mirror of
https://github.com/TREX-CoE/irpjast.git
synced 2024-11-04 13:14:03 +01:00
Merge pull request #4 from Panadestein/as
Faster gradient and laplacian in 3body Jastrow
This commit is contained in:
commit
8a884235f0
2
Makefile
2
Makefile
@ -1,4 +1,4 @@
|
||||
IRPF90 = irpf90 --codelet=factor_een:100000 #-a -d
|
||||
IRPF90 = irpf90 --codelet=jastrow_full:1000 #-s nelec:10 -s nnuc:2 -s ncord:5 #-a -d
|
||||
FC = ifort -xHost -g -mkl=sequential
|
||||
FCFLAGS= -O2 -ffree-line-length-none -I .
|
||||
NINJA = ninja
|
||||
|
47
README.org
47
README.org
@ -4,34 +4,35 @@
|
||||
|
||||
Original equation:
|
||||
|
||||
$$
|
||||
\sum_{i=2}^{Ne} \sum_{j=1}^i \sum_{pkl} \sum_a^{Nn} c_{apkl}\, r_{ij}^k\, ( R_{ia}^l + R_{ja}^l) ( R_{ia} R_{ja})^m
|
||||
$$
|
||||
$$
|
||||
\sum_{i=2}^{Ne} \sum_{j=1}^i \sum_{pkl} \sum_a^{Nn} c_{apkl}\, r_{ij}^k\, ( R_{ia}^l + R_{ja}^l) ( R_{ia} R_{ja})^m
|
||||
$$
|
||||
|
||||
Expanding, one obtains:
|
||||
Expanding, one obtains:
|
||||
|
||||
$$
|
||||
\sum_{i=2}^{Ne} \sum_{j=1}^i \sum_{pkl} \sum_a^{Nn} c_{apkl} R_{ia}^{p-k-l}\, r_{ij}^k\, R_{ja}^{p-k+l} + c_{apkl} R_{ia}^{p-k+l}\, r_{ij}^k\, R_{ja}^{p-k-l}
|
||||
$$
|
||||
$$
|
||||
\sum_{i=2}^{Ne} \sum_{j=1}^i \sum_{pkl} \sum_a^{Nn} c_{apkl} R_{ia}^{p-k-l}\, r_{ij}^k\, R_{ja}^{p-k+l} + c_{apkl} R_{ia}^{p-k+l}\, r_{ij}^k\, R_{ja}^{p-k-l}
|
||||
$$
|
||||
|
||||
The equation is symmetric if we exchange $i$ and $j$, so we can rewrite
|
||||
The equation is symmetric if we exchange $i$ and $j$, so we can rewrite
|
||||
|
||||
$$
|
||||
\sum_{i=1}^{Ne} \sum_{j=1}^{Ne} \sum_{pkl} \sum_a^{Nn} c_{apkl} R_{ia}^{p-k-l}\, r_{ij}^k\, R_{ja}^{p-k+l}
|
||||
$$
|
||||
$$
|
||||
\sum_{i=1}^{Ne} \sum_{j=1}^{Ne} \sum_{pkl} \sum_a^{Nn} c_{apkl} R_{ia}^{p-k-l}\, r_{ij}^k\, R_{ja}^{p-k+l}
|
||||
$$
|
||||
|
||||
If we reshape $R_{ja}^p$ as a matrix $R_{j,al}$ of size
|
||||
$N_e \times N_n(N_c+1)$,
|
||||
for every $k$, we can pre-compute the matrix product
|
||||
If we reshape $R_{ja}^p$ as a matrix $R_{j,al}$ of size
|
||||
$N_e \times N_n(N_c+1)$,
|
||||
for every $k$, we can pre-compute the matrix product
|
||||
|
||||
$$
|
||||
C_{i,al}^{k} = \sum_j r_{ij}^k\, R_{i,al}
|
||||
$$
|
||||
which can be computed efficiently with BLAS.
|
||||
We can express the total Jastrow as:
|
||||
$$
|
||||
C_{i,al}^{k} = \sum_j r_{ij}^k\, R_{i,al}
|
||||
$$
|
||||
which can be computed efficiently with BLAS.
