SRC f90
|
||||
double precision function kinetic(a,r)
|
||||
implicit none
|
||||
double precision, intent(in) :: a, r(3)
|
||||
kinetic = -0.5d0 * (a*a - (2.d0*a) / &
|
||||
dsqrt( r(1)*r(1) + r(2)*r(2) + r(3)*r(3) ) )
|
||||
end function kinetic
|
||||
#+END_SRC
|
||||
|
||||
*** Write a function which computes the local energy at $\mathbf{r}$
|
||||
The function accepts =x,y,z= as input arguments and returns the
|
||||
local energy.
|
||||
|
||||
$$
|
||||
E_L(x,y,z) = -\frac{1}{2} \frac{\Delta \Psi}{\Psi} (x,y,z) + V(x,y,z)
|
||||
$$
|
||||
|
||||
#+BEGIN_SRC python
|
||||
def e_loc(a,r):
|
||||
return kinetic(a,r) + potential(r)
|
||||
#+END_SRC
|
||||
|
||||
#+BEGIN_SRC f90
|
||||
double precision function e_loc(a,r)
|
||||
implicit none
|
||||
double precision, intent(in) :: a, r(3)
|
||||
double precision, external :: kinetic, potential
|
||||
e_loc = kinetic(a,r) + potential(r)
|
||||
end function e_loc
|
||||
#+END_SRC
|
||||
|
||||
** Plot the local energy along the x axis
|
||||
:PROPERTIES:
|
||||
:header-args:python: :tangle plot_hydrogen.py
|
||||
:header-args:f90: :tangle plot_hydrogen.f90
|
||||
:END:
|
||||
:LOGBOOK:
|
||||
CLOCK: [2021-01-03 Sun 17:48]
|
||||
:END:
|
||||
|
||||
For multiple values of $a$ (0.1, 0.2, 0.5, 1., 1.5, 2.), plot the
|
||||
local energy along the $x$ axis.
|
||||
|
||||
#+begin_src python
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
from hydrogen import e_loc
|
||||
|
||||
x=np.linspace(-5,5)
|
||||
|
||||
def make_array(a):
|
||||
y=np.array([ e_loc(a, np.array([t,0.,0.]) ) for t in x])
|
||||
return y
|
||||
|
||||
plt.figure(figsize=(10,5))
|
||||
for a in [0.1, 0.2, 0.5, 1., 1.5, 2.]:
|
||||
y = make_array(a)
|
||||
plt.plot(x,y,label=f"a={a}")
|
||||
|
||||
plt.tight_layout()
|
||||
|
||||
plt.legend()
|
||||
|
||||
plt.savefig("plot_py.png")
|
||||
#+end_src
|
||||
|
||||
[[./plot_py.png]]
|
||||
|
||||
|
||||
#+begin_src f90
|
||||
program plot
|
||||
implicit none
|
||||
double precision, external :: e_loc
|
||||
|
||||
double precision :: x(50), energy, dx, r(3), a(6)
|
||||
integer :: i, j
|
||||
|
||||
a = (/ 0.1d0, 0.2d0, 0.5d0, 1.d0, 1.5d0, 2.d0 /)
|
||||
|
||||
dx = 10.d0/(size(x)-1)
|
||||
do i=1,size(x)
|
||||
x(i) = -5.d0 + (i-1)*dx
|
||||
end do
|
||||
|
||||
r(:) = 0.d0
|
||||
|
||||
do j=1,size(a)
|
||||
print *, '# a=', a(j)
|
||||
do i=1,size(x)
|
||||
r(1) = x(i)
|
||||
energy = e_loc( a(j), r )
|
||||
print *, x(i), energy
|
||||
end do
|
||||
print *, ''
|
||||
print *, ''
|
||||
end do
|
||||
|
||||
end program plot
|
||||
#+end_src
|
||||
|
||||
To compile and run:
|
||||
|
||||
#+begin_src sh :exports both
|
||||
gfortran hydrogen.f90 plot_hydrogen.f90 -o plot_hydrogen
|
||||
./plot_hydrogen > data
|
||||
#+end_src
|
||||
|
||||
#+RESULTS:
|
||||
|
||||
To plot the data using gnuplot"
|
||||
|
||||
#+begin_src gnuplot :file plot.png :exports both
|
||||
set grid
|
||||
set xrange [-5:5]
|
||||
set yrange [-2:1]
|
||||
plot './data' index 0 using 1:2 with lines title 'a=0.1', \
|
||||
'./data' index 1 using 1:2 with lines title 'a=0.2', \
|
||||
'./data' index 2 using 1:2 with lines title 'a=0.5', \
|
||||
'./data' index 3 using 1:2 with lines title 'a=1.0', \
|
||||
'./data' index 4 using 1:2 with lines title 'a=1.5', \
|
||||
'./data' index 5 using 1:2 with lines title 'a=2.0'
|
||||
#+end_src
|
||||
|
||||
#+RESULTS:
|
||||
[[file:plot.png]]
|
||||
|
||||
** Compute numerically the average energy
|
||||
