mirror of
https://github.com/TREX-CoE/qmc-lttc.git
synced 2024-09-11 15:28:31 +02:00
Fokker-Planck
This commit is contained in:
parent
45bdaf2d41
commit
cb6ceeb797
346
QMC.org
346
QMC.org
@ -1,8 +1,13 @@
|
||||
#+TITLE: Quantum Monte Carlo
|
||||
#+AUTHOR: Anthony Scemama, Claudia Filippi
|
||||
#+SETUPFILE: https://fniessen.github.io/org-html-themes/org/theme-readtheorg.setup
|
||||
# SETUPFILE: https://fniessen.github.io/org-html-themes/org/theme-readtheorg.setup
|
||||
# SETUPFILE: https://fniessen.github.io/org-html-themes/org/theme-bigblow.setup
|
||||
#+STARTUP: latexpreview
|
||||
|
||||
#+HTML_HEAD: <link rel="stylesheet" title="Standard" href="https://orgmode.org/worg/style/worg.css" type="text/css" />
|
||||
#+HTML_HEAD: <link rel="alternate stylesheet" title="Zenburn" href="https://orgmode.org/worg/style/worg-zenburn.css" type="text/css" />
|
||||
#+HTML_HEAD: <link rel="alternate stylesheet" title="Classic" href="https://orgmode.org/worg/style/worg-classic.css" type="text/css" />
|
||||
|
||||
|
||||
* Introduction
|
||||
|
||||
@ -14,10 +19,17 @@
|
||||
computes a statistical estimate of the expectation value of the energy
|
||||
associated with a given wave function.
|
||||
Finally, we introduce the diffusion Monte Carlo (DMC) method which
|
||||
gives the exact energy of the H$_2$ molecule.
|
||||
gives the exact energy of the $H_2$ molecule.
|
||||
|
||||
Code examples will be given in Python and Fortran. Whatever language
|
||||
can be chosen.
|
||||
|
||||
We consider the stationary solution of the Schrödinger equation, so
|
||||
the wave functions considered here are real: for an $N$ electron
|
||||
system where the electrons move in the 3-dimensional space,
|
||||
$\Psi : \mathbb{R}^{3N} \rightarrow \mathbb{R}$. In addition, $\Psi$
|
||||
is defined everywhere, continuous and infinitely differentiable.
|
||||
|
||||
** Python
|
||||
|
||||
** Fortran
|
||||
@ -45,7 +57,7 @@
|
||||
$$
|
||||
|
||||
when $a=1$, by checking that $\hat{H}\Psi(\mathbf{r}) = E\Psi(\mathbf{r})$ for
|
||||
all $\mathbf{r}$: we will check that the local energy, defined as
|
||||
all $\mathbf{r}$. We will check that the local energy, defined as
|
||||
|
||||
$$
|
||||
E_L(\mathbf{r}) = \frac{\hat{H} \Psi(\mathbf{r})}{\Psi(\mathbf{r})},
|
||||
@ -54,6 +66,30 @@
|
||||
is constant.
|
||||
|
||||
|
||||
|
||||
The probabilistic /expected value/ of an arbitrary function $f(x)$
|
||||
with respect to a probability density function $p(x)$ is given by
|
||||
|
||||
$$ \langle f \rangle_p = \int_{-\infty}^\infty p(x)\, f(x)\,dx $$.
|
||||
|
||||
Recall that a probability density function $p(x)$ is non-negative
|
||||
and integrates to one:
|
||||
|
||||
$$ \int_{-\infty}^\infty p(x)\,dx = 1 $$.
