1
0
mirror of https://github.com/TREX-CoE/qmc-lttc.git synced 2024-12-12 15:33:52 +01:00
qmc-lttc/QMC.org

1119 lines
31 KiB
Org Mode
Raw Normal View History

2021-01-03 18:45:58 +01:00
#+TITLE: Quantum Monte Carlo
#+AUTHOR: Anthony Scemama, Claudia Filippi
2021-01-11 18:41:36 +01:00
# SETUPFILE: https://fniessen.github.io/org-html-themes/org/theme-readtheorg.setup
# SETUPFILE: https://fniessen.github.io/org-html-themes/org/theme-bigblow.setup
2021-01-03 18:45:58 +01:00
#+STARTUP: latexpreview
2021-01-11 18:41:36 +01:00
#+HTML_HEAD: <link rel="stylesheet" title="Standard" href="https://orgmode.org/worg/style/worg.css" type="text/css" />
#+HTML_HEAD: <link rel="alternate stylesheet" title="Zenburn" href="https://orgmode.org/worg/style/worg-zenburn.css" type="text/css" />
#+HTML_HEAD: <link rel="alternate stylesheet" title="Classic" href="https://orgmode.org/worg/style/worg-classic.css" type="text/css" />
2021-01-03 18:45:58 +01:00
* Introduction
2021-01-07 11:07:18 +01:00
We propose different exercises to understand quantum Monte Carlo (QMC)
methods. In the first section, we propose to compute the energy of a
hydrogen atom using numerical integration. The goal of this section is
to introduce the /local energy/.
Then we introduce the variational Monte Carlo (VMC) method which
computes a statistical estimate of the expectation value of the energy
associated with a given wave function.
Finally, we introduce the diffusion Monte Carlo (DMC) method which
2021-01-11 18:41:36 +01:00
gives the exact energy of the $H_2$ molecule.
2021-01-07 11:07:18 +01:00
Code examples will be given in Python and Fortran. Whatever language
can be chosen.
2021-01-11 18:41:36 +01:00
We consider the stationary solution of the Schrödinger equation, so
the wave functions considered here are real: for an $N$ electron
system where the electrons move in the 3-dimensional space,
$\Psi : \mathbb{R}^{3N} \rightarrow \mathbb{R}$. In addition, $\Psi$
is defined everywhere, continuous and infinitely differentiable.
2021-01-03 18:45:58 +01:00
** Python
** Fortran
2021-01-07 11:07:18 +01:00
- 1.d0
- external
- r(:) = 0.d0
- a = (/ 0.1, 0.2 /)
- size(x)
2021-01-03 18:45:58 +01:00
* Numerical evaluation of the energy
2021-01-07 11:07:18 +01:00
In this section we consider the Hydrogen atom with the following
wave function:
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
$$
\Psi(\mathbf{r}) = \exp(-a |\mathbf{r}|)
$$
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
We will first verify that $\Psi$ is an eigenfunction of the Hamiltonian
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
$$
\hat{H} = \hat{T} + \hat{V} = - \frac{1}{2} \Delta - \frac{1}{|\mathbf{r}|}
$$
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
when $a=1$, by checking that $\hat{H}\Psi(\mathbf{r}) = E\Psi(\mathbf{r})$ for
2021-01-11 18:41:36 +01:00
all $\mathbf{r}$. We will check that the local energy, defined as
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
$$
E_L(\mathbf{r}) = \frac{\hat{H} \Psi(\mathbf{r})}{\Psi(\mathbf{r})},
$$
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
is constant.
2021-01-03 18:45:58 +01:00
2021-01-11 18:41:36 +01:00
The probabilistic /expected value/ of an arbitrary function $f(x)$
with respect to a probability density function $p(x)$ is given by
$$ \langle f \rangle_p = \int_{-\infty}^\infty p(x)\, f(x)\,dx $$.
Recall that a probability density function $p(x)$ is non-negative
and integrates to one:
$$ \int_{-\infty}^\infty p(x)\,dx = 1 $$.
The electronic energy of a system is the expectation value of the
local energy $E(\mathbf{r})$ with respect to the $3N$-dimensional
electron density given by the square of the wave function:
\begin{eqnarray}
E & = & \frac{\langle \Psi| \hat{H} | \Psi\rangle}{\langle \Psi |\Psi \rangle} \\
& = & \frac{\int \Psi(\mathbf{r})\, \hat{H} \Psi(\mathbf{r})\, d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}} \\
& = & \frac{\int \left[\Psi(\mathbf{r})\right]^2\, \frac{\hat{H} \Psi(\mathbf{r})}{\Psi(\mathbf{r})}\,d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}} \\
& = & \frac{\int \left[\Psi(\mathbf{r})\right]^2\, E_L(\mathbf{r})\,d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}}
= \langle E_L \rangle_{\Psi^2}
\end{eqnarray}
2021-01-03 18:45:58 +01:00
** Local energy
2021-01-07 11:07:18 +01:00
:PROPERTIES:
:header-args:python: :tangle hydrogen.py
:header-args:f90: :tangle hydrogen.f90
:END:
2021-01-03 18:45:58 +01:00
*** Write a function which computes the potential at $\mathbf{r}$
2021-01-07 11:07:18 +01:00
The function accepts a 3-dimensional vector =r= as input arguments
and returns the potential.
