mirror of
https://github.com/TREX-CoE/qmc-lttc.git
synced 2024-09-11 15:28:31 +02:00
Solutions
This commit is contained in:
parent
4583a51266
commit
a2373b198b
249
QMC.org
249
QMC.org
@ -6,9 +6,10 @@
|
||||
#+LATEX_CLASS: report
|
||||
#+LATEX_HEADER_EXTRA: \usepackage{minted}
|
||||
#+HTML_HEAD: <link rel="stylesheet" title="Standard" href="worg.css" type="text/css" />
|
||||
#+OPTIONS: H:2 num:t toc:nil \n:nil @:t ::t |:t ^:t -:t f:t *:t <:t
|
||||
#+OPTIONS: H:4 num:t toc:t \n:nil @:t ::t |:t ^:t -:t f:t *:t <:t
|
||||
#+OPTIONS: TeX:t LaTeX:t skip:nil d:nil todo:t pri:nil tags:not-in-toc
|
||||
#+EXPORT_EXCLUDE_TAGS: solution
|
||||
# EXCLUDE_TAGS: Python solution
|
||||
# EXCLUDE_TAGS: Fortran solution
|
||||
|
||||
#+BEGIN_SRC elisp :output none :exports none
|
||||
(setq org-latex-listings 'minted
|
||||
@ -54,7 +55,7 @@
|
||||
*Note*
|
||||
#+begin_important
|
||||
In Fortran, when you use a double precision constant, don't forget
|
||||
to put d0 as a suffix (for example 2.0d0), or it will be
|
||||
to put ~d0~ as a suffix (for example ~2.0d0~), or it will be
|
||||
interpreted as a single precision value
|
||||
#+end_important
|
||||
|
||||
@ -68,32 +69,31 @@
|
||||
\Psi(\mathbf{r}) = \exp(-a |\mathbf{r}|)
|
||||
$$
|
||||
|
||||
We will first verify that $\Psi$ is an eigenfunction of the Hamiltonian
|
||||
We will first verify that, for a given value of $a$, $\Psi$ is an
|
||||
eigenfunction of the Hamiltonian
|
||||
|
||||
$$
|
||||
\hat{H} = \hat{T} + \hat{V} = - \frac{1}{2} \Delta - \frac{1}{|\mathbf{r}|}
|
||||
$$
|
||||
|
||||
when $a=1$, by checking that $\hat{H}\Psi(\mathbf{r}) = E\Psi(\mathbf{r})$ for
|
||||
all $\mathbf{r}$. We will check that the local energy, defined as
|
||||
To do that, we will check if the local energy, defined as
|
||||
|
||||
$$
|
||||
E_L(\mathbf{r}) = \frac{\hat{H} \Psi(\mathbf{r})}{\Psi(\mathbf{r})},
|
||||
$$
|
||||
|
||||
is constant. We will also see that when $a \ne 1$ the local energy
|
||||
is not constant, so $\hat{H} \Psi \ne E \Psi$.
|
||||
is constant.
|
||||
|
||||
|
||||
The probabilistic /expected value/ of an arbitrary function $f(x)$
|
||||
with respect to a probability density function $p(x)$ is given by
|
||||
|
||||
$$ \langle f \rangle_p = \int_{-\infty}^\infty p(x)\, f(x)\,dx $$.
|
||||
$$ \langle f \rangle_p = \int_{-\infty}^\infty p(x)\, f(x)\,dx. $$
|
||||
|
||||
Recall that a probability density function $p(x)$ is non-negative
|
||||
and integrates to one:
|
||||
|
||||
$$ \int_{-\infty}^\infty p(x)\,dx = 1 $$.
|
||||
$$ \int_{-\infty}^\infty p(x)\,dx = 1. $$
|
||||
|
||||
|
||||
The electronic energy of a system is the expectation value of the
|
||||
@ -114,8 +114,18 @@
|
||||
:header-args:f90: :tangle hydrogen.f90
|
||||
:END:
|
||||
|
||||
Write all the functions of this section in a single file :
|
||||
~hydrogen.py~ if you use Python, or ~hydrogen.f90~ is you use
|
||||
Fortran.
|
||||
|
||||
*** Exercise 1
|
||||
|
||||
#+begin_exercise
|
||||
Find the theoretical value of $a$ for which $\Psi$ is an eigenfunction of $\hat{H}$.