:PROPERTIES:
|
||||
:header-args:python: :tangle energy_hydrogen.py
|
||||
:header-args:f90: :tangle energy_hydrogen.f90
|
||||
:END:
|
||||
|
||||
We want to compute
|
||||
|
||||
\begin{eqnarray}
|
||||
E & = & \frac{\langle \Psi| \hat{H} | \Psi\rangle}{\langle \Psi |\Psi \rangle} \\
|
||||
& = & \frac{\int \Psi(\mathbf{r})\, \hat{H} \Psi(\mathbf{r})\, d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}} \\
|
||||
& = & \frac{\int \left[\Psi(\mathbf{r})\right]^2\, \frac{\hat{H} \Psi(\mathbf{r})}{\Psi(\mathbf{r})}\,d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}}
|
||||
\end{eqnarray}
|
||||
|
||||
If the space is discretized in small volume elements
|
||||
$\delta x\, \delta y\, \delta z$, this last equation corresponds
|
||||
to a weighted average of the local energy, where the weights are
|
||||
the values of the square of the wave function at $(x,y,z)$
|
||||
multiplied by the volume element:
|
||||
|
||||
$$
|
||||
E \approx \frac{\sum_i w_i E_L(\mathbf{r}_i)}{\sum_i w_i}, \;\;
|
||||
w_i = \left[\Psi(\mathbf{r}_i)\right]^2 \delta x\, \delta y\, \delta z
|
||||
$$
|
||||
|
||||
We now compute an numerical estimate of the energy in a grid of
|
||||
$50\times50\times50$ points in the range $(-5,-5,-5) \le \mathbf{r} \le (5,5,5)$.
|
||||
|
||||
Note: the energy is biased because:
|
||||
- The energy is evaluated only inside the box
|
||||
- The volume elements are not infinitely small
|
||||
|
||||
#+BEGIN_SRC python :results output :exports both
|
||||
import numpy as np
|
||||
from hydrogen import e_loc, psi
|
||||
|
||||
interval = np.linspace(-5,5,num=50)
|
||||
delta = (interval[1]-interval[0])**3
|
||||
|
||||
r = np.array([0.,0.,0.])
|
||||
|
||||
for a in [0.1, 0.2, 0.5, 0.9, 1., 1.5, 2.]:
|
||||
E = 0.
|
||||
norm = 0.
|
||||
for x in interval:
|
||||
r[0] = x
|
||||
for y in interval:
|
||||
r[1] = y
|
||||
for z in interval:
|
||||
r[2] = z
|
||||
w = psi(a,r)
|
||||
w = w * w * delta
|
||||
E += w * e_loc(a,r)
|
||||
norm += w
|
||||
E = E / norm
|
||||
print(f"a = {a} \t E = {E}")
|
||||
|
||||
#+end_src
|
||||
|
||||
#+RESULTS:
|
||||
: a = 0.1 E = -0.24518438948809218
|
||||
: a = 0.2 E = -0.26966057967803525
|
||||
: a = 0.5 E = -0.3856357612517407
|
||||
: a = 0.9 E = -0.49435709786716214
|
||||
: a = 1.0 E = -0.5
|
||||
: a = 1.5 E = -0.39242967082602226
|
||||
: a = 2.0 E = -0.08086980667844901
|
||||
|
||||
#+begin_src f90
|
||||
program energy_hydrogen
|
||||
implicit none
|
||||
double precision, external :: e_loc, psi
|
||||
double precision :: x(50), w, delta, energy, dx, r(3), a(6), norm
|
||||
integer :: i, k, l, j
|
||||
|
||||
a = (/ 0.1d0, 0.2d0, 0.5d0, 1.d0, 1.5d0, 2.d0 /)
|
||||
|
||||
dx = 10.d0/(size(x)-1)
|
||||
do i=1,size(x)
|
||||
x(i) = -5.d0 + (i-1)*dx
|
||||
end do
|
||||
|
||||
delta = dx**3
|
||||
|
||||
r(:) = 0.d0
|
||||
|
||||
do j=1,size(a)
|
||||
energy = 0.d0
|
||||
norm = 0.d0
|
||||
do i=1,size(x)
|
||||
r(1) = x(i)
|
||||
do k=1,size(x)
|
||||
r(2) = x(k)
|
||||
do l=1,size(x)
|
||||
r(3) = x(l)
|
||||
w = psi(a(j),r)
|
||||
w = w * w * delta
|
||||
|
||||
energy = energy + w * e_loc(a(j), r)
|
||||
norm = norm + w
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
energy = energy / norm
|
||||
print *, 'a = ', a(j), ' E = ', energy
|
||||
end do
|
||||
|
||||
end program energy_hydrogen
|
||||
#+end_src
|
||||
|
||||
To compile and run:
|
||||
|
||||
#+begin_src sh :results output :exports both
|
||||