2021-01-03 18:45:58 +01:00
2021-01-11 18:41:36 +01:00
$\mathbf{r}=\sqrt{x^2 + y^2 + z^2}$, so
2021-01-07 11:07:18 +01:00
$$
2021-01-11 18:41:36 +01:00
V(x,y,z) = -\frac{1}{\sqrt{x^2 + y^2 + z^2}}
2021-01-07 11:07:18 +01:00
$$
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
#+BEGIN_SRC python :results none
2021-01-03 18:45:58 +01:00
import numpy as np
def potential(r):
return -1. / np.sqrt(np.dot(r,r))
2021-01-07 11:07:18 +01:00
#+END_SRC
2021-01-07 10:01:55 +01:00
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
#+BEGIN_SRC f90
2021-01-03 18:45:58 +01:00
double precision function potential(r)
implicit none
double precision, intent(in) :: r(3)
potential = -1.d0 / dsqrt( r(1)*r(1) + r(2)*r(2) + r(3)*r(3) )
end function potential
2021-01-07 11:07:18 +01:00
#+END_SRC
2021-01-03 18:45:58 +01:00
*** Write a function which computes the wave function at $\mathbf{r}$
2021-01-07 11:07:18 +01:00
The function accepts a scalar =a= and a 3-dimensional vector =r= as
input arguments, and returns a scalar.
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
#+BEGIN_SRC python :results none
2021-01-03 18:45:58 +01:00
def psi(a, r):
return np.exp(-a*np.sqrt(np.dot(r,r)))
2021-01-07 11:07:18 +01:00
#+END_SRC
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
#+BEGIN_SRC f90
2021-01-03 18:45:58 +01:00
double precision function psi(a, r)
implicit none
double precision, intent(in) :: a, r(3)
psi = dexp(-a * dsqrt( r(1)*r(1) + r(2)*r(2) + r(3)*r(3) ))
end function psi
2021-01-07 11:07:18 +01:00
#+END_SRC
2021-01-03 18:45:58 +01:00
*** Write a function which computes the local kinetic energy at $\mathbf{r}$
2021-01-07 11:07:18 +01:00
The function accepts =a= and =r= as input arguments and returns the
local kinetic energy.
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
The local kinetic energy is defined as $$-\frac{1}{2}\frac{\Delta \Psi}{\Psi}$$.
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
$$
\Psi(x,y,z) = \exp(-a\,\sqrt{x^2 + y^2 + z^2}).
$$
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
We differentiate $\Psi$ with respect to $x$:
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
$$
\frac{\partial \Psi}{\partial x}
= \frac{\partial \Psi}{\partial r} \frac{\partial r}{\partial x}
= - \frac{a\,x}{|\mathbf{r}|} \Psi(x,y,z)
$$
and we differentiate a second time:
$$
\frac{\partial^2 \Psi}{\partial x^2} =
\left( \frac{a^2\,x^2}{|\mathbf{r}|^2} - \frac{a(y^2+z^2)}{|\mathbf{r}|^{3}} \right) \Psi(x,y,z).
$$
The Laplacian operator $\Delta = \frac{\partial^2}{\partial x^2} +
\frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$
applied to the wave function gives:
$$
\Delta \Psi (x,y,z) = \left(a^2 - \frac{2a}{\mathbf{|r|}} \right) \Psi(x,y,z)
$$
So the local kinetic energy is
$$
-\frac{1}{2} \frac{\Delta \Psi}{\Psi} (x,y,z) = -\frac{1}{2}\left(a^2 - \frac{2a}{\mathbf{|r|}} \right)
$$
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
#+BEGIN_SRC python :results none
2021-01-03 18:45:58 +01:00
def kinetic(a,r):
return -0.5 * (a**2 - (2.*a)/np.sqrt(np.dot(r,r)))
2021-01-07 11:07:18 +01:00
#+END_SRC
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
#+BEGIN_SRC f90
2021-01-03 18:45:58 +01:00
double precision function kinetic(a,r)
implicit none
double precision, intent(in) :: a, r(3)
kinetic = -0.5d0 * (a*a - (2.d0*a) / &
dsqrt( r(1)*r(1) + r(2)*r(2) + r(3)*r(3) ) )
end function kinetic
2021-01-07 11:07:18 +01:00
#+END_SRC
2021-01-03 18:45:58 +01:00
*** Write a function which computes the local energy at $\mathbf{r}$
2021-01-07 11:07:18 +01:00
The function accepts =x,y,z= as input arguments and returns the
local energy.
