numerical values
This commit is contained in:
parent
0551108122
commit
c348e8170d
70
FarDFT.nb
70
FarDFT.nb
@ -10,10 +10,10 @@
|
||||
NotebookFileLineBreakTest
|
||||
NotebookFileLineBreakTest
|
||||
NotebookDataPosition[ 158, 7]
|
||||
NotebookDataLength[ 549900, 10641]
|
||||
NotebookOptionsPosition[ 539584, 10477]
|
||||
NotebookOutlinePosition[ 539920, 10492]
|
||||
CellTagsIndexPosition[ 539877, 10489]
|
||||
NotebookDataLength[ 551363, 10677]
|
||||
NotebookOptionsPosition[ 540821, 10509]
|
||||
NotebookOutlinePosition[ 541158, 10524]
|
||||
CellTagsIndexPosition[ 541115, 10521]
|
||||
WindowFrame->Normal*)
|
||||
|
||||
(* Beginning of Notebook Content *)
|
||||
@ -1705,6 +1705,38 @@ Cell[BoxData[
|
||||
3.7827277718121433`*^9}},
|
||||
CellLabel->"In[4]:=",ExpressionUUID->"8d489c13-936e-4272-b8f6-29963888bb9f"],
|
||||
|
||||
Cell[CellGroupData[{
|
||||
|
||||
Cell[BoxData[
|
||||
RowBox[{"SetAccuracy", "[",
|
||||
RowBox[{
|
||||
RowBox[{"-",
|
||||
RowBox[{"ES", "\[LeftDoubleBracket]",
|
||||
RowBox[{";;", ",", "2"}], "\[RightDoubleBracket]"}]}], ",", "7"}],
|
||||
"]"}]], "Input",
|
||||
CellChangeTimes->{{3.783081024944618*^9, 3.7830810452646837`*^9}, {
|
||||
3.783081103856196*^9, 3.783081104302329*^9}},
|
||||
CellLabel->"In[12]:=",ExpressionUUID->"61dfa35c-e342-4dc8-903c-d82259a516b7"],
|
||||
|
||||
Cell[BoxData[
|
||||
RowBox[{"{",
|
||||
RowBox[{
|
||||
"0.0144967970908660851`5.16127206020633", ",",
|
||||
"0.0145228596955837123`5.162052141689678", ",",
|
||||
"0.0145605323788148646`5.16317725443819", ",",
|
||||
"0.0145122400271831991`5.161734452848537", ",",
|
||||
"0.0141416030960858222`5.150498643995601", ",",
|
||||
"0.0123339467474009694`5.091102069000304", ",",
|
||||
"0.0097155464204599512`4.987467231154754", ",",
|
||||
"0.0067438074727065987`4.828905163227798", ",",
|
||||
"0.0035844891476832362`4.554427269864077", ",",
|
||||
"0.0020591325343476973`4.313684300519664", ",",
|
||||
"0.0014581793704013584`4.163810949759818"}], "}"}]], "Output",
|
||||
CellChangeTimes->{{3.7830810227244043`*^9, 3.783081045700563*^9},
|
||||
3.783081105143827*^9},
|
||||
CellLabel->"Out[12]=",ExpressionUUID->"717b8b96-8077-4690-8e3e-3c1a5238ccd1"]
|
||||
}, Open ]],
|
||||
|
||||
Cell[BoxData[{
|
||||
RowBox[{
|
||||
RowBox[{"GS", "=",
|
||||
@ -1932,7 +1964,7 @@ Cell[BoxData[{
|
||||
3.782710858528974*^9}, {3.7827275396833487`*^9, 3.7827275687159843`*^9}, {
|
||||
3.7827276811573753`*^9, 3.782727703059353*^9}, {3.7830130259268627`*^9,
|
||||
3.783013037428529*^9}},
|
||||
CellLabel->"In[11]:=",ExpressionUUID->"6a07f7bc-64fd-4691-a797-042e1daf8a9c"],
|
||||
CellLabel->"In[13]:=",ExpressionUUID->"6a07f7bc-64fd-4691-a797-042e1daf8a9c"],
|
||||
|
||||
Cell[CellGroupData[{
|
||||
|
||||
@ -10475,8 +10507,8 @@ n+jwpi2320ha1OF78OOls3MQ/OPe5p2ONQj3wPgw9yrf/lmXlYHwD5C3pyQY
|
||||
}, Open ]]
|
||||
}, Open ]]
|
||||
},
|
||||
WindowSize->{1280, 755},
|
||||
WindowMargins->{{0, Automatic}, {Automatic, 0}},
|
||||
WindowSize->{1280, 1022},
|
||||
WindowMargins->{{Automatic, 0}, {Automatic, 0}},
|
||||
FrontEndVersion->"12.0 for Mac OS X x86 (64-bit) (April 8, 2019)",
|
||||
StyleDefinitions->"Default.nb"
|
||||
]
|
||||
@ -10590,7 +10622,7 @@ Cell[36614, 1101, 546, 14, 58, "Text",ExpressionUUID->"d05917ae-a767-4a78-834a-c
|
||||
}, Open ]],
|
||||
Cell[CellGroupData[{
|
||||
Cell[37197, 1120, 419, 8, 54, "Subsection",ExpressionUUID->"bcd158fd-9aa7-4c7b-837e-afd37c54f55a"],
|
||||
Cell[37619, 1130, 571, 11, 58, "Text",ExpressionUUID->"a0112f10-d580-4370-a6ed-bff98b24a4a6"],
