1
0
mirror of https://github.com/TREX-CoE/qmc-lttc.git synced 2024-09-11 15:28:31 +02:00

OK up to Metropolis

This commit is contained in:
Anthony Scemama 2021-01-26 00:22:37 +01:00
parent f13fb07ed3
commit 336cc911c4
5 changed files with 114 additions and 30 deletions

95
QMC.org
View File

@ -114,6 +114,17 @@
~hydrogen.py~ if you use Python, or ~hydrogen.f90~ is you use
Fortran.
#+begin_note
- When computing a square root in $\mathbb{R}$, *always* make sure
that the argument of the square root is non-negative.
- When you divide, *always* make sure that you will not divide by zero
If a /floating-point exception/ can occur, you should make a test
to catch the error.
#+end_note
#+end_note
*** Exercise 1
#+begin_exercise
@ -146,7 +157,9 @@ def potential(r):
import numpy as np
def potential(r):
return -1. / np.sqrt(np.dot(r,r))
distance = np.sqrt(np.dot(r,r))
assert (distance > 0)
return -1. / distance
#+END_SRC
**** Fortran
@ -163,7 +176,13 @@ end function potential
double precision function potential(r)
implicit none
double precision, intent(in) :: r(3)
potential = -1.d0 / dsqrt( r(1)*r(1) + r(2)*r(2) + r(3)*r(3) )
double precision :: distance
distance = dsqrt( r(1)*r(1) + r(2)*r(2) + r(3)*r(3) )
if (distance > 0.d0) then
potential = -1.d0 / dsqrt( r(1)*r(1) + r(2)*r(2) + r(3)*r(3) )
else
stop 'potential at r=0.d0 diverges'
end if
end function potential
#+END_SRC
@ -173,7 +192,6 @@ end function potential
The function accepts a scalar =a= and a 3-dimensional vector =r= as
input arguments, and returns a scalar.
#+end_exercise
**** Python
#+BEGIN_SRC python :results none :tangle none
@ -251,7 +269,9 @@ def kinetic(a,r):
**** Python :solution:
#+BEGIN_SRC python :results none
def kinetic(a,r):
return -0.5 * (a**2 - (2.*a)/np.sqrt(np.dot(r,r)))
distance = np.sqrt(np.dot(r,r))
assert (distance > 0.)
return -0.5 * (a**2 - (2.*a)/distance)
#+END_SRC
**** Fortran
@ -268,8 +288,13 @@ end function kinetic
double precision function kinetic(a,r)
implicit none
double precision, intent(in) :: a, r(3)
kinetic = -0.5d0 * (a*a - (2.d0*a) / &
dsqrt( r(1)*r(1) + r(2)*r(2) + r(3)*r(3) ) )
double precision :: distance
distance = dsqrt( r(1)*r(1) + r(2)*r(2) + r(3)*r(3) )
if (distance > 0.d0) then
kinetic = -0.5d0 * (a*a - (2.d0*a) / distance)
else
stop 'kinetic energy diverges at r=0'
end if
end function kinetic
#+END_SRC
@ -323,6 +348,11 @@ end function e_loc
:header-args:f90: :tangle plot_hydrogen.f90
:END:
#+begin_note
The potential and the kinetic energy both diverge at $r=0$, so we
choose a grid which does not contain the origin.
#+end_note
*** Exercise
#+begin_exercise
For multiple values of $a$ (0.1, 0.2, 0.5, 1., 1.5, 2.), plot the
@ -833,7 +863,7 @@ gfortran hydrogen.f90 variance_hydrogen.f90 -o variance_hydrogen
: a = 2.0000000000000000 E = -8.0869806678448772E-002 s2 = 1.8068814270846534
* TODO Variational Monte Carlo
* Variational Monte Carlo
Numerical integration with deterministic methods is very efficient
in low dimensions. When the number of dimensions becomes large,
@ -844,7 +874,7 @@ gfortran hydrogen.f90 variance_hydrogen.f90 -o variance_hydrogen
to the discretization of space, and compute a statistical confidence
interval.
** TODO Computation of the statistical error
** Computation of the statistical error
:PROPERTIES:
:header-args:python: :tangle qmc_stats.py
:header-args:f90: :tangle qmc_stats.f90
@ -853,7 +883,7 @@ gfortran hydrogen.f90 variance_hydrogen.f90 -o variance_hydrogen
To compute the statistical error, you need to perform $M$
independent Monte Carlo calculations. You will obtain $M$ different
estimates of the energy, which are expected to have a Gaussian
distribution by the central limit theorem.
distribution according to the [[https://en.wikipedia.org/wiki/Central_limit_theorem][Central Limit Theorem]].
The estimate of the energy is
@ -879,26 +909,51 @@ gfortran hydrogen.f90 variance_hydrogen.f90 -o variance_hydrogen
input array.
#+end_exercise
*Python*
#+BEGIN_SRC python :results none
**** Python
#+BEGIN_SRC python :results none :tangle none
from math import sqrt
def ave_error(arr):
#TODO
return (average, error)
#+END_SRC
**** Python :solution:
#+BEGIN_SRC python :results none
from math import sqrt
def ave_error(arr):
M = len(arr)
assert (M>1)
average = sum(arr)/M
variance = 1./(M-1) * sum( [ (x - average)**2 for x in arr ] )
return (average, sqrt(variance/M))
#+END_SRC
assert(M>0)
if M == 1:
return (arr[0], 0.)
else:
average = sum(arr)/M
variance = 1./(M-1) * sum( [ (x - average)**2 for x in arr ] )
error = sqrt(variance/M)
return (average, error)
#+END_SRC
*Fortran*
#+BEGIN_SRC f90
**** Fortran
#+BEGIN_SRC f90
subroutine ave_error(x,n,ave,err)
implicit none
integer, intent(in) :: n
double precision, intent(in) :: x(n)
double precision, intent(out) :: ave, err
! TODO
end subroutine ave_error
#+END_SRC
**** Fortran :solution:
#+BEGIN_SRC f90
subroutine ave_error(x,n,ave,err)
implicit none
integer, intent(in) :: n
double precision, intent(in) :: x(n)
double precision, intent(out) :: ave, err
double precision :: variance
if (n == 1) then
if (n < 1) then
stop 'n<1 in ave_error'
else if (n == 1) then
ave = x(1)
err = 0.d0
else
@ -907,7 +962,7 @@ subroutine ave_error(x,n,ave,err)
err = dsqrt(variance/dble(n))
endif
end subroutine ave_error
#+END_SRC
#+END_SRC
** TODO Uniform sampling in the box
:PROPERTIES:

