back to single weight
This commit is contained in:
parent
127b359f02
commit
b08bd66499
@ -377,7 +377,7 @@ Combining these, we build a two-state weight-dependent correlation functional:
|
||||
\begin{figure}
|
||||
\includegraphics[width=\linewidth]{fig/fig1}
|
||||
\caption{
|
||||
Reduced (i.e., per electron) correlation energy $\e{\co}{(I)}$ [see Eq.~\eqref{eq:ec}] as a function of $R = 1/(\pi \n{}{})^{1/3}$ for the ground state ($I=0$), and the first doubly-excited state ($I=1$) of the (spin-unpolarised) two-electron FUEG.
|
||||
Reduced (i.e., per electron) correlation energy $\e{\co}{(I)}$ [see Eq.~\eqref{eq:ec}] as a function of $R = 1/(\pi^2 \n{}{})^{1/3}$ for the ground state ($I=0$), and the first doubly-excited state ($I=1$) of the (spin-unpolarised) two-electron FUEG.
|
||||
The data gathered in Table \ref{tab:Ref} are also reported.
|
||||
}
|
||||
\label{fig:Ec}
|
||||
@ -388,7 +388,7 @@ Combining these, we build a two-state weight-dependent correlation functional:
|
||||
\begin{table}
|
||||
\caption{
|
||||
\label{tab:Ref}
|
||||
$-\e{\co}{(I)}$ as a function of the radius of the glome $R = 1/(\pi \n{}{})^{1/3}$ for the ground state ($I=0$), and the first doubly-excited state ($I=1$) of the (spin-unpolarised) two-electron FUEG.
|
||||
$-\e{\co}{(I)}$ as a function of the radius of the glome $R = 1/(\pi^2 \n{}{})^{1/3}$ for the ground state ($I=0$), and the first doubly-excited state ($I=1$) of the (spin-unpolarised) two-electron FUEG.
|
||||
}
|
||||
\begin{ruledtabular}
|
||||
\begin{tabular}{lcc}
|
||||
@ -511,10 +511,10 @@ Total energies (in hartree) and excitation energies (in \titou{hartree}) of \ce{
|
||||
LDA & -1.12120 & 0.379745 & 1.50095 & -1.12120 & 1.49536 & -0.370725 & 1.50565 \\
|
||||
eLDA & -1.12120 & 0.175337 & 1.29654 & -1.12120 & 1.31995 & -0.462421 & 1.30839 \\
|
||||
CID & -1.13728 & 0.481138 & 1.61841 & \\
|
||||
Exact\fnm[1] & & & & \\
|
||||
accurate\fnm[1] & & & & \\
|
||||
\end{tabular}
|
||||
\end{ruledtabular}
|
||||
\fnt[1]{Reference \onlinecite{}.}
|
||||
\fnt[1]{FCI/aug-cc-pV5Z excitation energies computer with QUANTUM PACKAGE. \cite{QP2}}
|
||||
\end{table*}
|
||||
%%% %%% %%% %%%
|
||||
|
||||
@ -523,7 +523,7 @@ Total energies (in hartree) and excitation energies (in \titou{hartree}) of \ce{
|
||||
\includegraphics[width=\linewidth]{fig/GSetDES_exact_HF_LDA_eLDA}
|
||||
\caption{
|
||||
Total energies (in hartree) of \ce{H2} as a function of $\RHH$ (in bohr) for various methods with the STO-3G minimal basis.
|
||||
\label{tab:Energies}
|
||||
%\label{fig:Energies}
|
||||
}
|
||||
\end{figure}
|
||||
%%% %%% %%% %%%
|
||||
@ -533,7 +533,7 @@ Total energies (in hartree) of \ce{H2} as a function of $\RHH$ (in bohr) for var
|
||||
\includegraphics[width=\linewidth]{fig/ExcitationEnergyExact_wHF_wLDA_weLDA_w=0etw=0.5}
|
||||
\caption{
|
||||
Excitation energies (in hartree) of \ce{H2} as a function of $\RHH$ (in bohr) for various methods with the STO-3G minimal basis.
