Gross-Oliveira-Kohn (GOK) ensemble density-functional theory (GOK-DFT) is a time-independent formalism which allows to compute individual excitation energies via the derivative of the ensemble energy with respect to the weight of each excited state.
Contrary to the time-dependent version of density-functional theory (TD-DFT), double excitations can be easily computed within GOK-DFT.
However, to take full advantage of this formalism, one must have access to a \textit{weight-dependent} exchange-correlation functional in order to model the infamous derivative discontinuity contribution to the excitation energies.
In the present article, we report a first-rung (\ie, local) weight-dependent exchange-correlation density-functional approximation for atoms and molecules specifically designed for the computation of double excitations within GOK-DFT.
This density-functional approximation for ensembles, based on finite and infinite uniform electron gases, incorporate information about both ground and excited states.
Time-dependent density-functional theory (TD-DFT) has been the dominant force in the calculation of excitation energies of molecular systems in the last two decades.\cite{Casida,Ulrich_2012}
At a relatively low computational cost (at least compared to the other excited-state \textit{ab initio} methods), TD-DFT can provide accurate transition energies for low-lying excited states of organic molecules (see, for example, Ref.~\onlinecite{Dreuw_2005} and references therein).
Importantly, setting up a TD-DFT calculation for a given system is an almost pain-free process from a user perspective as the only (yet essential) input variable is the choice of the so-called exchange-correlation (xc) functional.
Similar to density-functional theory (DFT), \cite{Hohenberg_1964,Kohn_1965,ParrBook} TD-DFT is an in-principle exact theory which formal foundations relie on the Runge-Gross theorem. \cite{Runge_1984}
The Kohn-Sham (KS) formalism of TD-DFT transfers the complexity of the many-body problem to the xc functional thanks to a judicious mapping between a time-dependent non-interacting reference system and its interacting analog which have both the exact same one-electron density.
However, TD-DFT is far from being perfect as, in practice, drastic approximations must be made for the xc functional.
One of its issues actually originates directly from the choice of the xc functional, and more specifically, the possible (not to say likely) substantial variations in the quality of the excitation energies for two different choices of xc functionals.
Moreover, because it is so popular, it has been studied in excruciated details by the community, and some researchers have quickly unveiled various theoretical and practical deficiencies of approximate TD-DFT.
For example, TD-DFT has problems with charge-transfer \cite{Tozer_1999,Dreuw_2003,Sobolewski_2003,Dreuw_2004,Maitra_2017} and Rydberg \cite{Tozer_1998,Tozer_2000,Casida_1998,Casida_2000,Tozer_2003} excited states (the excitation energies are usually drastically underestimated) due to the wrong asymptotic behaviour of the semi-local xc functional.
One key consequence of this so-called adiabatic approximation (based on the assumption that the density varies slowly with time) is that double excitations are completely absent from the TD-DFT spectra. \cite{Levine_2006,Tozer_2000,Elliott_2011}
Although these double excitations are usually experimentally dark (which means they usually cannot be observed in photo-absorption spectroscopy), these states play, indirectly, a key role in many photochemistry mechanisms. \cite{Boggio-Pasqua_2007,Loos_2019}
One possible solution to access double excitations within TD-DFT is provided by spin-flip TD-DFT which describes double excitations as single excitations from the lowest triplet state. \cite{Huix-Rotllant_2010,Krylov_2001,Shao_2003,Wang_2004,Wang_2006,Minezawa_2009}
However, spin contamination might be an issue. \cite{Huix-Rotllant_2010}
In order to go beyond the adiabatic approximation, a dressed TD-DFT approach has been proposed by Maitra and coworkers \cite{Maitra_2004,Cave_2004} (see also Refs.~\onlinecite{Mazur_2009,Mazur_2011,Huix-Rotllant_2011,Elliott_2011,Maitra_2012}).
In this approach the xc kernel is made frequency dependent, which allows to treat doubly-excited states. \cite{Romaniello_2009a,Sangalli_2011,Loos_2019}
Maybe surprisingly, another possible way of accessing double excitations is to resort to a time-\textit{independent} formalism. \cite{Yang_2017,Sagredo_2018,Deur_2019}
DFT for ensembles (eDFT) \cite{Theophilou_1979,Gross_1988a,Gross_1988b,Oliveira_1988} is a viable alternative following such a strategy currently under active development. \cite{Gidopoulos_2002,Franck_2014,Borgoo_2015,Kazaryan_2008,Gould_2013,Gould_2014,Filatov_2015,Filatov_2015b,Filatov_2015c,Gould_2017,Deur_2017,Gould_2018,Gould_2019,Sagredo_2018,Ayers_2018,Deur_2018,Deur_2019,Kraisler_2013,Kraisler_2014,Alam_2016,Alam_2017,Nagy_1998,Nagy_2001,Nagy_2005,Pastorczak_2013,Pastorczak_2014,Pribram-Jones_2014,Yang_2013a,Yang_2014,Yang_2017,Senjean_2015,Senjean_2016,Smith_2016,Senjean_2018}
In the assumption of monotonically decreasing weights, eDFT for excited states has the undeniable advantage to be based on a rigorous variational principle for ground and excited states, the so-called Gross-Oliveria-Kohn (GOK) variational principle. \cite{Gross_1988a}
In short, GOK-DFT (\ie, eDFT for excited states) is the density-based analog of state-averaged wave function methods, and excitation energies can then be easily extracted from the total ensemble energy. \cite{Deur_2019}
Although the formal foundations of GOK-DFT have been set three decades ago, \cite{Gross_1988a,Gross_1988b,Oliveira_1988} its practical developments have been rather slow.