|
||||
|
||||
|
||||
The electronic energy of a system is the expectation value of the
|
||||
local energy $E(\mathbf{r})$ with respect to the $3N$-dimensional
|
||||
electron density given by the square of the wave function:
|
||||
|
||||
\begin{eqnarray}
|
||||
E & = & \frac{\langle \Psi| \hat{H} | \Psi\rangle}{\langle \Psi |\Psi \rangle} \\
|
||||
& = & \frac{\int \Psi(\mathbf{r})\, \hat{H} \Psi(\mathbf{r})\, d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}} \\
|
||||
& = & \frac{\int \left[\Psi(\mathbf{r})\right]^2\, \frac{\hat{H} \Psi(\mathbf{r})}{\Psi(\mathbf{r})}\,d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}} \\
|
||||
& = & \frac{\int \left[\Psi(\mathbf{r})\right]^2\, E_L(\mathbf{r})\,d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}}
|
||||
= \langle E_L \rangle_{\Psi^2}
|
||||
\end{eqnarray}
|
||||
|
||||
** Local energy
|
||||
:PROPERTIES:
|
||||
:header-args:python: :tangle hydrogen.py
|
||||
@ -63,9 +99,9 @@
|
||||
The function accepts a 3-dimensional vector =r= as input arguments
|
||||
and returns the potential.
|
||||
|
||||
$\mathbf{r}=\sqrt{x^2 + y^2 + z^2})$, so
|
||||
$\mathbf{r}=\sqrt{x^2 + y^2 + z^2}$, so
|
||||
$$
|
||||
V(x,y,z) = -\frac{1}{\sqrt{x^2 + y^2 + z^2})$
|
||||
V(x,y,z) = -\frac{1}{\sqrt{x^2 + y^2 + z^2}}
|
||||
$$
|
||||
|
||||
#+BEGIN_SRC python :results none
|
||||
@ -175,7 +211,7 @@ double precision function e_loc(a,r)
|
||||
end function e_loc
|
||||
#+END_SRC
|
||||
|
||||
** Plot the local energy along the x axis
|
||||
** Plot of the local energy along the $x$ axis
|
||||
:PROPERTIES:
|
||||
:header-args:python: :tangle plot_hydrogen.py
|
||||
:header-args:f90: :tangle plot_hydrogen.f90
|
||||
@ -184,7 +220,7 @@ end function e_loc
|
||||
For multiple values of $a$ (0.1, 0.2, 0.5, 1., 1.5, 2.), plot the
|
||||
local energy along the $x$ axis.
|
||||
|
||||
#+begin_src python :results output
|
||||
#+BEGIN_SRC python :results none
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
@ -270,72 +306,66 @@ plot './data' index 0 using 1:2 with lines title 'a=0.1', \
|
||||
#+RESULTS:
|
||||
[[file:plot.png]]
|
||||
|
||||
** Compute numerically the average energy
|
||||
** Compute numerically the expectation value of the energy
|
||||
:PROPERTIES:
|
||||
:header-args:python: :tangle energy_hydrogen.py
|
||||
:header-args:f90: :tangle energy_hydrogen.f90
|
||||
:END:
|
||||
|
||||
We want to compute
|
||||
|
||||
\begin{eqnarray}
|
||||
E & = & \frac{\langle \Psi| \hat{H} | \Psi\rangle}{\langle \Psi |\Psi \rangle} \\
|
||||
& = & \frac{\int \Psi(\mathbf{r})\, \hat{H} \Psi(\mathbf{r})\, d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}} \\
|
||||
& = & \frac{\int \left[\Psi(\mathbf{r})\right]^2\, \frac{\hat{H} \Psi(\mathbf{r})}{\Psi(\mathbf{r})}\,d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}}
|
||||
\end{eqnarray}
|
||||
|
||||
If the space is discretized in small volume elements $\delta
|
||||
\mathbf{r}$, this last equation corresponds to a weighted average of
|
||||
the local energy, where the weights are the values of the square of
|
||||
the wave function at $\mathbf{r}$ multiplied by the volume element:
|
||||
\mathbf{r}$, the expression of \langle E_L \rangle_{\Psi^2}$ becomes
|
||||
a weighted average of the local energy, where the weights are the
|
||||
values of the probability density at $\mathbf{r}$ multiplied
|
||||
by the volume element:
|
||||
|
||||
$$
|
||||
E \approx \frac{\sum_i w_i E_L(\mathbf{r}_i)}{\sum_i w_i}, \;\;
|
||||
\langle E \rangle_{\Psi^2} \approx \frac{\sum_i w_i E_L(\mathbf{r}_i)}{\sum_i w_i}, \;\;
|
||||
w_i = \left[\Psi(\mathbf{r}_i)\right]^2 \delta \mathbf{r}
|
||||
$$
|
||||
|
||||
We now compute an numerical estimate of the energy in a grid of
|
||||
$50\times50\times50$ points in the range $(-5,-5,-5) \le \mathbf{r} \le (5,5,5)$.