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
$$
E_L(x,y,z) = -\frac{1}{2} \frac{\Delta \Psi}{\Psi} (x,y,z) + V(x,y,z)
$$
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
#+BEGIN_SRC python :results none
2021-01-03 18:45:58 +01:00
def e_loc(a,r):
return kinetic(a,r) + potential(r)
2021-01-07 11:07:18 +01:00
#+END_SRC
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
#+BEGIN_SRC f90
2021-01-03 18:45:58 +01:00
double precision function e_loc(a,r)
implicit none
double precision, intent(in) :: a, r(3)
double precision, external :: kinetic, potential
e_loc = kinetic(a,r) + potential(r)
end function e_loc
2021-01-07 11:07:18 +01:00
#+END_SRC
2021-01-03 18:45:58 +01:00
2021-01-11 18:41:36 +01:00
** Plot of the local energy along the $x$ axis
2021-01-07 11:07:18 +01:00
:PROPERTIES:
:header-args:python: :tangle plot_hydrogen.py
:header-args:f90: :tangle plot_hydrogen.f90
:END:
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
For multiple values of $a$ (0.1, 0.2, 0.5, 1., 1.5, 2.), plot the
local energy along the $x$ axis.
2021-01-03 18:45:58 +01:00
2021-01-11 18:41:36 +01:00
#+BEGIN_SRC python :results none
2021-01-03 18:45:58 +01:00
import numpy as np
import matplotlib.pyplot as plt
from hydrogen import e_loc
x=np.linspace(-5,5)
def make_array(a):
y=np.array([ e_loc(a, np.array([t,0.,0.]) ) for t in x])
return y
plt.figure(figsize=(10,5))
for a in [0.1, 0.2, 0.5, 1., 1.5, 2.]:
y = make_array(a)
plt.plot(x,y,label=f"a={a}")
plt.tight_layout()
plt.legend()
plt.savefig("plot_py.png")
2021-01-07 11:07:18 +01:00
#+end_src
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
#+RESULTS:
2021-01-07 10:01:55 +01:00
2021-01-07 11:07:18 +01:00
[[./plot_py.png]]
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
#+begin_src f90
2021-01-03 18:45:58 +01:00
program plot
implicit none
double precision, external :: e_loc
double precision :: x(50), energy, dx, r(3), a(6)
integer :: i, j
a = (/ 0.1d0, 0.2d0, 0.5d0, 1.d0, 1.5d0, 2.d0 /)
dx = 10.d0/(size(x)-1)
do i=1,size(x)
x(i) = -5.d0 + (i-1)*dx
end do
r(:) = 0.d0
do j=1,size(a)
print *, '# a=', a(j)
do i=1,size(x)
r(1) = x(i)
energy = e_loc( a(j), r )
print *, x(i), energy
end do
print *, ''
print *, ''
end do
end program plot
2021-01-07 11:07:18 +01:00
#+end_src
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
To compile and run:
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
#+begin_src sh :exports both
2021-01-03 18:45:58 +01:00
gfortran hydrogen.f90 plot_hydrogen.f90 -o plot_hydrogen
./plot_hydrogen > data
2021-01-07 11:07:18 +01:00
#+end_src
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
#+RESULTS:
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
To plot the data using gnuplot"
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
#+begin_src gnuplot :file plot.png :exports both
2021-01-03 18:45:58 +01:00
set grid
set xrange [-5:5]
set yrange [-2:1]
plot './data' index 0 using 1:2 with lines title 'a=0.1', \
'./data' index 1 using 1:2 with lines title 'a=0.2', \
'./data' index 2 using 1:2 with lines title 'a=0.5', \
'./data' index 3 using 1:2 with lines title 'a=1.0', \
'./data' index 4 using 1:2 with lines title 'a=1.5', \
'./data' index 5 using 1:2 with lines title 'a=2.0'
2021-01-07 11:07:18 +01:00
#+end_src
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
#+RESULTS:
[[file:plot.png]]
2021-01-03 18:45:58 +01:00
2021-01-11 18:41:36 +01:00
** Compute numerically the expectation value of the energy
2021-01-07 11:07:18 +01:00
:PROPERTIES:
:header-args:python: :tangle energy_hydrogen.py
:header-args:f90: :tangle energy_hydrogen.f90
:END:
If the space is discretized in small volume elements $\delta
2021-01-11 18:41:36 +01:00
\mathbf{r}$, the expression of \langle E_L \rangle_{\Psi^2}$ becomes
a weighted average of the local energy, where the weights are the
values of the probability density at $\mathbf{r}$ multiplied
by the volume element:
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
$$
2021-01-11 18:41:36 +01:00
\langle E \rangle_{\Psi^2} \approx \frac{\sum_i w_i E_L(\mathbf{r}_i)}{\sum_i w_i}, \;\;
2021-01-07 11:07:18 +01:00
w_i = \left[\Psi(\mathbf{r}_i)\right]^2 \delta \mathbf{r}
$$
2021-01-03 18:45:58 +01:00
2021-01-11 18:41:36 +01:00
In this section, we will compute a numerical estimate of the
energy in a grid of $50\times50\times50$ points in the range
$(-5,-5,-5) \le \mathbf{r} \le (5,5,5)$.