gfortran hydrogen.f90 energy_hydrogen.f90 -o energy_hydrogen
|
||||
./energy_hydrogen
|
||||
#+end_src
|
||||
|
||||
#+RESULTS:
|
||||
: a = 0.10000000000000001 E = -0.24518438948809140
|
||||
: a = 0.20000000000000001 E = -0.26966057967803236
|
||||
: a = 0.50000000000000000 E = -0.38563576125173815
|
||||
: a = 1.0000000000000000 E = -0.50000000000000000
|
||||
: a = 1.5000000000000000 E = -0.39242967082602065
|
||||
: a = 2.0000000000000000 E = -8.0869806678448772E-002
|
||||
|
||||
** Compute the variance of the local energy
|
||||
:PROPERTIES:
|
||||
:header-args:python: :tangle variance_hydrogen.py
|
||||
:header-args:f90: :tangle variance_hydrogen.f90
|
||||
:END:
|
||||
|
||||
The variance of the local energy measures the intensity of the
|
||||
fluctuations of the local energy around the average. If the local
|
||||
energy is constant (i.e. $\Psi$ is an eigenfunction of $\hat{H}$)
|
||||
the variance is zero.
|
||||
|
||||
$$
|
||||
\sigma^2(E_L) = \frac{\int \left[\Psi(\mathbf{r})\right]^2\, \left[
|
||||
E_L(\mathbf{r}) - E \right]^2 \, d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}}
|
||||
$$
|
||||
|
||||
Compute an numerical estimate of the variance of the local energy
|
||||
in a grid of $50\times50\times50$ points in the range $(-5,-5,-5) \le \mathbf{r} \le (5,5,5)$.
|
||||
|
||||
#+BEGIN_SRC python :results output :exports both
|
||||
import numpy as np
|
||||
from hydrogen import e_loc, psi
|
||||
|
||||
interval = np.linspace(-5,5,num=50)
|
||||
delta = (interval[1]-interval[0])**3
|
||||
|
||||
r = np.array([0.,0.,0.])
|
||||
|
||||
for a in [0.1, 0.2, 0.5, 0.9, 1., 1.5, 2.]:
|
||||
E = 0.
|
||||
norm = 0.
|
||||
for x in interval:
|
||||
r[0] = x
|
||||
for y in interval:
|
||||
r[1] = y
|
||||
for z in interval:
|
||||
r[2] = z
|
||||
w = psi(a, r)
|
||||
w = w * w * delta
|
||||
El = e_loc(a, r)
|
||||
E += w * El
|
||||
norm += w
|
||||
E = E / norm
|
||||
s2 = 0.
|
||||
for x in interval:
|
||||
r[0] = x
|
||||
for y in interval:
|
||||
r[1] = y
|
||||
for z in interval:
|
||||
r[2] = z
|
||||
w = psi(a, r)
|
||||
w = w * w * delta
|
||||
El = e_loc(a, r)
|
||||
s2 += w * (El - E)**2
|
||||
s2 = s2 / norm
|
||||
print(f"a = {a} \t E = {E:10.8f} \t \sigma^2 = {s2:10.8f}")
|
||||
|
||||
#+end_src
|
||||
|
||||
#+RESULTS:
|
||||
: a = 0.1 E = -0.24518439 \sigma^2 = 0.02696522
|
||||
: a = 0.2 E = -0.26966058 \sigma^2 = 0.03719707
|
||||
: a = 0.5 E = -0.38563576 \sigma^2 = 0.05318597
|
||||
: a = 0.9 E = -0.49435710 \sigma^2 = 0.00577812
|
||||
: a = 1.0 E = -0.50000000 \sigma^2 = 0.00000000
|
||||
: a = 1.5 E = -0.39242967 \sigma^2 = 0.31449671
|
||||
: a = 2.0 E = -0.08086981 \sigma^2 = 1.80688143
|
||||
|
||||
#+begin_src f90
|
||||
program variance_hydrogen
|
||||
implicit none
|
||||
double precision, external :: e_loc, psi
|
||||
double precision :: x(50), w, delta, energy, dx, r(3), a(6), norm, s2
|
||||
integer :: i, k, l, j
|
||||
|
||||
a = (/ 0.1d0, 0.2d0, 0.5d0, 1.d0, 1.5d0, 2.d0 /)
|
||||
|
||||
dx = 10.d0/(size(x)-1)
|
||||
do i=1,size(x)
|
||||
x(i) = -5.d0 + (i-1)*dx
|
||||
end do
|
||||
|
||||
delta = dx**3
|
||||
|
||||
r(:) = 0.d0
|
||||
|
||||
do j=1,size(a)
|
||||
energy = 0.d0
|
||||
norm = 0.d0
|
||||
do i=1,size(x)
|
||||
r(1) = x(i)
|
||||
do k=1,size(x)
|
||||
r(2) = x(k)
|
||||
do l=1,size(x)
|
||||
r(3) = x(l)
|
||||
w = psi(a(j),r)
|
||||
w = w * w * delta
|
||||
|
||||
energy = energy + w * e_loc(a(j), r)
|
||||
norm = norm + w