|
||||
In this section, we will compute a numerical estimate of the
|
||||
energy in a grid of $50\times50\times50$ points in the range
|
||||
$(-5,-5,-5) \le \mathbf{r} \le (5,5,5)$.
|
||||
|
||||
Note: the energy is biased because:
|
||||
- The energy is evaluated only inside the box
|
||||
- The volume elements are not infinitely small
|
||||
- The volume elements are not infinitely small (discretization error)
|
||||
- The energy is evaluated only inside the box (incompleteness of the space)
|
||||
|
||||
#+BEGIN_SRC python :results output :exports both
|
||||
#+BEGIN_SRC python :results none
|
||||
import numpy as np
|
||||
from hydrogen import e_loc, psi
|
||||
|
||||
interval = np.linspace(-5,5,num=50)
|
||||
delta = (interval[1]-interval[0])**3
|
||||
interval = np.linspace(-5,5,num=50)
|
||||
delta = (interval[1]-interval[0])**3
|
||||
|
||||
r = np.array([0.,0.,0.])
|
||||
r = np.array([0.,0.,0.])
|
||||
|
||||
for a in [0.1, 0.2, 0.5, 0.9, 1., 1.5, 2.]:
|
||||
E = 0.
|
||||
norm = 0.
|
||||
for x in interval:
|
||||
r[0] = x
|
||||
for y in interval:
|
||||
r[1] = y
|
||||
for z in interval:
|
||||
r[2] = z
|
||||
w = psi(a,r)
|
||||
w = w * w * delta
|
||||
E += w * e_loc(a,r)
|
||||
norm += w
|
||||
E = E / norm
|
||||
print(f"a = {a} \t E = {E}")
|
||||
for a in [0.1, 0.2, 0.5, 0.9, 1., 1.5, 2.]:
|
||||
E = 0.
|
||||
norm = 0.
|
||||
for x in interval:
|
||||
r[0] = x
|
||||
for y in interval:
|
||||
r[1] = y
|
||||
for z in interval:
|
||||
r[2] = z
|
||||
w = psi(a,r)
|
||||
w = w * w * delta
|
||||
E += w * e_loc(a,r)
|
||||
norm += w
|
||||
E = E / norm
|
||||
print(f"a = {a} \t E = {E}")
|
||||
|
||||
#+end_src
|
||||
#+end_src
|
||||
|
||||
#+RESULTS:
|
||||
: a = 0.1 E = -0.24518438948809218
|
||||
: a = 0.2 E = -0.26966057967803525
|
||||
: a = 0.5 E = -0.3856357612517407
|
||||
: a = 0.9 E = -0.49435709786716214
|
||||
: a = 1.0 E = -0.5
|
||||
: a = 1.5 E = -0.39242967082602226
|
||||
: a = 2.0 E = -0.08086980667844901
|
||||
#+RESULTS:
|
||||
: a = 0.1 E = -0.24518438948809218
|
||||
: a = 0.2 E = -0.26966057967803525
|
||||
: a = 0.5 E = -0.3856357612517407
|
||||
: a = 0.9 E = -0.49435709786716214
|
||||
: a = 1.0 E = -0.5
|
||||
: a = 1.5 E = -0.39242967082602226
|
||||
: a = 2.0 E = -0.08086980667844901
|
||||
|
||||
|
||||
#+begin_src f90
|
||||
@ -367,7 +397,6 @@ program energy_hydrogen
|
||||
r(3) = x(l)
|
||||
w = psi(a(j),r)
|
||||
w = w * w * delta
|
||||
|
||||
energy = energy + w * e_loc(a(j), r)
|
||||
norm = norm + w
|
||||
end do
|
||||
@ -380,7 +409,7 @@ program energy_hydrogen
|
||||
end program energy_hydrogen
|
||||
#+end_src
|
||||
|
||||
To compile and run:
|
||||
To compile the Fortran and run it:
|
||||
|
||||
#+begin_src sh :results output :exports both
|
||||
gfortran hydrogen.f90 energy_hydrogen.f90 -o energy_hydrogen
|
||||
@ -401,20 +430,23 @@ gfortran hydrogen.f90 energy_hydrogen.f90 -o energy_hydrogen
|
||||
:header-args:f90: :tangle variance_hydrogen.f90
|
||||
:END:
|
||||
|
||||
The variance of the local energy measures the magnitude of the
|
||||
fluctuations of the local energy around the average. If the local
|
||||
energy is constant (i.e. $\Psi$ is an eigenfunction of $\hat{H}$)
|
||||
the variance is zero.