|
||||
#+end_exercise
|
||||
|
||||
*** Exercise 2
|
||||
|
||||
#+begin_exercise
|
||||
Write a function which computes the potential at $\mathbf{r}$.
|
||||
The function accepts a 3-dimensional vector =r= as input arguments
|
||||
@ -127,7 +137,15 @@
|
||||
V(\mathbf{r}) = -\frac{1}{\sqrt{x^2 + y^2 + z^2}}
|
||||
$$
|
||||
|
||||
*Python*
|
||||
**** Python
|
||||
#+BEGIN_SRC python :results none :tangle none
|
||||
import numpy as np
|
||||
|
||||
def potential(r):
|
||||
# TODO
|
||||
#+END_SRC
|
||||
|
||||
**** Python :solution:
|
||||
#+BEGIN_SRC python :results none
|
||||
import numpy as np
|
||||
|
||||
@ -135,8 +153,16 @@ def potential(r):
|
||||
return -1. / np.sqrt(np.dot(r,r))
|
||||
#+END_SRC
|
||||
|
||||
**** Fortran
|
||||
#+BEGIN_SRC f90 :tangle none
|
||||
double precision function potential(r)
|
||||
implicit none
|
||||
double precision, intent(in) :: r(3)
|
||||
! TODO
|
||||
end function potential
|
||||
#+END_SRC
|
||||
|
||||
*Fortran*
|
||||
**** Fortran :solution:
|
||||
#+BEGIN_SRC f90
|
||||
double precision function potential(r)
|
||||
implicit none
|
||||
@ -145,7 +171,7 @@ double precision function potential(r)
|
||||
end function potential
|
||||
#+END_SRC
|
||||
|
||||
*** Exercise 2
|
||||
*** Exercise 3
|
||||
#+begin_exercise
|
||||
Write a function which computes the wave function at $\mathbf{r}$.
|
||||
The function accepts a scalar =a= and a 3-dimensional vector =r= as
|
||||
@ -153,13 +179,28 @@ end function potential
|
||||
#+end_exercise
|
||||
|
||||
|
||||
*Python*
|
||||
**** Python
|
||||
#+BEGIN_SRC python :results none
|
||||
def psi(a, r):
|
||||
# TODO
|
||||
#+END_SRC
|
||||
|
||||
**** Python :solution:
|
||||
#+BEGIN_SRC python :results none
|
||||
def psi(a, r):
|
||||
return np.exp(-a*np.sqrt(np.dot(r,r)))
|
||||
#+END_SRC
|
||||
|
||||
*Fortran*
|
||||
**** Fortran
|
||||
#+BEGIN_SRC f90
|
||||
double precision function psi(a, r)
|
||||
implicit none
|
||||
double precision, intent(in) :: a, r(3)
|
||||
! TODO
|
||||
end function psi
|
||||
#+END_SRC
|
||||
|
||||
**** Fortran :solution:
|
||||
#+BEGIN_SRC f90
|
||||
double precision function psi(a, r)
|
||||
implicit none
|
||||
@ -168,7 +209,7 @@ double precision function psi(a, r)
|
||||
end function psi
|
||||
#+END_SRC
|
||||
|
||||
*** Exercise 3
|
||||
*** Exercise 4
|
||||
#+begin_exercise
|
||||
Write a function which computes the local kinetic energy at $\mathbf{r}$.
|
||||
The function accepts =a= and =r= as input arguments and returns the
|
||||
@ -205,13 +246,28 @@ end function psi
|
||||
-\frac{1}{2} \frac{\Delta \Psi}{\Psi} (\mathbf{r}) = -\frac{1}{2}\left(a^2 - \frac{2a}{\mathbf{|r|}} \right)
|
||||
$$
|
||||
|
||||
*Python*
|
||||
**** Python
|
||||
#+BEGIN_SRC python :results none
|
||||
def kinetic(a,r):
|
||||
# TODO
|
||||
#+END_SRC
|
||||
|
||||
**** Python :solution:
|
||||
#+BEGIN_SRC python :results none
|
||||
def kinetic(a,r):
|
||||
return -0.5 * (a**2 - (2.*a)/np.sqrt(np.dot(r,r)))
|
||||
#+END_SRC
|
||||
|
||||
*Fortran*
|
||||
**** Fortran
|
||||
#+BEGIN_SRC f90
|
||||
double precision function kinetic(a,r)
|
||||
implicit none
|
||||
double precision, intent(in) :: a, r(3)
|
||||
! TODO
|
||||
end function kinetic
|
||||
#+END_SRC
|
||||
|
||||
**** Fortran :solution:
|
||||
#+BEGIN_SRC f90
|
||||
double precision function kinetic(a,r)
|
||||
implicit none
|
||||
@ -221,11 +277,12 @@ double precision function kinetic(a,r)
|
||||
end function kinetic
|
||||
#+END_SRC
|
||||
|
||||
*** Exercise 4
|
||||
*** Exercise 5
|
||||
#+begin_exercise
|
||||
Write a function which computes the local energy at $\mathbf{r}$.