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
energy = energy / norm
|
||||
|
||||
s2 = 0.d0
|
||||
norm = 0.d0
|
||||
do i=1,size(x)
|
||||
r(1) = x(i)
|
||||
do k=1,size(x)
|
||||
r(2) = x(k)
|
||||
do l=1,size(x)
|
||||
r(3) = x(l)
|
||||
w = psi(a(j),r)
|
||||
w = w * w * delta
|
||||
|
||||
s2 = s2 + w * ( e_loc(a(j), r) - energy )**2
|
||||
norm = norm + w
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
s2 = s2 / norm
|
||||
print *, 'a = ', a(j), ' E = ', energy, ' s2 = ', s2
|
||||
end do
|
||||
|
||||
end program variance_hydrogen
|
||||
#+end_src
|
||||
|
||||
To compile and run:
|
||||
|
||||
#+begin_src sh :results output :exports both
|
||||
gfortran hydrogen.f90 variance_hydrogen.f90 -o variance_hydrogen
|
||||
./variance_hydrogen
|
||||
#+end_src
|
||||
|
||||
#+RESULTS:
|
||||
: a = 0.10000000000000001 E = -0.24518438948809140 s2 = 2.6965218719733813E-002
|
||||
: a = 0.20000000000000001 E = -0.26966057967803236 s2 = 3.7197072370217653E-002
|
||||
: a = 0.50000000000000000 E = -0.38563576125173815 s2 = 5.3185967578488862E-002
|
||||
: a = 1.0000000000000000 E = -0.50000000000000000 s2 = 0.0000000000000000
|
||||
: a = 1.5000000000000000 E = -0.39242967082602065 s2 = 0.31449670909180444
|
||||
: a = 2.0000000000000000 E = -8.0869806678448772E-002 s2 = 1.8068814270851303
|
||||
|
||||
|
||||
* Variational Monte Carlo
|
||||
|
||||
Instead of computing the average energy as a numerical integration
|
||||
on a grid, we will do a Monte Carlo sampling, which is an extremely
|
||||
efficient method to compute integrals in large dimensions.
|
||||
|
||||
Moreover, a Monte Carlo sampling will alow us to remove the bias due
|
||||
to the discretization of space, and compute a statistical confidence
|
||||
interval.
|
||||
|
||||
** Computation of the statistical error
|
||||
|
||||
To compute the statistical error, you need to perform $M$
|
||||
independent Monte Carlo calculations. You will obtain $M$ different
|
||||
estimates of the energy, which are expected to have a Gaussian
|
||||
distribution by the central limit theorem.
|
||||
|
||||
The estimate of the energy is
|
||||
|
||||
$$
|
||||
E = \frac{1}{M} \sum_{i=1}^M E_M
|
||||
$$
|
||||
|
||||
The variance of the average energies can be computed as
|
||||
|
||||
$$
|
||||
\sigma^2 = \frac{1}{M-1} \sum_{i=1}^{M} (E_M - E)^2
|
||||
$$
|
||||
|
||||
And the confidence interval is given by
|
||||
|
||||
$$
|
||||
E \pm \delta E, \text{ where } \delta E = \frac{\sigma}{\sqrt{M}}
|
||||
$$
|
||||
|
||||
Write a function returning the average and statistical error of an
|
||||
input array.
|
||||
|
||||
#+BEGIN_SRC python :results output
|
||||
def ave_error(arr):
|
||||
M = len(arr)
|
||||
assert (M>1)
|
||||
average = sum(arr)/M
|
||||
variance = 1./(M-1) * sum( [ (x - average)**2 for x in arr ] )
|
||||
return (average, sqrt(variance/M))
|
||||
#+END_SRC
|
||||
|
||||
#+RESULTS:
|
||||
|
||||
** Uniform sampling in the box
|
||||
|
||||
Write a function to perform a Monte Carlo calculation of the
|
||||
average energy. At every Monte Carlo step,
|
||||
|
||||
- Draw 3 uniform random numbers in the interval $(-5,-5,-5) \le
|
||||
(x,y,z) \le (5,5,5)$
|
||||
- Compute $\Psi^2 \times E_L$ at this point and accumulate the
|
||||
result in E
|
||||
- Compute $\Psi^2$ at this point and accumulate the result in N
|
||||
|
||||
Once all the steps have been computed, return the average energy
|
||||
computed on the Monte Carlo calculation.