|
||||
The variance of the local energy is a functional of $\Psi$
|
||||
which measures the magnitude of the fluctuations of the local
|
||||
energy associated with $\Psi$ around the average:
|
||||
|
||||
$$
|
||||
\sigma^2(E_L) = \frac{\int \left[\Psi(\mathbf{r})\right]^2\, \left[
|
||||
E_L(\mathbf{r}) - E \right]^2 \, d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}}
|
||||
$$
|
||||
|
||||
If the local energy is constant (i.e. $\Psi$ is an eigenfunction of
|
||||
$\hat{H}$) the variance is zero, so the variance of the local
|
||||
energy can be used as a measure of the quality of a wave function.
|
||||
|
||||
Compute a numerical estimate of the variance of the local energy
|
||||
in a grid of $50\times50\times50$ points in the range $(-5,-5,-5) \le \mathbf{r} \le (5,5,5)$.
|
||||
|
||||
#+BEGIN_SRC python :results output :exports both
|
||||
#+begin_src python :results none
|
||||
import numpy as np
|
||||
from hydrogen import e_loc, psi
|
||||
|
||||
@ -451,7 +483,6 @@ for a in [0.1, 0.2, 0.5, 0.9, 1., 1.5, 2.]:
|
||||
s2 += w * (El - E)**2
|
||||
s2 = s2 / norm
|
||||
print(f"a = {a} \t E = {E:10.8f} \t \sigma^2 = {s2:10.8f}")
|
||||
|
||||
#+end_src
|
||||
|
||||
#+RESULTS:
|
||||
@ -541,6 +572,8 @@ gfortran hydrogen.f90 variance_hydrogen.f90 -o variance_hydrogen
|
||||
|
||||
* Variational Monte Carlo
|
||||
|
||||
Numerical integration with deterministic methods is very efficient
|
||||
in low dimensions. When the number of dimensions becomes larger than
|
||||
Instead of computing the average energy as a numerical integration
|
||||
on a grid, we will do a Monte Carlo sampling, which is an extremely
|
||||
efficient method to compute integrals when the number of dimensions is
|
||||
@ -582,7 +615,7 @@ gfortran hydrogen.f90 variance_hydrogen.f90 -o variance_hydrogen
|
||||
Write a function returning the average and statistical error of an
|
||||
input array.
|
||||
|
||||
#+BEGIN_SRC python
|
||||
#+BEGIN_SRC python :results none
|
||||
from math import sqrt
|
||||
def ave_error(arr):
|
||||
M = len(arr)
|
||||
@ -638,23 +671,23 @@ end subroutine ave_error
|
||||
from hydrogen import *
|
||||
from qmc_stats import *
|
||||
|
||||
def MonteCarlo(a, nmax):
|
||||
E = 0.
|
||||
N = 0.