|
||||
We can express the total Jastrow as:
|
||||
|
||||
$$
|
||||
\sum_{i=1}^{Ne} \sum_{pkl} \sum_a^{Nn}
|
||||
c_{apkl} R_{ia}^{p-k-l}\, C_{i,a(p-k+l)}^k
|
||||
$$
|
||||
$$
|
||||
\sum_{i=1}^{Ne} \sum_{pkl} \sum_a^{Nn}
|
||||
c_{apkl} R_{ia}^{p-k-l}\, C_{i,a(p-k+l)}^k
|
||||
$$
|
||||
|
||||
|
||||
|
@ -7,8 +7,6 @@ BEGIN_PROVIDER [ double precision, factor_een ]
|
||||
END_DOC
|
||||
integer :: i, j, a, p, k, l, lmax, m, n
|
||||
double precision :: cn, accu2, accu
|
||||
double precision :: f(nnuc,0:ncord-2,0:ncord-2)
|
||||
double precision :: tmp_c(nelec,nnuc,0:ncord,0:ncord-1)
|
||||
|
||||
! factor_een = factor_een_blas
|
||||
! return
|
||||
@ -35,10 +33,9 @@ BEGIN_PROVIDER [ double precision, factor_een ]
|
||||
do i = 1, nelec
|
||||
accu = accu + &
|
||||
rescale_een_e(i,j,k) * &
|
||||
rescale_een_n(i,a,m) * &
|
||||
rescale_een_n(j,a,m+l)
|
||||
rescale_een_n(i,a,m)
|
||||
enddo
|
||||
accu2 = accu2 + accu
|
||||
accu2 = accu2 + accu*rescale_een_n(j,a,m+l)
|
||||
enddo
|
||||
factor_een = factor_een + accu2 * cn
|
||||
enddo
|
||||
@ -50,6 +47,66 @@ BEGIN_PROVIDER [ double precision, factor_een ]
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, factor_een_deriv_e, (4, nelec) ]
|
||||
implicit none
|
||||
integer :: i, j, a, p, k, l, lmax, m, n
|
||||
double precision :: cn, accu, accu2, daccu(1:4), daccu2(1:4)
|
||||
|
||||
factor_een_deriv_e(1:4,1:nelec) = 0.0d0
|
||||
|
||||
do p = 2, ncord
|
||||
do k = 0, p - 1
|
||||
if (k /= 0) then
|
||||
lmax = p - k
|
||||
else
|
||||
lmax = p - k - 2
|
||||
endif
|
||||
do l = 0, lmax
|
||||
if ( iand(p - k - l, 1) == 1) cycle
|
||||
|
||||
m = (p - k - l) / 2
|
||||
|
||||
do a = 1, nnuc
|
||||
cn = cord_vect_lkp(l, k, p, typenuc_arr(a))
|
||||
do j = 1, nelec
|
||||
accu=0.d0
|
||||
accu2 = 0.d0
|
||||
daccu (1:4) = 0.d0
|
||||
daccu2(1:4) = 0.d0
|
||||
do i = 1, nelec
|
||||
accu = accu + &
|
||||
rescale_een_e(i,j,k) * &
|
||||
rescale_een_n(i,a,m)
|
||||
accu2 = accu2 + &
|
||||
rescale_een_e(i,j,k) * &
|
||||
rescale_een_n(i,a,m+l)
|
||||
daccu(1:4) = daccu(1:4) + &
|
||||
rescale_een_e_deriv_e(1:4,j,i,k) * &
|
||||
rescale_een_n(i,a,m)
|
||||
daccu2(1:4) = daccu2(1:4) + &
|
||||
rescale_een_e_deriv_e(1:4,j,i,k) * &
|
||||
rescale_een_n(i,a,m+l)
|
||||
|
||||
enddo
|
||||
factor_een_deriv_e(1:4,j) = factor_een_deriv_e(1:4,j) + &
|
||||
(accu * rescale_een_n_deriv_e(1:4,j,a,m+l) + daccu(1:4) * rescale_een_n(j,a,m+l) + &
|
||||
daccu2(1:4)* rescale_een_n(j,a,m) + accu2*rescale_een_n_deriv_e(1:4,j,a,m)) * cn
|
||||
|
||||
factor_een_deriv_e(4,j) = factor_een_deriv_e(4,j) + 2.d0*( &
|
||||
daccu (1) * rescale_een_n_deriv_e(1,j,a,m+l) + &
|
||||
daccu (2) * rescale_een_n_deriv_e(2,j,a,m+l) + &
|
||||
daccu (3) * rescale_een_n_deriv_e(3,j,a,m+l) + &
|
||||
daccu2(1) * rescale_een_n_deriv_e(1,j,a,m ) + &
|
||||
daccu2(2) * rescale_een_n_deriv_e(2,j,a,m ) + &