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
Note: the energy is biased because:
2021-01-11 18:41:36 +01:00
- The volume elements are not infinitely small (discretization error)
- The energy is evaluated only inside the box (incompleteness of the space)
2021-01-07 10:01:55 +01:00
2021-01-11 18:41:36 +01:00
#+BEGIN_SRC python :results none
2021-01-03 18:45:58 +01:00
import numpy as np
from hydrogen import e_loc, psi
2021-01-11 18:41:36 +01:00
interval = np.linspace(-5,5,num=50)
delta = (interval[1]-interval[0])**3
2021-01-07 11:07:18 +01:00
2021-01-11 18:41:36 +01:00
r = np.array([0.,0.,0.])
2021-01-07 11:07:18 +01:00
2021-01-11 18:41:36 +01:00
for a in [0.1, 0.2, 0.5, 0.9, 1., 1.5, 2.]:
E = 0.
norm = 0.
for x in interval:
r[0] = x
for y in interval:
r[1] = y
for z in interval:
r[2] = z
w = psi(a,r)
w = w * w * delta
E += w * e_loc(a,r)
norm += w
E = E / norm
print(f"a = {a} \t E = {E}")
#+end_src
#+RESULTS:
: a = 0.1 E = -0.24518438948809218
: a = 0.2 E = -0.26966057967803525
: a = 0.5 E = -0.3856357612517407
: a = 0.9 E = -0.49435709786716214
: a = 1.0 E = -0.5
: a = 1.5 E = -0.39242967082602226
: a = 2.0 E = -0.08086980667844901
2021-01-07 11:07:18 +01:00
#+begin_src f90
2021-01-03 18:45:58 +01:00
program energy_hydrogen
implicit none
double precision, external :: e_loc, psi
double precision :: x(50), w, delta, energy, dx, r(3), a(6), norm
integer :: i, k, l, j
a = (/ 0.1d0, 0.2d0, 0.5d0, 1.d0, 1.5d0, 2.d0 /)
dx = 10.d0/(size(x)-1)
do i=1,size(x)
x(i) = -5.d0 + (i-1)*dx
end do
delta = dx**3
r(:) = 0.d0
do j=1,size(a)
energy = 0.d0
norm = 0.d0
do i=1,size(x)
r(1) = x(i)
do k=1,size(x)
r(2) = x(k)
do l=1,size(x)
r(3) = x(l)
w = psi(a(j),r)
w = w * w * delta
energy = energy + w * e_loc(a(j), r)
norm = norm + w
end do
end do
end do
energy = energy / norm
print *, 'a = ', a(j), ' E = ', energy
end do
end program energy_hydrogen
2021-01-07 11:07:18 +01:00
#+end_src
2021-01-03 18:45:58 +01:00
2021-01-11 18:41:36 +01:00
To compile the Fortran and run it:
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
#+begin_src sh :results output :exports both
2021-01-03 18:45:58 +01:00
gfortran hydrogen.f90 energy_hydrogen.f90 -o energy_hydrogen
./energy_hydrogen
2021-01-07 11:07:18 +01:00
#+end_src
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
#+RESULTS:
: a = 0.10000000000000001 E = -0.24518438948809140
: a = 0.20000000000000001 E = -0.26966057967803236
: a = 0.50000000000000000 E = -0.38563576125173815
: a = 1.0000000000000000 E = -0.50000000000000000
: a = 1.5000000000000000 E = -0.39242967082602065
: a = 2.0000000000000000 E = -8.0869806678448772E-002
2021-01-03 18:45:58 +01:00
** Compute the variance of the local energy
2021-01-07 11:07:18 +01:00
:PROPERTIES:
:header-args:python: :tangle variance_hydrogen.py
:header-args:f90: :tangle variance_hydrogen.f90
:END:
2021-01-11 18:41:36 +01:00
The variance of the local energy is a functional of $\Psi$
which measures the magnitude of the fluctuations of the local
energy associated with $\Psi$ around the average:
2021-01-07 11:07:18 +01:00
$$
\sigma^2(E_L) = \frac{\int \left[\Psi(\mathbf{r})\right]^2\, \left[
E_L(\mathbf{r}) - E \right]^2 \, d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}}
$$
2021-01-11 18:41:36 +01:00
If the local energy is constant (i.e. $\Psi$ is an eigenfunction of
$\hat{H}$) the variance is zero, so the variance of the local
energy can be used as a measure of the quality of a wave function.
2021-01-07 11:07:18 +01:00
Compute a numerical estimate of the variance of the local energy
in a grid of $50\times50\times50$ points in the range $(-5,-5,-5) \le \mathbf{r} \le (5,5,5)$.
