1
0
mirror of https://github.com/TREX-CoE/irpjast.git synced 2025-03-08 01:33:53 +01:00
Ramon L. PANADES-BARRUETA 8a884235f0
Merge pull request #4 from Panadestein/as
Faster gradient and laplacian in 3body Jastrow
2021-01-23 16:02:43 +01:00
2021-01-23 15:34:36 +01:00
2021-01-04 16:45:32 +01:00
2021-01-23 15:34:36 +01:00
2021-01-23 15:34:36 +01:00
2020-12-08 13:08:23 +01:00
2020-12-07 10:55:37 +01:00
2020-12-08 18:56:36 +01:00
2021-01-23 15:34:36 +01:00
2021-01-04 16:45:32 +01:00
2021-01-23 15:34:36 +01:00
2021-01-23 15:34:36 +01:00
2021-01-19 16:22:12 +01:00
2021-01-23 15:34:36 +01:00

IRPJAST

CHAMP's Jastrow factor computation using the IRPF90 method

Original equation:

$$ \sum_{i=2}^{Ne} \sum_{j=1}^i \sum_{pkl} \sum_a^{Nn} c_{apkl}\, r_{ij}^k\, ( R_{ia}^l + R_{ja}^l) ( R_{ia} R_{ja})^m $$

Expanding, one obtains:

$$ \sum_{i=2}^{Ne} \sum_{j=1}^i \sum_{pkl} \sum_a^{Nn} c_{apkl} R_{ia}^{p-k-l}\, r_{ij}^k\, R_{ja}^{p-k+l} + c_{apkl} R_{ia}^{p-k+l}\, r_{ij}^k\, R_{ja}^{p-k-l} $$

The equation is symmetric if we exchange $i$ and $j$, so we can rewrite

$$ \sum_{i=1}^{Ne} \sum_{j=1}^{Ne} \sum_{pkl} \sum_a^{Nn} c_{apkl} R_{ia}^{p-k-l}\, r_{ij}^k\, R_{ja}^{p-k+l} $$

If we reshape $R_{ja}^p$ as a matrix $R_{j,al}$ of size $N_e \times N_n(N_c+1)$, for every $k$, we can pre-compute the matrix product

$$ C_{i,al}^{k} = \sum_j r_{ij}^k\, R_{i,al} $$ which can be computed efficiently with BLAS. We can express the total Jastrow as:

$$ \sum_{i=1}^{Ne} \sum_{pkl} \sum_a^{Nn} c_{apkl} R_{ia}^{p-k-l}\, C_{i,a(p-k+l)}^k $$

Description
No description provided
Readme 8.4 MiB
Languages
Fortran 75.7%
Python 23.2%
Makefile 1.1%