|
||||
for istep in range(nmax):
|
||||
r = np.random.uniform(-5., 5., (3))
|
||||
w = psi(a,r)
|
||||
w = w*w
|
||||
N += w
|
||||
E += w * e_loc(a,r)
|
||||
return E/N
|
||||
def MonteCarlo(a, nmax):
|
||||
E = 0.
|
||||
N = 0.
|
||||
for istep in range(nmax):
|
||||
r = np.random.uniform(-5., 5., (3))
|
||||
w = psi(a,r)
|
||||
w = w*w
|
||||
N += w
|
||||
E += w * e_loc(a,r)
|
||||
return E/N
|
||||
|
||||
a = 0.9
|
||||
nmax = 100000
|
||||
X = [MonteCarlo(a,nmax) for i in range(30)]
|
||||
E, deltaE = ave_error(X)
|
||||
print(f"E = {E} +/- {deltaE}")
|
||||
#+END_SRC
|
||||
a = 0.9
|
||||
nmax = 100000
|
||||
X = [MonteCarlo(a,nmax) for i in range(30)]
|
||||
E, deltaE = ave_error(X)
|
||||
print(f"E = {E} +/- {deltaE}")
|
||||
#+END_SRC
|
||||
|
||||
#+RESULTS:
|
||||
: E = -0.4956255109300764 +/- 0.0007082875482711226
|
||||
@ -868,7 +901,12 @@ gfortran hydrogen.f90 qmc_stats.f90 qmc_gaussian.f90 -o qmc_gaussian
|
||||
|
||||
#+RESULTS:
|
||||
: E = -0.49606057056767766 +/- 1.3918807547836872E-004
|
||||
|
||||
** Sampling with $\Psi^2$
|
||||
:PROPERTIES:
|
||||
:header-args:python: :tangle vmc.py
|
||||
:header-args:f90: :tangle vmc.f90
|
||||
:END:
|
||||
|
||||
We will now use the square of the wave function to make the sampling:
|
||||
|
||||
@ -876,19 +914,79 @@ gfortran hydrogen.f90 qmc_stats.f90 qmc_gaussian.f90 -o qmc_gaussian
|
||||
P(\mathbf{r}) = \left[\Psi(\mathbf{r})\right]^2
|
||||
\]
|
||||
|
||||
Now, the expression for the energy will be simplified to the
|
||||
average of the local energies, each with a weight of 1.
|
||||
The expression for the energy will be simplified to the average of
|
||||
the local energies, each with a weight of 1.
|
||||
|
||||
$$
|
||||
E \approx \frac{1}{M}\sum_{i=1}^M E_L(\mathbf{r}_i)}
|
||||
E \approx \frac{1}{M}\sum_{i=1}^M E_L(\mathbf{r}_i)
|
||||
$$
|
||||
|
||||
To generate the probability density $\Psi^2$, we can use a drifted
|
||||
diffusion scheme:
|
||||
To generate the probability density $\Psi^2$, we consider a
|
||||
diffusion process characterized by a time-dependent density
|
||||
$[\Psi(\mathbf{r},t)]^2$, which obeys the Fokker-Planck equation:
|
||||
|
||||
\[
|
||||
\frac{\partial \Psi^2}{\partial t} = \sum_i D
|
||||
\frac{\partial}{\partial \mathbf{r}_i} \left(
|
||||
\frac{\partial}{\partial \mathbf{r}_i} - F_i(\mathbf{r}) \right)
|
||||
[\Psi(\mathbf{r},t)]^2.