2021-01-03 18:45:58 +01:00
2021-01-11 18:41:36 +01:00
#+begin_src python :results none
2021-01-03 18:45:58 +01:00
import numpy as np
from hydrogen import e_loc, psi
interval = np.linspace(-5,5,num=50)
delta = (interval[1]-interval[0])**3
r = np.array([0.,0.,0.])
for a in [0.1, 0.2, 0.5, 0.9, 1., 1.5, 2.]:
E = 0.
norm = 0.
for x in interval:
r[0] = x
for y in interval:
r[1] = y
for z in interval:
r[2] = z
w = psi(a, r)
w = w * w * delta
El = e_loc(a, r)
E += w * El
norm += w
2021-01-07 11:07:18 +01:00
E = E / norm
s2 = 0.
2021-01-03 18:45:58 +01:00
for x in interval:
r[0] = x
for y in interval:
r[1] = y
for z in interval:
r[2] = z
w = psi(a, r)
w = w * w * delta
El = e_loc(a, r)
2021-01-07 10:01:55 +01:00
s2 += w * (El - E)**2
2021-01-07 11:07:18 +01:00
s2 = s2 / norm
print(f"a = {a} \t E = {E:10.8f} \t \sigma^2 = {s2:10.8f}")
#+end_src
#+RESULTS:
: a = 0.1 E = -0.24518439 \sigma^2 = 0.02696522
: a = 0.2 E = -0.26966058 \sigma^2 = 0.03719707
: a = 0.5 E = -0.38563576 \sigma^2 = 0.05318597
: a = 0.9 E = -0.49435710 \sigma^2 = 0.00577812
: a = 1.0 E = -0.50000000 \sigma^2 = 0.00000000
: a = 1.5 E = -0.39242967 \sigma^2 = 0.31449671
: a = 2.0 E = -0.08086981 \sigma^2 = 1.80688143
#+begin_src f90
2021-01-03 18:45:58 +01:00
program variance_hydrogen
implicit none
double precision, external :: e_loc, psi
double precision :: x(50), w, delta, energy, dx, r(3), a(6), norm, s2
integer :: i, k, l, j
a = (/ 0.1d0, 0.2d0, 0.5d0, 1.d0, 1.5d0, 2.d0 /)
dx = 10.d0/(size(x)-1)
do i=1,size(x)
x(i) = -5.d0 + (i-1)*dx
end do
delta = dx**3
r(:) = 0.d0
do j=1,size(a)
energy = 0.d0
norm = 0.d0
do i=1,size(x)
r(1) = x(i)
do k=1,size(x)
r(2) = x(k)
do l=1,size(x)
r(3) = x(l)
w = psi(a(j),r)
w = w * w * delta
energy = energy + w * e_loc(a(j), r)
norm = norm + w
end do
end do
end do
energy = energy / norm
s2 = 0.d0
norm = 0.d0
do i=1,size(x)
r(1) = x(i)
do k=1,size(x)
r(2) = x(k)
do l=1,size(x)
r(3) = x(l)
w = psi(a(j),r)
w = w * w * delta
s2 = s2 + w * ( e_loc(a(j), r) - energy )**2
norm = norm + w
end do
end do
end do
s2 = s2 / norm
print *, 'a = ', a(j), ' E = ', energy, ' s2 = ', s2
end do
2021-01-07 10:01:55 +01:00
2021-01-03 18:45:58 +01:00
end program variance_hydrogen
2021-01-07 11:07:18 +01:00
#+end_src
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
To compile and run:
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
#+begin_src sh :results output :exports both
2021-01-03 18:45:58 +01:00
gfortran hydrogen.f90 variance_hydrogen.f90 -o variance_hydrogen
./variance_hydrogen
2021-01-07 11:07:18 +01:00
#+end_src
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
#+RESULTS:
: a = 0.10000000000000001 E = -0.24518438948809140 s2 = 2.6965218719733813E-002
: a = 0.20000000000000001 E = -0.26966057967803236 s2 = 3.7197072370217653E-002
: a = 0.50000000000000000 E = -0.38563576125173815 s2 = 5.3185967578488862E-002
: a = 1.0000000000000000 E = -0.50000000000000000 s2 = 0.0000000000000000
: a = 1.5000000000000000 E = -0.39242967082602065 s2 = 0.31449670909180444
: a = 2.0000000000000000 E = -8.0869806678448772E-002 s2 = 1.8068814270851303
2021-01-03 18:45:58 +01:00
* Variational Monte Carlo
2021-01-11 18:41:36 +01:00
Numerical integration with deterministic methods is very efficient
in low dimensions. When the number of dimensions becomes larger than
2021-01-07 11:07:18 +01:00
Instead of computing the average energy as a numerical integration
on a grid, we will do a Monte Carlo sampling, which is an extremely
efficient method to compute integrals when the number of dimensions is
large.
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
Moreover, a Monte Carlo sampling will alow us to remove the bias due
to the discretization of space, and compute a statistical confidence
interval.