In particular, to the best of our knowledge, an explicitly weight-dependent density-functional approximation for ensemble (eDFA) has never been developed for atoms and molecules.
The LDA, as we know it, is based on the uniform electron gas (UEG) also known as jellium, an hypothetical infinite substance where an infinite number of electrons ``bathe'' in a (uniform) positively-charged jelly. \cite{Loos_2016}
Although the Hohenberg-Kohn theorems \cite{Hohenberg_1964} are here to provide firm theoretical grounds to DFT, modern KS-DFT rests largely on the presumed similarity between this hypothetical UEG and the electronic behaviour in a real system. \cite{Kohn_1965}
However, Loos and Gill have recently shown that there exists other UEGs which contain finite numbers of electrons (more like in a molecule), \cite{Loos_2011b,Gill_2012} and that they can be exploited to construct LDA functionals. \cite{Loos_2014a,Loos_2014b,Loos_2017a}
Electrons restricted to remain on the surface of a $\cD$-sphere (where $\cD$ is the dimensionality of the surface of the sphere) are an example of finite UEGs (FUEGs). \cite{Loos_2011b}
Here, we combine these FUEGs with the usual infinite UEG (IUEG) to construct a weigh-dependent LDA functional for ensembles (eLDA).
The present eLDA functional is specifically designed to compute double excitations within GOK-DFT, and it automatically incorporates the infamous derivative discontinuity contribution to the excitation energies through its explicit ensemble weight dependence. \cite{Levy_1995, Perdew_1983}
As mentioned above, eDFT for excited states is based on the GOK variational principle \cite{Gross_1988a} which states that a variational principle holds for the ensemble energy
built from an ensemble of $\nEns$ electronic states with individual energies $\E{}{(0)}\le\ldots\le\E{}{(\nEns-1)}$, and (normalised) monotonically decreasing weights $\bw=(\ew{0},\ldots,\ew{M-1})$, \ie, $\sum_{I=0}^{\nEns-1}\ew{I}=1$, and $\ew{0}\ge\ldots\ge\ew{\nEns-1}$.
One of the key feature of GOK-DFT in the present context is that one can easily extract individual excitation energies from the ensemble energy via differentiation with respect to individual weights:
In the KS formulation of GOK-DFT, the universal ensemble functional (the weight-dependent analog of the Hohenberg-Kohn universal functional for ensembles) is decomposed as
where $\hT$ and $\hWee$ are the kinetic and electron-electron interaction potential operators, respectively, $\Ts{\bw}[\n{}{}]$ is the noninteracting ensemble kinetic energy functional,
is the density matrix operator, $\Det{I}{\bw}$ are single-determinant wave functions (or configuration state functions) built with KS orbitals $\MO{p}{\bw}(\br{})$, and
Note that the weight-independent Hartree functional $\E{\Ha}{}[\n{}{}]$ causes the infamous ghost-interaction error (GIE) \cite{Gidopoulos_2002, Pastorczak_2014, Alam_2016, Alam_2017, Gould_2017} in eDFT, which is supposed to be cancelled by the weight-dependent xc functional $\E{\xc}{\bw}[\n{}{}]$.
is the weight-dependent KS energy, and $\eps{p}{\bw}$ is the KS orbital energy associated with $\MO{p}{\bw}(\br{})$ [$\ON{p}{(I)}$ being its occupancy for the state $I$] given by the ensemble KS equation
Note that, although we have dropped the weight-dependency in the individual densities $\n{}{(I)}(\br{})$ defined in Eq.~\eqref{eq:nI}, these do not match the \textit{exact} individual-state densities as the non-interacting KS ensemble is expected to reproduce the true interacting ensemble density $\n{}{\bw}(\br{})$ defined in Eq.~\eqref{eq:nw}, and not each individual density.
Here, we restrict our study to the case of a two-state ensemble (\ie, $\nEns=2$) where both the ground state ($I=0$) and the first doubly-excited state ($I=1$) are considered.
Here, we restrict our study to spin-unpolarised systems, \ie, $\n{\uparrow}{}=\n{\downarrow}{}=\n{}{}/2$ (where $\n{\uparrow}{}$ and $\n{\downarrow}{}$ are the spin-up and spin-down electron densities).