|
||||
|
||||
Then, write a loop to perform 30 Monte Carlo runs, and compute the
|
||||
average energy and the associated statistical error.
|
||||
|
||||
Compute the energy of the wave function with $a=0.9$.
|
||||
|
||||
#+BEGIN_SRC python
|
||||
def MonteCarlo(a, nmax):
|
||||
E = 0.
|
||||
N = 0.
|
||||
for istep in range(nmax):
|
||||
r = np.random.uniform(-5., 5., (3))
|
||||
w = psi(a,r)
|
||||
w = w*w
|
||||
N += w
|
||||
E += w * e_loc(a,r)
|
||||
return E/N
|
||||
#+END_SRC
|
||||
|
||||
#+BEGIN_SRC python
|
||||
a = 0.9
|
||||
nmax = 100000
|
||||
X = [MonteCarlo(a,nmax) for i in range(30)]
|
||||
E, deltaE = ave_error(X)
|
||||
print(f"E = {E} +/- {deltaE}")
|
||||
#+END_SRC
|
||||
|
||||
#+RESULTS:
|
||||
: E = -0.4952626284319677 +/- 0.0006877988969872546
|
||||
|
||||
** Gaussian sampling
|
||||
|
||||
We will now improve the sampling and allow to sample in the whole
|
||||
3D space, correcting the bias related to the sampling in the box.
|
||||
|
||||
Instead of drawing uniform random numbers, we will draw Gaussian
|
||||
random numbers centered on 0 and with a variance of 1. Now the
|
||||
equation for the energy is changed into
|
||||
|
||||
\[
|
||||
E = \frac{\int P(\mathbf{r}) \frac{\left[\Psi(\mathbf{r})\right]^2}{P(\mathbf{r})}\, \frac{\hat{H} \Psi(\mathbf{r})}{\Psi(\mathbf{r})}\,d\mathbf{r}}{\int P(\mathbf{r}) \frac{\left[\Psi(\mathbf{r}) \right]^2}{P(\mathbf{r})} d\mathbf{r}}
|
||||
\]
|
||||
with
|
||||
\[
|
||||
P(\mathbf{r}) = \frac{1}{(2 \pi)^{3/2}}\exp\left( -\frac{\mathbf{r}^2}{2} \right)
|
||||
\]
|
||||
|
||||
As the coordinates are drawn with probability $P(\mathbf{r})$, the
|
||||
average energy can be computed as
|
||||
|
||||
$$
|
||||
E \approx \frac{\sum_i w_i E_L(\mathbf{r}_i)}{\sum_i w_i}, \;\;
|
||||
w_i = \frac{\left[\Psi(\mathbf{r}_i)\right]^2}{P(\mathbf{r})} \delta x\, \delta y\, \delta z
|
||||
$$
|
||||
|
||||
#+BEGIN_SRC python
|
||||
norm_gauss = 1./(2.*np.pi)**(1.5)
|
||||
def gaussian(r):
|
||||
return norm_gauss * np.exp(-np.dot(r,r)*0.5)
|
||||
#+END_SRC
|
||||
|
||||
#+RESULTS:
|
||||
|
||||
#+BEGIN_SRC python
|
||||
def MonteCarlo(a,nmax):
|
||||
E = 0.
|
||||
N = 0.
|
||||
for istep in range(nmax):
|
||||
r = np.random.normal(loc=0., scale=1.0, size=(3))
|
||||
w = psi(a,r)
|
||||
w = w*w / gaussian(r)
|
||||
N += w
|
||||
E += w * e_loc(a,r)
|
||||
return E/N
|
||||
#+END_SRC
|
||||
|
||||
#+RESULTS:
|
||||
|
||||
#+BEGIN_SRC python :results output
|
||||
a = 0.9
|
||||
nmax = 100000
|
||||
X = [MonteCarlo(a,nmax) for i in range(30)]
|
||||
E, deltaE = ave_error(X)
|
||||
print(f"E = {E} +/- {deltaE}")
|
||||
#+END_SRC
|
||||
|
||||
#+RESULTS:
|
||||
: E = -0.4952488228427792 +/- 0.00011913174676540714
|
||||
|
||||
** Sampling with $\Psi^2$
|
||||
|
||||
We will now use the square of the wave function to make the sampling:
|
||||
|
||||
\[
|
||||
P(\mathbf{r}) = \left[\Psi(\mathbf{r})\right]^2
|
||||
\]
|
||||
|
||||
Now, the expression for the energy will be simplified to the
|
||||
average of the local energies, each with a weight of 1.