2021-01-07 10:01:55 +01:00
2021-01-03 18:45:58 +01:00
** Computation of the statistical error
2021-01-07 11:07:18 +01:00
:PROPERTIES:
:header-args:python: :tangle qmc_stats.py
:header-args:f90: :tangle qmc_stats.f90
:END:
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
To compute the statistical error, you need to perform $M$
independent Monte Carlo calculations. You will obtain $M$ different
estimates of the energy, which are expected to have a Gaussian
distribution by the central limit theorem.
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
The estimate of the energy is
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
$$
E = \frac{1}{M} \sum_{i=1}^M E_M
$$
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
The variance of the average energies can be computed as
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
$$
\sigma^2 = \frac{1}{M-1} \sum_{i=1}^{M} (E_M - E)^2
$$
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
And the confidence interval is given by
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
$$
E \pm \delta E, \text{ where } \delta E = \frac{\sigma}{\sqrt{M}}
$$
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
Write a function returning the average and statistical error of an
input array.
2021-01-03 18:45:58 +01:00
2021-01-11 18:41:36 +01:00
#+BEGIN_SRC python :results none
2021-01-07 10:01:55 +01:00
from math import sqrt
2021-01-03 18:45:58 +01:00
def ave_error(arr):
M = len(arr)
assert (M>1)
average = sum(arr)/M
variance = 1./(M-1) * sum( [ (x - average)**2 for x in arr ] )
return (average, sqrt(variance/M))
2021-01-07 11:07:18 +01:00
#+END_SRC
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
#+BEGIN_SRC f90
2021-01-07 10:01:55 +01:00
subroutine ave_error(x,n,ave,err)
implicit none
integer, intent(in) :: n
double precision, intent(in) :: x(n)
double precision, intent(out) :: ave, err
double precision :: variance
if (n == 1) then
ave = x(1)
err = 0.d0
else
ave = sum(x(:)) / dble(n)
variance = sum( (x(:) - ave)**2 ) / dble(n-1)
err = dsqrt(variance/dble(n))
endif
end subroutine ave_error
2021-01-07 11:07:18 +01:00
#+END_SRC
2021-01-03 18:45:58 +01:00
** Uniform sampling in the box
2021-01-07 11:07:18 +01:00
:PROPERTIES:
:header-args:python: :tangle qmc_uniform.py
:header-args:f90: :tangle qmc_uniform.f90
:END:
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
In this section we write a function to perform a Monte Carlo
calculation of the average energy.
At every Monte Carlo step:
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
- Draw 3 uniform random numbers in the interval $(-5,-5,-5) \le
(x,y,z) \le (5,5,5)$
- Compute $\Psi^2 \times E_L$ at this point and accumulate the
result in E
- Compute $\Psi^2$ at this point and accumulate the result in N
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
Once all the steps have been computed, return the average energy
computed on the Monte Carlo calculation.
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
In the main program, write a loop to perform 30 Monte Carlo runs,
and compute the average energy and the associated statistical error.
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
Compute the energy of the wave function with $a=0.9$.
2021-01-07 10:01:55 +01:00
2021-01-07 11:07:18 +01:00
#+BEGIN_SRC python :results output
2021-01-07 10:01:55 +01:00
from hydrogen import *
from qmc_stats import *
2021-01-11 18:41:36 +01:00
def MonteCarlo(a, nmax):
E = 0.
N = 0.
for istep in range(nmax):
r = np.random.uniform(-5., 5., (3))
w = psi(a,r)
w = w*w
N += w
E += w * e_loc(a,r)
return E/N
a = 0.9
nmax = 100000
X = [MonteCarlo(a,nmax) for i in range(30)]
E, deltaE = ave_error(X)
print(f"E = {E} +/- {deltaE}")
#+END_SRC
2021-01-07 11:07:18 +01:00
#+RESULTS:
: E = -0.4956255109300764 +/- 0.0007082875482711226
#+BEGIN_SRC f90
2021-01-07 10:01:55 +01:00
subroutine uniform_montecarlo(a,nmax,energy)
implicit none
double precision, intent(in) :: a
integer , intent(in) :: nmax
double precision, intent(out) :: energy
2021-01-07 11:07:18 +01:00
2021-01-07 10:01:55 +01:00
integer*8 :: istep
2021-01-07 11:07:18 +01:00
2021-01-07 10:01:55 +01:00
double precision :: norm, r(3), w
double precision, external :: e_loc, psi
energy = 0.d0
norm = 0.d0
do istep = 1,nmax
call random_number(r)
r(:) = -5.d0 + 10.d0*r(:)
w = psi(a,r)
w = w*w
norm = norm + w
energy = energy + w * e_loc(a,r)
end do
energy = energy / norm
end subroutine uniform_montecarlo
program qmc
implicit none
double precision, parameter :: a = 0.9
integer , parameter :: nmax = 100000
integer , parameter :: nruns = 30
integer :: irun
double precision :: X(nruns)
double precision :: ave, err
do irun=1,nruns
call uniform_montecarlo(a,nmax,X(irun))
enddo
call ave_error(X,nruns,ave,err)
print *, 'E = ', ave, '+/-', err
end program qmc
2021-01-07 11:07:18 +01:00
#+END_SRC
2021-01-07 10:01:55 +01:00
2021-01-07 11:07:18 +01:00
#+begin_src sh :results output :exports both
2021-01-07 10:01:55 +01:00
gfortran hydrogen.f90 qmc_stats.f90 qmc_uniform.f90 -o qmc_uniform
./qmc_uniform
2021-01-07 11:07:18 +01:00
#+end_src
2021-01-07 10:01:55 +01:00
2021-01-07 11:07:18 +01:00
#+RESULTS:
: E = -0.49588321986667677 +/- 7.1758863546737969E-004
2021-01-07 10:01:55 +01:00
2021-01-03 18:45:58 +01:00
** Gaussian sampling
2021-01-07 11:07:18 +01:00
:PROPERTIES:
:header-args:python: :tangle qmc_gaussian.py
:header-args:f90: :tangle qmc_gaussian.f90
:END:
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
We will now improve the sampling and allow to sample in the whole
3D space, correcting the bias related to the sampling in the box.