Extension to spin-polarised systems will be reported in future work.
To build our weight-dependent xc functional, we propose to consider the singlet ground state and the first singlet doubly-excited state of a two-electron FUEG which consists of two electrons confined to the surface of a 3-sphere (also known as a glome).\cite{Loos_2009a,Loos_2009c,Loos_2010e}
Notably, these two states have the same (uniform) density $\n{}{}=2/(2\pi^2 R^3)$, where $R$ is the radius of the 3-sphere onto which the electrons are confined.
Indeed, the orbitals for an electron on a 3-sphere of unit radius are the normalised hyperspherical harmonics $Y_{\ell\mu}$, where $\ell$ is the principal quantum number and $\mu$ is a composite index of the remaining two quantum numbers. \cite{AveryBook, Avery_1993}
As mentioned above, we confine our attention to paramagnetic (or unpolarised) systems, and in particular to the simple two-electron system in which the orbital with $\ell=0$ is doubly-occupied by one spin-up and one spin-down electron, thus yielding an electron density that is uniform on the 3-sphere.
Conveniently, the weight dependence of the exchange functional can be transferred to the $\Cx{}$ coefficient; an expected feature from a theoretical point of view, yet a nice property from a more practical aspect.
Based on highly-accurate calculations, \cite{Loos_2009a,Loos_2009c,Loos_2010e} one can write down, for each state, an accurate analytical expression of the reduced correlation energy \cite{Loos_2013a, Loos_2014a} via the following Pad\'e approximant
Reduced (i.e., per electron) correlation energy $\e{\co}{(I)}$ [see Eq.~\eqref{eq:ec}] as a function of $R =1/(\pi^2\n{}{})^{1/3}$ for the ground state ($I=0$), and the first doubly-excited state ($I=1$) of the (spin-unpolarised) two-electron FUEG.
$-\e{\co}{(I)}$ as a function of the radius of the glome $R =1/(\pi^2\n{}{})^{1/3}$ for the ground state ($I=0$), and the first doubly-excited state ($I=1$) of the (spin-unpolarised) two-electron FUEG.
Parameters of the correlation functionals for each individual state defined in Eq.~\eqref{eq:ec}.
The values of $a_1$ are obtained to reproduce the exact high density correlation energy of each individual state, while $a_2$ and $a_3$ are fitted on the numerical values reported in Table \ref{tab:Ref}.}
Our intent is to incorporate into standard functionals (which are ``universal'' in the sense that they do not depend on the number of electrons) information about excited states that will be extracted from finite systems (whose properties may depend on the number of electrons).
The weight-dependence of the xc functional is then carried exclusively by the impurity [\ie, the functionals defined in Eqs.~\eqref{eq:exw} and \eqref{eq:ecw}], while the remaining effects are produced by the bath (\ie, the usual LDA xc functional).
(where $\E{\xc}{}[\n{}{}]$ is the usual ground-state xc functional) originally derived by Franck and Fromager. \cite{Franck_2014}
Within this in-principle-exact formalism, the (weight-dependent) xc energy of the ensemble is constructed from the (weight-independent) ground-state functional.
In the case of a homogeneous system (or equivalently within the LDA), substituting Eq.~\eqref{eq:dexcdw} into \eqref{eq:GACE} yields, in the case of a bi-ensemble, Eq.~\eqref{eq:eLDA}.
We have then access to the individual densities of the ground and doubly-excited states (which is not straightforward in practice).
Moreover, thanks to the spatial symmetry and the minimal basis, the individual densities extracted from the ensemble density are equal to the \textit{exact} individual densities.
In other words, there is no density-driven error and the only error that we are going to observe is the functional-driven error (and this is what we want to study).
where $\AO{A}$ and $\AO{B}$ are the two contracted Gaussian basis functions centred on each of the nucleus, and $S_{AB}=\braket{\AO{A}}{\AO{B}}$ is the overlap between these two basis functions.
We will label these energies as $\tE{}{\ew{}}$ to avoid confusion with the expressions reported in Eqs.~\eqref{eq:EwHF}, \eqref{eq:EwLDA} and \eqref{eq:EweLDA}.
which is also clearly quadratic with respect to $\ew{}$ because the (weight-independent) LDA functional cannot compensate the ``quadraticity'' of the Hartree term.
which \textit{could} be linear with respect to $\ew{}$ if the weight-dependent xc functional compensates exactly the quadratic terms in the Hartree term.
The two first terms are simply $\Eps{0}{\ew{}}=2\eps{1}{\ew{}}$, $\Eps{1}{\ew{}}=2\eps{2}{\ew{}}$, and the HF, LDA and eLDA weight-dependent orbital energies are, respectively,
PFL thanks the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No.~863481) for financial support.
This work has also been supported through the EUR grant NanoX ANR-17-EURE-0009 in the framework of the \textit{``Programme des Investissements d'Avenir''.}