|
||||
Cell[37619, 1130, 571, 11, 81, "Text",ExpressionUUID->"a0112f10-d580-4370-a6ed-bff98b24a4a6"],
|
||||
Cell[38193, 1143, 2757, 86, 101, "Input",ExpressionUUID->"aabf1284-1a62-408f-8d1c-50c99b5acc35"],
|
||||
Cell[40953, 1231, 278, 6, 35, "Text",ExpressionUUID->"88a4bd50-0ba7-4f7c-9fc0-e0feb01831fc"],
|
||||
Cell[41234, 1239, 606, 19, 48, "Input",ExpressionUUID->"a889f096-9a50-426c-9cf3-81c363ec2eaf"],
|
||||
@ -10625,20 +10657,24 @@ Cell[52395, 1568, 386, 8, 35, "Text",ExpressionUUID->"00fbe382-6c25-4893-a74d-54
|
||||
Cell[52784, 1578, 368, 8, 32, "Input",ExpressionUUID->"b7e98868-257f-43e4-b057-ff1cbb083046"],
|
||||
Cell[53155, 1588, 728, 11, 104, "Text",ExpressionUUID->"336e8167-7e94-4334-9956-c0652866375e"],
|
||||
Cell[53886, 1601, 4267, 104, 217, "Input",ExpressionUUID->"8d489c13-936e-4272-b8f6-29963888bb9f"],
|
||||
Cell[58156, 1707, 2998, 83, 88, "Input",ExpressionUUID->"af4fe8f8-c3eb-4495-a149-b4bd1830693b"],
|
||||
Cell[CellGroupData[{
|
||||
Cell[61179, 1794, 1815, 41, 87, "Input",ExpressionUUID->"2f2c8334-f314-4d97-9abf-fd397dbace2b"],
|
||||
Cell[62997, 1837, 1143, 18, 34, "Output",ExpressionUUID->"2f3bb44b-d6f9-4a99-9502-ca62f0efb7ba"],
|
||||
Cell[64143, 1857, 1162, 19, 34, "Output",ExpressionUUID->"1d0f19f2-b173-4e62-90d5-1a678f33be24"]
|
||||
Cell[58178, 1709, 402, 9, 30, "Input",ExpressionUUID->"61dfa35c-e342-4dc8-903c-d82259a516b7"],
|
||||
Cell[58583, 1720, 795, 16, 34, "Output",ExpressionUUID->"717b8b96-8077-4690-8e3e-3c1a5238ccd1"]
|
||||
}, Open ]],
|
||||
Cell[65320, 1879, 2091, 55, 93, "Input",ExpressionUUID->"6a07f7bc-64fd-4691-a797-042e1daf8a9c"],
|
||||
Cell[59393, 1739, 2998, 83, 88, "Input",ExpressionUUID->"af4fe8f8-c3eb-4495-a149-b4bd1830693b"],
|
||||
Cell[CellGroupData[{
|
||||
Cell[67436, 1938, 3265, 79, 413, "Input",ExpressionUUID->"71acd6aa-f9db-421a-b875-c028c20e1f39"],
|
||||
Cell[70704, 2019, 241640, 4355, 549, "Output",ExpressionUUID->"363e84e6-4277-48d1-9082-5d4df4ade86a"]
|
||||
Cell[62416, 1826, 1815, 41, 87, "Input",ExpressionUUID->"2f2c8334-f314-4d97-9abf-fd397dbace2b"],
|
||||
Cell[64234, 1869, 1143, 18, 34, "Output",ExpressionUUID->"2f3bb44b-d6f9-4a99-9502-ca62f0efb7ba"],
|
||||
Cell[65380, 1889, 1162, 19, 34, "Output",ExpressionUUID->"1d0f19f2-b173-4e62-90d5-1a678f33be24"]
|
||||
}, Open ]],
|
||||
Cell[66557, 1911, 2091, 55, 93, "Input",ExpressionUUID->"6a07f7bc-64fd-4691-a797-042e1daf8a9c"],
|
||||
Cell[CellGroupData[{
|
||||
Cell[68673, 1970, 3265, 79, 413, "Input",ExpressionUUID->"71acd6aa-f9db-421a-b875-c028c20e1f39"],
|
||||
Cell[71941, 2051, 241640, 4355, 549, "Output",ExpressionUUID->"363e84e6-4277-48d1-9082-5d4df4ade86a"]
|
||||
}, Open ]],
|
||||
Cell[CellGroupData[{
|
||||
Cell[312381, 6379, 1456, 37, 119, "Input",ExpressionUUID->"952c50e4-bbca-4ba8-969b-bbcc6b94bbea"],
|
||||
Cell[313840, 6418, 225692, 4053, 536, "Output",ExpressionUUID->"92528416-5a6f-4ffc-aee6-8773308dd7db"]
|
||||
Cell[313618, 6411, 1456, 37, 119, "Input",ExpressionUUID->"952c50e4-bbca-4ba8-969b-bbcc6b94bbea"],
|
||||
Cell[315077, 6450, 225692, 4053, 536, "Output",ExpressionUUID->"92528416-5a6f-4ffc-aee6-8773308dd7db"]
|
||||
}, Open ]]
|
||||
}, Open ]]
|
||||
}, Open ]]
|
||||
|
@ -245,7 +245,8 @@ We adopt the usual decomposition, and write down the weight-dependent xc functio
|
||||
\end{equation}
|
||||
where $\e{\ex}{\ew{}}(\n{}{})$ and $\e{\co}{\ew{}}(\n{}{})$ are the weight-dependent exchange and correlation functionals, respectively.