|
||||
The function accepts =x,y,z= as input arguments and returns the
|
||||
local energy.
|
||||
Write a function which computes the local energy at $\mathbf{r}$,
|
||||
using the previously defined functions.
|
||||
The function accepts =a= and =r= as input arguments and returns the
|
||||
local kinetic energy.
|
||||
#+end_exercise
|
||||
|
||||
$$
|
||||
@ -233,13 +290,28 @@ end function kinetic
|
||||
$$
|
||||
|
||||
|
||||
*Python*
|
||||
**** Python
|
||||
#+BEGIN_SRC python :results none
|
||||
def e_loc(a,r):
|
||||
#TODO
|
||||
#+END_SRC
|
||||
|
||||
**** Python :solution:
|
||||
#+BEGIN_SRC python :results none
|
||||
def e_loc(a,r):
|
||||
return kinetic(a,r) + potential(r)
|
||||
#+END_SRC
|
||||
|
||||
*Fortran*
|
||||
**** Fortran
|
||||
#+BEGIN_SRC f90
|
||||
double precision function e_loc(a,r)
|
||||
implicit none
|
||||
double precision, intent(in) :: a, r(3)
|
||||
! TODO
|
||||
end function e_loc
|
||||
#+END_SRC
|
||||
|
||||
**** Fortran :solution:
|
||||
#+BEGIN_SRC f90
|
||||
double precision function e_loc(a,r)
|
||||
implicit none
|
||||
@ -254,47 +326,98 @@ end function e_loc
|
||||
:header-args:python: :tangle plot_hydrogen.py
|
||||
:header-args:f90: :tangle plot_hydrogen.f90
|
||||
:END:
|
||||
|
||||
|
||||
*** Exercise
|
||||
#+begin_exercise
|
||||
For multiple values of $a$ (0.1, 0.2, 0.5, 1., 1.5, 2.), plot the
|
||||
local energy along the $x$ axis.
|
||||
local energy along the $x$ axis. In Python, you can use matplotlib
|
||||
for example. In Fortran, it is convenient to write in a text file
|
||||
the values of $x$ and $E_L(\mathbf{r})$ for each point, and use
|
||||
Gnuplot to plot the files.
|
||||
#+end_exercise
|
||||
|
||||
*Python*
|
||||
#+BEGIN_SRC python :results none
|
||||
**** Python
|
||||
#+BEGIN_SRC python :results none
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
from hydrogen import e_loc
|
||||
|
||||
x=np.linspace(-5,5)
|
||||
|
||||
def make_array(a):
|
||||
y=np.array([ e_loc(a, np.array([t,0.,0.]) ) for t in x])
|
||||
return y
|
||||
|
||||
plt.figure(figsize=(10,5))
|
||||
|
||||
# TODO
|
||||
|
||||
plt.tight_layout()
|
||||
plt.legend()
|
||||
plt.savefig("plot_py.png")
|
||||
#+end_src
|
||||
|
||||
**** Python :solution:
|
||||
#+BEGIN_SRC python :results none
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
from hydrogen import e_loc
|
||||
|
||||
x=np.linspace(-5,5)
|
||||
plt.figure(figsize=(10,5))
|
||||
|
||||
for a in [0.1, 0.2, 0.5, 1., 1.5, 2.]:
|
||||
y = make_array(a)
|
||||
y=np.array([ e_loc(a, np.array([t,0.,0.]) ) for t in x])
|
||||
plt.plot(x,y,label=f"a={a}")
|
||||
|
||||
plt.tight_layout()
|
||||
|
||||
plt.legend()
|
||||
|
||||
plt.savefig("plot_py.png")
|
||||
#+end_src
|
||||
#+end_src
|
||||
|
||||
#+RESULTS:
|
||||
#+RESULTS:
|
||||
|
||||
[[./plot_py.png]]
|
||||
[[./plot_py.png]]
|
||||
|
||||
**** Fortran
|
||||
#+begin_src f90
|
||||
program plot
|
||||
implicit none
|
||||
double precision, external :: e_loc
|
||||
|
||||
|
||||
*Fortran*
|
||||
#+begin_src f90
|
||||
double precision :: x(50), dx
|
||||
integer :: i, j
|
||||
|
||||
dx = 10.d0/(size(x)-1)
|
||||
do i=1,size(x)
|
||||
x(i) = -5.d0 + (i-1)*dx
|
||||
end do
|
||||
|
||||
! TODO
|
||||
|
||||
end program plot
|
||||