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
Instead of drawing uniform random numbers, we will draw Gaussian
random numbers centered on 0 and with a variance of 1.
2021-01-07 10:01:55 +01:00
2021-01-07 11:07:18 +01:00
To obtain Gaussian-distributed random numbers, you can apply the
[[https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform][Box Muller transform]] to uniform random numbers:
2021-01-07 10:01:55 +01:00
2021-01-07 11:07:18 +01:00
\begin{eqnarray*}
z_1 &=& \sqrt{-2 \ln u_1} \cos(2 \pi u_2) \\
z_2 &=& \sqrt{-2 \ln u_1} \sin(2 \pi u_2)
\end{eqnarray*}
#+BEGIN_SRC f90 :tangle qmc_stats.f90
subroutine random_gauss(z,n)
implicit none
integer, intent(in) :: n
double precision, intent(out) :: z(n)
double precision :: u(n+1)
double precision, parameter :: two_pi = 2.d0*dacos(-1.d0)
integer :: i
call random_number(u)
if (iand(n,1) == 0) then
! n is even
do i=1,n,2
z(i) = dsqrt(-2.d0*dlog(u(i)))
z(i+1) = z(i) + dsin( two_pi*u(i+1) )
z(i) = z(i) + dcos( two_pi*u(i+1) )
end do
else
! n is odd
do i=1,n-1,2
z(i) = dsqrt(-2.d0*dlog(u(i)))
z(i+1) = z(i) + dsin( two_pi*u(i+1) )
z(i) = z(i) + dcos( two_pi*u(i+1) )
end do
z(n) = dsqrt(-2.d0*dlog(u(n)))
z(n) = z(n) + dcos( two_pi*u(n+1) )
end if
end subroutine random_gauss
#+END_SRC
Now the equation for the energy is changed into
\[
E = \frac{\int P(\mathbf{r}) \frac{\left[\Psi(\mathbf{r})\right]^2}{P(\mathbf{r})}\, \frac{\hat{H} \Psi(\mathbf{r})}{\Psi(\mathbf{r})}\,d\mathbf{r}}{\int P(\mathbf{r}) \frac{\left[\Psi(\mathbf{r}) \right]^2}{P(\mathbf{r})} d\mathbf{r}}
\]
with
\[
P(\mathbf{r}) = \frac{1}{(2 \pi)^{3/2}}\exp\left( -\frac{\mathbf{r}^2}{2} \right)
\]
As the coordinates are drawn with probability $P(\mathbf{r})$, the
average energy can be computed as
$$
E \approx \frac{\sum_i w_i E_L(\mathbf{r}_i)}{\sum_i w_i}, \;\;
w_i = \frac{\left[\Psi(\mathbf{r}_i)\right]^2}{P(\mathbf{r}_i)} \delta \mathbf{r}
$$
#+BEGIN_SRC python :results output
from hydrogen import *
from qmc_stats import *
2021-01-07 10:01:55 +01:00
2021-01-03 18:45:58 +01:00
norm_gauss = 1./(2.*np.pi)**(1.5)
def gaussian(r):
2021-01-07 11:07:18 +01:00
return norm_gauss * np.exp(-np.dot(r,r)*0.5)
2021-01-03 18:45:58 +01:00
def MonteCarlo(a,nmax):
E = 0.