|
||||
The construction of these two functionals is described below.
|
||||
Here, we restrict our study to spin-unpolarized systems, \ie, $\n{\uparrow}{} = \n{\downarrow}{} = \n{}{}/2$.
|
||||
Here, we restrict our study to spin-unpolarised systems, \ie, $\n{\uparrow}{} = \n{\downarrow}{} = \n{}{}/2$ (where $\n{\uparrow}{}$ and $\n{\downarrow}{}$ are the spin-up and spin-down electron densities).
|
||||
Extension to spin-polarised systems will be reported in future work.
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\subsection{Weight-dependent exchange functional}
|
||||
@ -349,22 +350,22 @@ Combining these, we build a two-state weight-dependent correlation functional:
|
||||
$-\e{\co}{(I)}$ as a function of the radius of the glome $R = 1/(\pi \n{}{})^{1/3}$ for the ground state ($I=0$), and the first doubly-excited state ($I=1$) of the (spin-unpolarized) two-electron glomium system.
|
||||
}
|
||||
\begin{ruledtabular}
|
||||
\begin{tabular}{ldd}
|
||||
\begin{tabular}{lcc}
|
||||
& \tabc{Ground state} & \tabc{Doubly-excited state} \\
|
||||
$R$ & \tabc{$I=0$} & \tabc{$I=1$} \\
|
||||
\hline
|
||||
$0$ & & \\
|
||||
$1/10$ & & \\
|
||||
$1/5$ & & \\
|
||||
$1/2$ & & \\
|
||||
$1$ & & \\
|
||||
$2$ & & \\
|
||||
$5$ & & \\
|
||||
$10$ & & \\
|
||||
$20$ & & \\
|
||||
$50$ & & \\
|
||||
$100$ & & \\
|
||||
$150$ & & \\
|
||||
$0$ & $0.023818$ & $0.014463$ \\
|
||||
$0.1$ & $0.023392$ & $0.014497$ \\
|
||||
$0.2$ & $0.022979$ & $0.014523$ \\
|
||||
$0.5$ & $0.021817$ & $0.014561$ \\
|
||||
$1$ & $0.020109$ & $0.014512$ \\
|
||||
$2$ & $0.017371$ & $0.014142$ \\
|
||||
$5$ & $0.012359$ & $0.012334$ \\
|
||||
$10$ & $0.008436$ & $0.009716$ \\
|
||||
$20$ & $0.005257$ & $0.006744$ \\
|
||||
$50$ & $0.002546$ & $0.003584$ \\
|
||||
$100$ & $0.001399$ & $0.002059$ \\
|
||||
$150$ & $0.000972$ & $0.001458$ \\
|
||||
\end{tabular}
|
||||
\end{ruledtabular}
|
||||
\end{table}
|
||||
@ -380,8 +381,8 @@ Combining these, we build a two-state weight-dependent correlation functional:
|
||||
& \tabc{$I=0$} & \tabc{$I=1$} \\
|
||||
\hline
|
||||
$a_1$ & $-0.0238184$ & $-0.0144633$ \\
|
||||
$a_2$ & $+0.00575719$ & $-0.0504501$ \\
|
||||
$a_3$ & $+0.0830576$ & $+0.0331287$ \\
|
||||
$a_2$ & $+0.00540994$ & $-0.0506019$ \\
|
||||
$a_3$ & $+0.0830766$ & $+0.0331417$ \\
|
||||
\end{tabular}
|
||||
\end{ruledtabular}
|
||||
\end{table}
|
||||
|
Loading…
Reference in New Issue
Block a user