|
||||
\]
|
||||
|
||||
$D$ is the diffusion constant and $F_i$ is the i-th component of a
|
||||
drift velocity caused by an external potential. For a stationary
|
||||
density, \( \frac{\partial \Psi^2}{\partial t} = 0 \), so
|
||||
|
||||
\begin{eqnarray*}
|
||||
0 & = & \sum_i D
|
||||
\frac{\partial}{\partial \mathbf{r}_i} \left(
|
||||
\frac{\partial}{\partial \mathbf{r}_i} - F_i(\mathbf{r}) \right)
|
||||
[\Psi(\mathbf{r})]^2 \\
|
||||
0 & = & \sum_i D
|
||||
\frac{\partial}{\partial \mathbf{r}_i} \left(
|
||||
\frac{\partial [\Psi(\mathbf{r})]^2}{\partial \mathbf{r}_i} -
|
||||
F_i(\mathbf{r})\,[\Psi(\mathbf{r})]^2 \right) \\
|
||||
0 & = &
|
||||
\frac{\partial^2 \Psi^2}{\partial \mathbf{r}_i^2} -
|
||||
\frac{\partial F_i }{\partial \mathbf{r}_i}[\Psi(\mathbf{r})]^2 -
|
||||
\frac{\partial \Psi^2}{\partial \mathbf{r}_i} F_i(\mathbf{r})
|
||||
\end{eqnarray*}
|
||||
|
||||
we search for a drift function which satisfies
|
||||
|
||||
\[
|
||||
\frac{\partial^2 \Psi^2}{\partial \mathbf{r}_i^2} =
|
||||
[\Psi(\mathbf{r})]^2 \frac{\partial F_i }{\partial \mathbf{r}_i} +
|
||||
\frac{\partial \Psi^2}{\partial \mathbf{r}_i} F_i(\mathbf{r})
|
||||
\]
|
||||
|
||||
to obtain a second derivative on the left, we need the drift to be
|
||||
of the form
|
||||
\[
|
||||
F_i(\mathbf{r}) = g(\mathbf{r}) \frac{\partial \Psi^2}{\partial \mathbf{r}_i}
|
||||
\]
|
||||
|
||||
\[
|
||||
\frac{\partial^2 \Psi^2}{\partial \mathbf{r}_i^2} =
|
||||
[\Psi(\mathbf{r})]^2 \frac{\partial
|
||||
g(\mathbf{r})}{\partial \mathbf{r}_i}\frac{\partial \Psi^2}{\partial \mathbf{r}_i} +
|
||||
[\Psi(\mathbf{r})]^2 g(\mathbf{r}) \frac{\partial^2
|
||||
\Psi^2}{\partial \mathbf{r}_i^2} +
|
||||
\frac{\partial \Psi^2}{\partial \mathbf{r}_i}
|
||||
g(\mathbf{r}) \frac{\partial \Psi^2}{\partial \mathbf{r}_i}
|
||||
\]
|
||||
|
||||
$g = 1 / \Psi^2$ satisfies this equation, so
|
||||
|
||||
\[
|
||||
F(\mathbf{r}) = \frac{\nabla [\Psi(\mathbf{r})]^2}{[\Psi(\mathbf{r})]^2} = 2 \frac{\nabla
|
||||
\Psi(\mathbf{r})}{\Psi(\mathbf{r})} = 2 \nabla \left( \log \Psi(\mathbf{r}) \right)
|
||||
\]
|
||||
|
||||
following drifted diffusion scheme:
|
||||
|
||||
\[
|
||||
\mathbf{r}_{n+1} = \mathbf{r}_{n} + \tau \frac{\nabla
|
||||
\Psi(r)}{\Psi(r)} + \eta \sqrt{\tau}
|
||||
\Psi(\mathbf{r})}{\Psi(\mathbf{r})} + \eta \sqrt{\tau}
|
||||
\]
|
||||
|
||||
where $\eta$ is a normally-distributed Gaussian random number.