N = 0.
for istep in range(nmax):
r = np.random.normal(loc=0., scale=1.0, size=(3))
w = psi(a,r)
w = w*w / gaussian(r)
N += w
E += w * e_loc(a,r)
return E/N
a = 0.9
nmax = 100000
X = [MonteCarlo(a,nmax) for i in range(30)]
E, deltaE = ave_error(X)
print(f"E = {E} +/- {deltaE}")
2021-01-07 11:07:18 +01:00
#+END_SRC
#+RESULTS:
: E = -0.49507506093129827 +/- 0.00014164037765553668
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
#+BEGIN_SRC f90
double precision function gaussian(r)
implicit none
double precision, intent(in) :: r(3)
double precision, parameter :: norm_gauss = 1.d0/(2.d0*dacos(-1.d0))**(1.5d0)
gaussian = norm_gauss * dexp( -0.5d0 * dsqrt(r(1)*r(1) + r(2)*r(2) + r(3)*r(3) ))
end function gaussian
subroutine gaussian_montecarlo(a,nmax,energy)
implicit none
double precision, intent(in) :: a
integer , intent(in) :: nmax
double precision, intent(out) :: energy
integer*8 :: istep
double precision :: norm, r(3), w
double precision, external :: e_loc, psi, gaussian
energy = 0.d0
norm = 0.d0
do istep = 1,nmax
call random_gauss(r,3)
w = psi(a,r)
w = w*w / gaussian(r)
norm = norm + w
energy = energy + w * e_loc(a,r)
end do
energy = energy / norm
end subroutine gaussian_montecarlo
program qmc
implicit none
double precision, parameter :: a = 0.9
integer , parameter :: nmax = 100000
integer , parameter :: nruns = 30
integer :: irun
double precision :: X(nruns)
double precision :: ave, err
do irun=1,nruns
call gaussian_montecarlo(a,nmax,X(irun))
enddo
call ave_error(X,nruns,ave,err)
print *, 'E = ', ave, '+/-', err
end program qmc
#+END_SRC
#+begin_src sh :results output :exports both
gfortran hydrogen.f90 qmc_stats.f90 qmc_gaussian.f90 -o qmc_gaussian
./qmc_gaussian
#+end_src
#+RESULTS:
: E = -0.49606057056767766 +/- 1.3918807547836872E-004
2021-01-11 18:41:36 +01:00
2021-01-03 18:45:58 +01:00
** Sampling with $\Psi^2$
2021-01-11 18:41:36 +01:00
:PROPERTIES:
:header-args:python: :tangle vmc.py
:header-args:f90: :tangle vmc.f90
:END:
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
We will now use the square of the wave function to make the sampling:
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
\[
P(\mathbf{r}) = \left[\Psi(\mathbf{r})\right]^2
\]
2021-01-03 18:45:58 +01:00
2021-01-11 18:41:36 +01:00
The expression for the energy will be simplified to the average of
the local energies, each with a weight of 1.
2021-01-03 18:45:58 +01:00
2021-01-07 11:07:18 +01:00
$$
2021-01-11 18:41:36 +01:00
E \approx \frac{1}{M}\sum_{i=1}^M E_L(\mathbf{r}_i)
2021-01-07 11:07:18 +01:00
$$
2021-01-03 18:45:58 +01:00
2021-01-11 18:41:36 +01:00
To generate the probability density $\Psi^2$, we consider a
diffusion process characterized by a time-dependent density
$[\Psi(\mathbf{r},t)]^2$, which obeys the Fokker-Planck equation:
\[
\frac{\partial \Psi^2}{\partial t} = \sum_i D
\frac{\partial}{\partial \mathbf{r}_i} \left(
\frac{\partial}{\partial \mathbf{r}_i} - F_i(\mathbf{r}) \right)
[\Psi(\mathbf{r},t)]^2.
\]
$D$ is the diffusion constant and $F_i$ is the i-th component of a
drift velocity caused by an external potential. For a stationary
density, \( \frac{\partial \Psi^2}{\partial t} = 0 \), so
\begin{eqnarray*}
0 & = & \sum_i D
\frac{\partial}{\partial \mathbf{r}_i} \left(
\frac{\partial}{\partial \mathbf{r}_i} - F_i(\mathbf{r}) \right)
[\Psi(\mathbf{r})]^2 \\
0 & = & \sum_i D
\frac{\partial}{\partial \mathbf{r}_i} \left(
\frac{\partial [\Psi(\mathbf{r})]^2}{\partial \mathbf{r}_i} -
F_i(\mathbf{r})\,[\Psi(\mathbf{r})]^2 \right) \\
0 & = &
\frac{\partial^2 \Psi^2}{\partial \mathbf{r}_i^2} -
\frac{\partial F_i }{\partial \mathbf{r}_i}[\Psi(\mathbf{r})]^2 -
\frac{\partial \Psi^2}{\partial \mathbf{r}_i} F_i(\mathbf{r})
\end{eqnarray*}
we search for a drift function which satisfies
\[
\frac{\partial^2 \Psi^2}{\partial \mathbf{r}_i^2} =
[\Psi(\mathbf{r})]^2 \frac{\partial F_i }{\partial \mathbf{r}_i} +
\frac{\partial \Psi^2}{\partial \mathbf{r}_i} F_i(\mathbf{r})
\]
to obtain a second derivative on the left, we need the drift to be
of the form
\[
F_i(\mathbf{r}) = g(\mathbf{r}) \frac{\partial \Psi^2}{\partial \mathbf{r}_i}
\]