#+end_src
|
||||
|
||||
To compile and run:
|
||||
|
||||
#+begin_src sh :exports both
|
||||
gfortran hydrogen.f90 plot_hydrogen.f90 -o plot_hydrogen
|
||||
./plot_hydrogen > data
|
||||
#+end_src
|
||||
|
||||
To plot the data using gnuplot:
|
||||
|
||||
#+begin_src gnuplot :file plot.png :exports both
|
||||
set grid
|
||||
set xrange [-5:5]
|
||||
set yrange [-2:1]
|
||||
plot './data' index 0 using 1:2 with lines title 'a=0.1', \
|
||||
'./data' index 1 using 1:2 with lines title 'a=0.2', \
|
||||
'./data' index 2 using 1:2 with lines title 'a=0.5', \
|
||||
'./data' index 3 using 1:2 with lines title 'a=1.0', \
|
||||
'./data' index 4 using 1:2 with lines title 'a=1.5', \
|
||||
'./data' index 5 using 1:2 with lines title 'a=2.0'
|
||||
#+end_src
|
||||
|
||||
**** Fortran :solution:
|
||||
#+begin_src f90
|
||||
program plot
|
||||
implicit none
|
||||
double precision, external :: e_loc
|
||||
@ -323,20 +446,20 @@ program plot
|
||||
end do
|
||||
|
||||
end program plot
|
||||
#+end_src
|
||||
#+end_src
|
||||
|
||||
To compile and run:
|
||||
To compile and run:
|
||||
|
||||
#+begin_src sh :exports both
|
||||
#+begin_src sh :exports both
|
||||
gfortran hydrogen.f90 plot_hydrogen.f90 -o plot_hydrogen
|
||||
./plot_hydrogen > data
|
||||
#+end_src
|
||||
#+end_src
|
||||
|
||||
#+RESULTS:
|
||||
#+RESULTS:
|
||||
|
||||
To plot the data using gnuplot:
|
||||
To plot the data using gnuplot:
|
||||
|
||||
#+begin_src gnuplot :file plot.png :exports both
|
||||
#+begin_src gnuplot :file plot.png :exports both
|
||||
set grid
|
||||
set xrange [-5:5]
|
||||
set yrange [-2:1]
|
||||
@ -346,12 +469,12 @@ plot './data' index 0 using 1:2 with lines title 'a=0.1', \
|
||||
'./data' index 3 using 1:2 with lines title 'a=1.0', \
|
||||
'./data' index 4 using 1:2 with lines title 'a=1.5', \
|
||||
'./data' index 5 using 1:2 with lines title 'a=2.0'
|
||||
#+end_src
|
||||
#+end_src
|
||||
|
||||
#+RESULTS:
|
||||
[[file:plot.png]]
|
||||
#+RESULTS:
|
||||
[[file:plot.png]]
|
||||
|
||||
** Numerical estimation of the energy
|
||||
** TODO Numerical estimation of the energy
|
||||
:PROPERTIES:
|
||||
:header-args:python: :tangle energy_hydrogen.py
|
||||
:header-args:f90: :tangle energy_hydrogen.f90
|
||||
@ -476,7 +599,7 @@ gfortran hydrogen.f90 energy_hydrogen.f90 -o energy_hydrogen
|
||||
: a = 1.5000000000000000 E = -0.39242967082602065
|
||||
: a = 2.0000000000000000 E = -8.0869806678448772E-002
|
||||
|
||||
** Variance of the local energy
|
||||
** TODO Variance of the local energy
|
||||
:PROPERTIES:
|
||||
:header-args:python: :tangle variance_hydrogen.py
|
||||
:header-args:f90: :tangle variance_hydrogen.f90
|
||||
@ -618,7 +741,7 @@ gfortran hydrogen.f90 variance_hydrogen.f90 -o variance_hydrogen
|
||||
: a = 2.0000000000000000 E = -8.0869806678448772E-002 s2 = 1.8068814270846534
|
||||
|
||||
|
||||
* Variational Monte Carlo
|
||||
* TODO Variational Monte Carlo
|
||||
|
||||
Numerical integration with deterministic methods is very efficient
|
||||
in low dimensions. When the number of dimensions becomes large,
|
||||
@ -629,7 +752,7 @@ gfortran hydrogen.f90 variance_hydrogen.f90 -o variance_hydrogen
|
||||
to the discretization of space, and compute a statistical confidence
|
||||
interval.
