1
0
mirror of https://github.com/TREX-CoE/qmc-lttc.git synced 2025-01-05 19:09:08 +01:00

Starting DMC

This commit is contained in:
Anthony Scemama 2021-01-26 17:06:12 +01:00
parent dd40ff74d1
commit 6a63c65a01

35
QMC.org
View File

@ -1809,6 +1809,41 @@ gfortran hydrogen.f90 qmc_stats.f90 vmc_metropolis.f90 -o vmc_metropolis
:header-args:f90: :tangle dmc.f90
:END:
Consider the time-dependent Schrödinger equation:
\[
i\frac{\partial \Psi(\mathbf{r},t)}{\partial t} = \hat{H} \Psi(\mathbf{r},t)
\]
We can expand $\Psi(\mathbf{r},0)$, in the basis of the eigenstates
of the time-independent Hamiltonian:
\[
\Psi(\mathbf{r},0) = \sum_k a_k\, \Phi_k(\mathbf{r}).
\]
The solution of the Schrödinger equation at time $t$ is
\[
\Psi(\mathbf{r},t) = \sum_k a_k \exp \left( -i\, E_k\, t \right) \Phi_k(\mathbf{r}).
\]
Now, let's replace the time variable $t$ by an imaginary time variable
$\tau=i\,t$, we obtain
\[
-\frac{\partial \psi(\mathbf{r}, t)}{\partial \tau} = \hat{H} \psi(\mathbf{r}, t)
\]
where $\psi(\mathbf{r},\tau) = \Psi(\mathbf{r},-i\tau) = \Psi(\mathbf{r},t)$
and
\[
\psi(\mathbf{r},\tau) = \sum_k a_k \exp( -E_k\, \tau) \phi_k(\mathbf{r}).
\]
For large positive values of $\tau$, $\psi$ is dominated by the
$k=0$ term, namely the ground state.
** TODO Hydrogen atom
*** Exercise