|
||||
|
||||
$$
|
||||
E \approx \frac{1}{M}\sum_{i=1}^M E_L(\mathbf{r}_i)}
|
||||
$$
|
||||
|
||||
To generate the probability density $\Psi^2$, we can use a drifted
|
||||
diffusion scheme:
|
||||
|
||||
\[
|
||||
\mathbf{r}_{n+1} = \mathbf{r}_{n} + \tau \frac{\nabla
|
||||
\Psi(r)}{\Psi(r)} + \eta \sqrt{\tau}
|
||||
\]
|
||||
|
||||
where $\eta$ is a normally-distributed Gaussian random number.
|
||||
|
||||
|
||||
First, write a function to compute the drift vector $\frac{\nabla \Psi(\mathbf{r})}{\Psi(\mathbf{r})}$.
|
||||
|
||||
#+BEGIN_SRC python
|
||||
def drift(a,r):
|
||||
ar_inv = -a/np.sqrt(np.dot(r,r))
|
||||
return r * ar_inv
|
||||
#+END_SRC
|
||||
|
||||
#+RESULTS:
|
||||
|
||||
#+BEGIN_SRC python
|
||||
def MonteCarlo(a,tau,nmax):
|
||||
E = 0.
|
||||
N = 0.
|
||||
sq_tau = sqrt(tau)
|
||||
r_old = np.random.normal(loc=0., scale=1.0, size=(3))
|
||||
d_old = drift(a,r_old)
|
||||
d2_old = np.dot(d_old,d_old)
|
||||
psi_old = psi(a,r_old)
|
||||
for istep in range(nmax):
|
||||
eta = np.random.normal(loc=0., scale=1.0, size=(3))
|
||||
r_new = r_old + tau * d_old + sq_tau * eta
|
||||
d_new = drift(a,r_new)
|
||||
d2_new = np.dot(d_new,d_new)
|
||||
psi_new = psi(a,r_new)
|
||||
# Metropolis
|
||||
prod = np.dot((d_new + d_old), (r_new - r_old))
|
||||
argexpo = 0.5 * (d2_new - d2_old)*tau + prod
|
||||
q = psi_new / psi_old
|
||||
q = np.exp(-argexpo) * q*q
|
||||
if np.random.uniform() < q:
|
||||
r_old = r_new
|
||||
d_old = d_new
|
||||
d2_old = d2_new
|
||||
psi_old = psi_new
|
||||
N += 1.
|
||||
E += e_loc(a,r_old)
|
||||
return E/N
|
||||
#+END_SRC
|
||||
|
||||
#+RESULTS:
|
||||
|
||||
#+BEGIN_SRC python :results output
|
||||
nmax = 100000
|
||||
tau = 0.1
|
||||
X = [MonteCarlo(a,tau,nmax) for i in range(30)]
|
||||
E, deltaE = ave_error(X)
|
||||
print(f"E = {E} +/- {deltaE}")
|
||||
#+END_SRC
|
||||
|
||||
#+RESULTS:
|
||||
: E = -0.4951783346213532 +/- 0.00022067316984271938
|
||||
|
||||
|
||||
* Diffusion Monte Carlo
|
||||
|
||||
We will now consider the H_2 molecule in a minimal basis composed of the
|
||||
$1s$ orbitals of the hydrogen atoms:
|
||||
|
||||
$$
|
||||
\Psi(\mathbf{r}_1, \mathbf{r}_2) =
|
||||
\exp(-(\mathbf{r}_1 - \mathbf{R}_A)) +
|
||||
$$
|
||||
where $\mathbf{r}_1$ and $\mathbf{r}_2$ denote the electron
|
||||
coordinates and \mathbf{R}_A$ and $\mathbf{R}_B$ the coordinates of
|
||||
the nuclei.