|
||||
|
||||
** Computation of the statistical error
|
||||
** TODO Computation of the statistical error
|
||||
:PROPERTIES:
|
||||
:header-args:python: :tangle qmc_stats.py
|
||||
:header-args:f90: :tangle qmc_stats.f90
|
||||
@ -694,7 +817,7 @@ subroutine ave_error(x,n,ave,err)
|
||||
end subroutine ave_error
|
||||
#+END_SRC
|
||||
|
||||
** Uniform sampling in the box
|
||||
** TODO Uniform sampling in the box
|
||||
:PROPERTIES:
|
||||
:header-args:python: :tangle qmc_uniform.py
|
||||
:header-args:f90: :tangle qmc_uniform.f90
|
||||
@ -816,7 +939,7 @@ gfortran hydrogen.f90 qmc_stats.f90 qmc_uniform.f90 -o qmc_uniform
|
||||
#+RESULTS:
|
||||
: E = -0.49588321986667677 +/- 7.1758863546737969E-004
|
||||
|
||||
** Metropolis sampling with $\Psi^2$
|
||||
** TODO Metropolis sampling with $\Psi^2$
|
||||
:PROPERTIES:
|
||||
:header-args:python: :tangle qmc_metropolis.py
|
||||
:header-args:f90: :tangle qmc_metropolis.f90
|
||||
@ -1000,7 +1123,7 @@ gfortran hydrogen.f90 qmc_stats.f90 qmc_metropolis.f90 -o qmc_metropolis
|
||||
: E = -0.49478505004797046 +/- 2.0493795299184956E-004
|
||||
: A = 0.51737800000000000 +/- 4.1827406733181444E-004
|
||||
|
||||
** Gaussian random number generator
|
||||
** TODO Gaussian random number generator
|
||||
|
||||
To obtain Gaussian-distributed random numbers, you can apply the
|
||||
[[https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform][Box Muller transform]] to uniform random numbers:
|
||||
@ -1045,7 +1168,7 @@ subroutine random_gauss(z,n)
|
||||
end subroutine random_gauss
|
||||
#+END_SRC
|
||||
|
||||
** Generalized Metropolis algorithm
|
||||
** TODO Generalized Metropolis algorithm
|
||||
:PROPERTIES:
|
||||
:header-args:python: :tangle vmc_metropolis.py
|
||||
:header-args:f90: :tangle vmc_metropolis.f90
|
||||
@ -1290,9 +1413,9 @@ gfortran hydrogen.f90 qmc_stats.f90 vmc_metropolis.f90 -o vmc_metropolis
|
||||
:header-args:f90: :tangle dmc.f90
|
||||
:END:
|
||||
|
||||
** Hydrogen atom
|
||||
** TODO Hydrogen atom
|
||||
|
||||
**** Exercise
|
||||
*** Exercise
|
||||
|
||||
#+begin_exercise
|
||||
Modify the Metropolis VMC program to introduce the PDMC weight.
|
||||
@ -1439,7 +1562,7 @@ gfortran hydrogen.f90 qmc_stats.f90 vmc_metropolis.f90 -o vmc_metropolis
|
||||
: A = 0.78861366666666655 +/- 3.5096729498002445E-004
|
||||
|
||||
|
||||
** Dihydrogen
|
||||
** TODO Dihydrogen
|
||||
|
||||
We will now consider the H_2 molecule in a minimal basis composed of the
|
||||
$1s$ orbitals of the hydrogen atoms:
|
||||
|
Loading…
Reference in New Issue
Block a user