|
||||
\label{tab:Energies}
|
||||
%\label{fig:Energies}
|
||||
}
|
||||
\end{figure}
|
||||
%%% %%% %%% %%%
|
||||
@ -543,7 +543,7 @@ Excitation energies (in hartree) of \ce{H2} as a function of $\RHH$ (in bohr) fo
|
||||
\includegraphics[width=\linewidth]{fig/EnsembleEnergy_wHF_wLDA_weLDA_wHFbarre_wLDAbarre_weLDAbarre_R=1.4}
|
||||
\caption{
|
||||
Ensemble energies (in hartree) of \ce{H2} with $\RHH = 1.4$ bohr as a function of the weight $\ew{}$ for various methods with the STO-3G minimal basis.
|
||||
\label{tab:Energies}
|
||||
%\label{tab:Energies}
|
||||
}
|
||||
\end{figure}
|
||||
%%% %%% %%% %%%
|
||||
@ -558,7 +558,7 @@ We select STO-3G as minimal basis, and study the behaviour of the total energy o
|
||||
This minimal-basis example is quite pedagogical as the molecular orbitals are fixed by symmetry.
|
||||
We have then access to the individual densities of the ground and doubly-excited states (which is not usually possible in practice).
|
||||
Therefore, thanks to the spatial symmetry and the minimal basis, the individual densities extracted from the ensemble density are equal to the \textit{exact} individual densities.
|
||||
In other words, there is no density-driven error and the only error that we are going to see is the functional-driven error (and this is what we want to study).
|
||||
In other words, there is no density-driven error and the only error that we are going to observe is the functional-driven error (and this is what we want to study).
|
||||
|
||||
The bonding and antibonding orbitals of the \ce{H2} molecule are given by
|
||||
\begin{subequations}
|
||||
@ -712,7 +712,8 @@ For HF, we have
|
||||
\label{eq:bEwHF}
|
||||
\begin{split}
|
||||
\tE{\HF}{\ew{}}
|
||||
& = \titou{\int \hHc(\br{}) \n{}{\ew{}}(\br{}) d\br{}}
|
||||
& = \Ts{\ew{}}[\n{}{\ew{}}(\br{})]
|
||||
+ \int \vext(\br{}) \n{}{\ew{}}(\br{}) d\br{}
|
||||
+ \frac{1}{2} \iint \frac{\n{}{\ew{}}(\br{})\n{}{\ew{}}(\br{}')}{\abs{\br{} - \br{}'}} d\br{} d\br{}'
|
||||
\\
|
||||
& = 2 (1-\ew{}) \eHc{1} + 2 \ew{} \eHc{2}
|
||||
@ -725,7 +726,8 @@ In the case of the LDA, it reads
|
||||
\label{eq:bEwLDA}
|
||||
\begin{split}
|
||||
\tE{\LDA}{\ew{}}
|
||||
& = \titou{\int \hHc(\br{}) \n{}{\ew{}}(\br{}) d\br{}}
|
||||
& = \Ts{\ew{}}[\n{}{\ew{}}(\br{})]
|
||||
+ \int \vext(\br{}) \n{}{\ew{}}(\br{}) d\br{}
|
||||
+ \iint \frac{\n{}{\ew{}}(\br{})\n{}{\ew{}}(\br{}')}{\abs{\br{} - \br{}'}} d\br{} d\br{}'
|
||||
+ \int \e{\xc}{\LDA}[\n{}{\ew{}}(\br{})] \n{}{\ew{}}(\br{}) d\br{}
|
||||
\\
|
||||
@ -742,7 +744,8 @@ For eLDA, the ensemble energy can be decomposed as
|
||||
\label{eq:bEweLDA}
|
||||
\begin{split}
|
||||
\tE{\eLDA}{\ew{}}
|
||||
& = \titou{\int \hHc(\br{}) \n{}{\ew{}}(\br{}) d\br{}}
|
||||
& = \Ts{\ew{}}[\n{}{\ew{}}(\br{})]
|
||||
+ \int \vext(\br{}) \n{}{\ew{}}(\br{}) d\br{}
|
||||
+ \iint \frac{\n{}{\ew{}}(\br{})\n{}{\ew{}}(\br{}')}{\abs{\br{} - \br{}'}} d\br{} d\br{}'
|
||||
+ \int \be{\xc}{\ew{}}[\n{}{\ew{}}(\br{})] \n{}{\ew{}}(\br{}) d\br{}
|
||||
\\
|
||||
|
Loading…
Reference in New Issue
Block a user