|
||||
|
||||
|
39
energy_hydrogen.f90
Normal file
39
energy_hydrogen.f90
Normal file
@ -0,0 +1,39 @@
|
||||
program energy_hydrogen
|
||||
implicit none
|
||||
double precision, external :: e_loc, psi
|
||||
double precision :: x(50), w, delta, energy, dx, r(3), a(6), norm
|
||||
integer :: i, k, l, j
|
||||
|
||||
a = (/ 0.1d0, 0.2d0, 0.5d0, 1.d0, 1.5d0, 2.d0 /)
|
||||
|
||||
dx = 10.d0/(size(x)-1)
|
||||
do i=1,size(x)
|
||||
x(i) = -5.d0 + (i-1)*dx
|
||||
end do
|
||||
|
||||
delta = dx**3
|
||||
|
||||
r(:) = 0.d0
|
||||
|
||||
do j=1,size(a)
|
||||
energy = 0.d0
|
||||
norm = 0.d0
|
||||
do i=1,size(x)
|
||||
r(1) = x(i)
|
||||
do k=1,size(x)
|
||||
r(2) = x(k)
|
||||
do l=1,size(x)
|
||||
r(3) = x(l)
|
||||
w = psi(a(j),r)
|
||||
w = w * w * delta
|
||||
|
||||
energy = energy + w * e_loc(a(j), r)
|
||||
norm = norm + w
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
energy = energy / norm
|
||||
print *, 'a = ', a(j), ' E = ', energy
|
||||
end do
|
||||
|
||||
end program energy_hydrogen
|
23
energy_hydrogen.py
Normal file
23
energy_hydrogen.py
Normal file
@ -0,0 +1,23 @@
|
||||
import numpy as np
|
||||
from hydrogen import e_loc, psi
|
||||
|
||||
interval = np.linspace(-5,5,num=50)
|
||||
delta = (interval[1]-interval[0])**3
|
||||
|
||||
r = np.array([0.,0.,0.])
|
||||
|
||||
for a in [0.1, 0.2, 0.5, 0.9, 1., 1.5, 2.]:
|
||||
E = 0.
|
||||
norm = 0.
|
||||
for x in interval:
|
||||
r[0] = x
|
||||
for y in interval:
|
||||
r[1] = y
|
||||
for z in interval:
|
||||
r[2] = z
|
||||
w = psi(a,r)
|
||||
w = w * w * delta
|
||||
E += w * e_loc(a,r)
|
||||
norm += w
|
||||
E = E / norm
|
||||
print(f"a = {a} \t E = {E}")
|
25
hydrogen.f90
Normal file
25
hydrogen.f90
Normal file
@ -0,0 +1,25 @@
|
||||
double precision function potential(r)
|
||||
implicit none
|
||||
double precision, intent(in) :: r(3)
|
||||
potential = -1.d0 / dsqrt( r(1)*r(1) + r(2)*r(2) + r(3)*r(3) )
|
||||
end function potential
|
||||
|
||||
double precision function psi(a, r)
|
||||
implicit none
|
||||
double precision, intent(in) :: a, r(3)
|
||||
psi = dexp(-a * dsqrt( r(1)*r(1) + r(2)*r(2) + r(3)*r(3) ))
|
||||
end function psi
|
||||
|
||||
double precision function kinetic(a,r)
|
||||
implicit none
|
||||
double precision, intent(in) :: a, r(3)
|
||||
kinetic = -0.5d0 * (a*a - (2.d0*a) / &
|
||||
dsqrt( r(1)*r(1) + r(2)*r(2) + r(3)*r(3) ) )
|
||||
end function kinetic
|
||||
|
||||
double precision function e_loc(a,r)
|
||||
implicit none
|
||||
double precision, intent(in) :: a, r(3)
|
||||
double precision, external :: kinetic, potential
|
||||
e_loc = kinetic(a,r) + potential(r)
|
||||
end function e_loc
|
13
hydrogen.py
Normal file
13
hydrogen.py
Normal file
@ -0,0 +1,13 @@
|
||||
import numpy as np
|
||||
|
||||
def potential(r):
|
||||
return -1. / np.sqrt(np.dot(r,r))
|
||||
|
||||
def psi(a, r):
|
||||
return np.exp(-a*np.sqrt(np.dot(r,r)))
|
||||
|
||||
def kinetic(a,r):
|
||||
return -0.5 * (a**2 - (2.*a)/np.sqrt(np.dot(r,r)))
|
||||
|
||||
def e_loc(a,r):
|
||||
return kinetic(a,r) + potential(r)
|
28
plot_hydrogen.f90
Normal file
28
plot_hydrogen.f90
Normal file
@ -0,0 +1,28 @@
|
||||
program plot
|
||||
implicit none
|
||||
double precision, external :: e_loc
|
||||
|
||||
double precision :: x(50), energy, dx, r(3), a(6)
|
||||
integer :: i, j
|
||||
|
||||
a = (/ 0.1d0, 0.2d0, 0.5d0, 1.d0, 1.5d0, 2.d0 /)
|
||||
|
||||
dx = 10.d0/(size(x)-1)