|
||||
@ -902,7 +1000,66 @@ def drift(a,r):
|
||||
return r * ar_inv
|
||||
#+END_SRC
|
||||
|
||||
#+RESULTS:
|
||||
#+BEGIN_SRC f90
|
||||
subroutine drift(a,r,b)
|
||||
implicit none
|
||||
double precision, intent(in) :: a, r(3)
|
||||
double precision, intent(out) :: b(3)
|
||||
double precision :: ar_inv
|
||||
ar_inv = -a / dsqrt(r(1)*r(1) + r(2)*r(2) + r(3)*r(3))
|
||||
b(:) = r(:) * ar_inv
|
||||
end subroutine drift
|
||||
#+END_SRC
|
||||
|
||||
|
||||
Now we can write the Monte Carlo sampling
|
||||
#+BEGIN_SRC f90
|
||||
subroutine variational_montecarlo(a,nmax,energy)
|
||||
implicit none
|
||||
double precision, intent(in) :: a
|
||||
integer , intent(in) :: nmax
|
||||
double precision, intent(out) :: energy
|
||||
|
||||
integer*8 :: istep
|
||||
|
||||
double precision :: norm, r(3), w
|
||||
|
||||
double precision, external :: e_loc, psi, gaussian
|
||||
|
||||
energy = 0.d0
|
||||
norm = 0.d0
|
||||
do istep = 1,nmax
|
||||
call random_gauss(r,3)
|
||||
w = psi(a,r)
|
||||
w = w*w / gaussian(r)
|
||||
norm = norm + w
|
||||
energy = energy + w * e_loc(a,r)
|
||||
end do
|
||||
energy = energy / norm
|
||||
end subroutine variational_montecarlo
|
||||
|
||||
program qmc
|
||||
implicit none
|
||||
double precision, parameter :: a = 0.9
|
||||
integer , parameter :: nmax = 100000
|
||||
integer , parameter :: nruns = 30
|
||||
|
||||
integer :: irun
|
||||
double precision :: X(nruns)
|
||||
double precision :: ave, err
|
||||
|
||||
do irun=1,nruns
|
||||
call gaussian_montecarlo(a,nmax,X(irun))
|
||||
enddo
|
||||
call ave_error(X,nruns,ave,err)
|
||||
print *, 'E = ', ave, '+/-', err
|
||||
end program qmc
|
||||
#+END_SRC
|
||||
|
||||
#+begin_src sh :results output :exports both
|
||||
gfortran hydrogen.f90 qmc_stats.f90 vmc.f90 -o vmc
|
||||
./vmc
|
||||
#+end_src
|
||||
|
||||
#+BEGIN_SRC python
|
||||
def MonteCarlo(a,tau,nmax):
|
||||
@ -932,11 +1089,8 @@ def MonteCarlo(a,tau,nmax):
|
||||
N += 1.
|
||||
E += e_loc(a,r_old)
|
||||
return E/N
|
||||
#+END_SRC
|
||||
|
||||
#+RESULTS:
|
||||
|
||||
#+BEGIN_SRC python :results output
|
||||
nmax = 100000
|
||||
tau = 0.1
|
||||
X = [MonteCarlo(a,tau,nmax) for i in range(30)]
|
||||
@ -950,15 +1104,15 @@ print(f"E = {E} +/- {deltaE}")
|
||||
|
||||
* Diffusion Monte Carlo
|
||||
|
||||
We will now consider the H_2 molecule in a minimal basis composed of the
|
||||
$1s$ orbitals of the hydrogen atoms:
|
||||
We will now consider the H_2 molecule in a minimal basis composed of the
|
||||
$1s$ orbitals of the hydrogen atoms:
|
||||
|
||||
$$
|
||||
\Psi(\mathbf{r}_1, \mathbf{r}_2) =
|
||||
\exp(-(\mathbf{r}_1 - \mathbf{R}_A)) +
|
||||
$$
|
||||
where $\mathbf{r}_1$ and $\mathbf{r}_2$ denote the electron
|
||||
coordinates and \mathbf{R}_A$ and $\mathbf{R}_B$ the coordinates of
|
||||
the nuclei.
|
||||
$$
|
||||
\Psi(\mathbf{r}_1, \mathbf{r}_2) =
|
||||
\exp(-(\mathbf{r}_1 - \mathbf{R}_A)) +
|
||||
$$
|
||||
where $\mathbf{r}_1$ and $\mathbf{r}_2$ denote the electron
|
||||
coordinates and $\mathbf{R}_A$ and $\mathbf{R}_B$ the coordinates of
|
||||
the nuclei.
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user