View File

@ -1,7 +1,13 @@
double precision function potential(r)
implicit none
double precision, intent(in) :: r(3)
potential = -1.d0 / dsqrt( r(1)*r(1) + r(2)*r(2) + r(3)*r(3) )
double precision :: distance
distance = dsqrt( r(1)*r(1) + r(2)*r(2) + r(3)*r(3) )
if (distance > 0.d0) then
potential = -1.d0 / dsqrt( r(1)*r(1) + r(2)*r(2) + r(3)*r(3) )
else
stop 'potential at r=0.d0 diverges'
end if
end function potential
double precision function psi(a, r)
@ -13,8 +19,13 @@ end function psi
double precision function kinetic(a,r)
implicit none
double precision, intent(in) :: a, r(3)
kinetic = -0.5d0 * (a*a - (2.d0*a) / &
dsqrt( r(1)*r(1) + r(2)*r(2) + r(3)*r(3) ) )
double precision :: distance
distance = dsqrt( r(1)*r(1) + r(2)*r(2) + r(3)*r(3) )
if (distance > 0.d0) then
kinetic = -0.5d0 * (a*a - (2.d0*a) / distance)
else
stop 'kinetic energy diverges at r=0'
end if
end function kinetic
double precision function e_loc(a,r)

View File

@ -1,13 +1,17 @@
import numpy as np
def potential(r):
return -1. / np.sqrt(np.dot(r,r))
distance = np.sqrt(np.dot(r,r))
assert (distance > 0)
return -1. / distance
def psi(a, r):
return np.exp(-a*np.sqrt(np.dot(r,r)))
def kinetic(a,r):
return -0.5 * (a**2 - (2.*a)/np.sqrt(np.dot(r,r)))
distance = np.sqrt(np.dot(r,r))
assert (distance > 0.)
return -0.5 * (a**2 - (2.*a)/distance)
def e_loc(a,r):
return kinetic(a,r) + potential(r)

View File

@ -1,10 +1,20 @@
subroutine ave_error(x,n,ave,err)
implicit none
integer, intent(in) :: n
double precision, intent(in) :: x(n)
double precision, intent(out) :: ave, err
! TODO
end subroutine ave_error
subroutine ave_error(x,n,ave,err)
implicit none
integer, intent(in) :: n
double precision, intent(in) :: x(n)
double precision, intent(out) :: ave, err
double precision :: variance
if (n == 1) then
if (n < 1) then
stop 'n<1 in ave_error'
else if (n == 1) then
ave = x(1)
err = 0.d0
else

View File

@ -1,7 +1,11 @@
from math import sqrt
def ave_error(arr):
M = len(arr)
assert (M>1)
average = sum(arr)/M
variance = 1./(M-1) * sum( [ (x - average)**2 for x in arr ] )
return (average, sqrt(variance/M))
assert(M>0)
if M == 1:
return (arr[0], 0.)
else:
average = sum(arr)/M
variance = 1./(M-1) * sum( [ (x - average)**2 for x in arr ] )
error = sqrt(variance/M)
return (average, error)