|
||||
do i=1,size(x)
|
||||
x(i) = -5.d0 + (i-1)*dx
|
||||
end do
|
||||
|
||||
r(:) = 0.d0
|
||||
|
||||
do j=1,size(a)
|
||||
print *, '# a=', a(j)
|
||||
do i=1,size(x)
|
||||
r(1) = x(i)
|
||||
energy = e_loc( a(j), r )
|
||||
print *, x(i), energy
|
||||
end do
|
||||
print *, ''
|
||||
print *, ''
|
||||
end do
|
||||
|
||||
end program plot
|
21
plot_hydrogen.py
Normal file
21
plot_hydrogen.py
Normal file
@ -0,0 +1,21 @@
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
from hydrogen import e_loc
|
||||
|
||||
x=np.linspace(-5,5)
|
||||
|
||||
def make_array(a):
|
||||
y=np.array([ e_loc(a, np.array([t,0.,0.]) ) for t in x])
|
||||
return y
|
||||
|
||||
plt.figure(figsize=(10,5))
|
||||
for a in [0.1, 0.2, 0.5, 1., 1.5, 2.]:
|
||||
y = make_array(a)
|
||||
plt.plot(x,y,label=f"a={a}")
|
||||
|
||||
plt.tight_layout()
|
||||
|
||||
plt.legend()
|
||||
|
||||
plt.savefig("plot_py.png")
|
BIN
plot_py.png
Normal file
BIN
plot_py.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 40 KiB |
57
variance_hydrogen.f90
Normal file
57
variance_hydrogen.f90
Normal file
@ -0,0 +1,57 @@
|
||||
program variance_hydrogen
|
||||
implicit none
|
||||
double precision, external :: e_loc, psi
|
||||
double precision :: x(50), w, delta, energy, dx, r(3), a(6), norm, s2
|
||||
integer :: i, k, l, j
|
||||
|
||||
a = (/ 0.1d0, 0.2d0, 0.5d0, 1.d0, 1.5d0, 2.d0 /)
|
||||
|
||||
dx = 10.d0/(size(x)-1)
|
||||
do i=1,size(x)
|
||||
x(i) = -5.d0 + (i-1)*dx
|
||||
end do
|
||||
|
||||
delta = dx**3
|
||||
|
||||
r(:) = 0.d0
|
||||
|
||||
do j=1,size(a)
|
||||
energy = 0.d0
|
||||
norm = 0.d0
|
||||
do i=1,size(x)
|
||||
r(1) = x(i)
|
||||
do k=1,size(x)
|
||||
r(2) = x(k)
|
||||
do l=1,size(x)
|
||||
r(3) = x(l)
|
||||
w = psi(a(j),r)
|
||||
w = w * w * delta
|
||||
|
||||
energy = energy + w * e_loc(a(j), r)
|
||||
norm = norm + w
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
energy = energy / norm
|
||||
|
||||
s2 = 0.d0
|
||||
norm = 0.d0
|
||||
do i=1,size(x)
|
||||
r(1) = x(i)
|
||||
do k=1,size(x)
|
||||
r(2) = x(k)
|
||||
do l=1,size(x)
|
||||
r(3) = x(l)
|
||||
w = psi(a(j),r)
|
||||
w = w * w * delta
|
||||
|
||||
s2 = s2 + w * ( e_loc(a(j), r) - energy )**2
|
||||
norm = norm + w
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
s2 = s2 / norm
|
||||
print *, 'a = ', a(j), ' E = ', energy, ' s2 = ', s2
|
||||
end do
|
||||
|
||||
end program variance_hydrogen
|
36
variance_hydrogen.py
Normal file
36
variance_hydrogen.py
Normal file
@ -0,0 +1,36 @@
|
||||
import numpy as np
|
||||
from hydrogen import e_loc, psi
|
||||
|
||||
interval = np.linspace(-5,5,num=50)
|
||||
delta = (interval[1]-interval[0])**3
|
||||
|
||||
r = np.array([0.,0.,0.])
|
||||
|
||||
for a in [0.1, 0.2, 0.5, 0.9, 1., 1.5, 2.]:
|
||||
E = 0.
|
||||
norm = 0.
|
||||
for x in interval:
|
||||
r[0] = x
|
||||
for y in interval:
|
||||
r[1] = y
|
||||
for z in interval:
|
||||
r[2] = z
|
||||
w = psi(a, r)
|
||||
w = w * w * delta
|
||||
El = e_loc(a, r)
|
||||
E += w * El
|
||||
norm += w
|
||||
E = E / norm
|
||||
s2 = 0.
|
||||
for x in interval:
|
||||
r[0] = x
|
||||
for y in interval:
|
||||
r[1] = y
|
||||
for z in interval:
|
||||
r[2] = z
|
||||
w = psi(a, r)
|
||||
w = w * w * delta
|
||||
El = e_loc(a, r)
|
||||
s2 += w * (El - E)**2
|
||||
s2 = s2 / norm
|
||||
print(f"a = {a} \t E = {E:10.8f} \t \sigma^2 = {s2:10.8f}")
|
Loading…
Reference in New Issue
Block a user