|
||||
daccu2(3) * rescale_een_n_deriv_e(3,j,a,m ) )*cn
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, factor_een_deriv_e_ref, (4, nelec) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Dimensions 1-3 : dx, dy, dz
|
||||
@ -60,7 +117,7 @@ BEGIN_PROVIDER [ double precision, factor_een_deriv_e, (4, nelec) ]
|
||||
double precision, dimension(4) :: driam, drjam_cn, drial, drjal, drijk
|
||||
double precision :: cn, v1, v2, d1, d2, lap1, lap2
|
||||
|
||||
factor_een_deriv_e = 0.0d0
|
||||
factor_een_deriv_e_ref = 0.0d0
|
||||
|
||||
do p = 2, ncord
|
||||
do k = 0 , p - 1
|
||||
@ -105,14 +162,14 @@ BEGIN_PROVIDER [ double precision, factor_een_deriv_e, (4, nelec) ]
|
||||
d2 = drjam_cn(ii) * riam
|
||||
lap1 = lap1 + d1 * d2
|
||||
lap2 = lap2 + drijk(ii) * drjal(ii)
|
||||
factor_een_deriv_e(ii, j) = factor_een_deriv_e(ii, j) + v1 * d2 + d1 * v2
|
||||
factor_een_deriv_e_ref(ii, j) = factor_een_deriv_e_ref(ii, j) + v1 * d2 + d1 * v2
|
||||
enddo
|
||||
|
||||
! v(x) u''(x) + 2 * u'(x) v'(x) + u(x) v''(x)
|
||||
ii = 4
|
||||
d1 = drijk(ii) * rial + rijk * drjal(ii) + lap2 + lap2
|
||||
d2 = drjam_cn(ii) * riam
|
||||
factor_een_deriv_e(ii, j) = factor_een_deriv_e(ii, j) + v1 * d2 + d1 * v2 + lap1 + lap1
|
||||
factor_een_deriv_e_ref(ii, j) = factor_een_deriv_e_ref(ii, j) + v1 * d2 + d1 * v2 + lap1 + lap1
|
||||
|
||||
enddo
|
||||
enddo
|
||||
|
@ -57,70 +57,57 @@ BEGIN_PROVIDER [ double precision, factor_een_deriv_e_blas, (4, nelec) ]
|
||||
! Dimensions 1-3 : dx, dy, dz
|
||||
! Dimension 4 : d2x + d2y + d2z
|
||||
END_DOC
|
||||
integer :: i, ii, j, a, p, k, l, lmax, m
|
||||
double precision :: riam, rjam_cn, rial, rjal, rijk
|
||||
double precision, dimension(4) :: driam, drjam_cn, drial, drjal, drijk
|
||||
double precision :: cn, v1, v2, d1, d2, lap1, lap2
|
||||
|
||||
integer :: i, j, a, p, k, l, lmax, m, n
|
||||
double precision :: cn(nnuc), accu(4)
|
||||
double precision :: f(nnuc,0:ncord-2,0:ncord-2)
|
||||
double precision :: tmp_c(nelec,nnuc,0:ncord,0:ncord-1)
|
||||
double precision :: dtmp_c(4,nelec,nnuc,0:ncord,0:ncord-1)
|
||||
|
||||
factor_een_deriv_e_blas = 0.0d0
|
||||
|
||||
do p = 2, ncord
|
||||
do k = 0 , p - 1
|
||||
if (k /= 0) then
|
||||
lmax = p - k
|
||||
else
|
||||
lmax = p - k - 2
|
||||
endif
|
||||
|
||||
do l = 0, lmax
|
||||
if ( iand(p - k - l, 1) == 1) cycle
|
||||
m = (p - k - l) / 2
|
||||
|
||||
do a = 1, nnuc
|
||||
cn = cord_vect_lkp(l, k, p, typenuc_arr(a))
|
||||
|
||||
do j = 1, nelec
|
||||
rjal = rescale_een_n(j, a, l)
|
||||
rjam_cn = rescale_een_n(j, a, m) * cn
|
||||
|
||||
do ii = 1, 4
|
||||
drjal(ii) = rescale_een_n_deriv_e(ii, j, a, l)
|
||||
drjam_cn(ii) = rescale_een_n_deriv_e(ii, j, a, m) * cn
|
||||
enddo
|
||||
|
||||
do i = 1, nelec
|
||||
rial = rescale_een_n(i, a, l) + rjal
|
||||
riam = rescale_een_n(i, a, m)
|
||||
rijk = rescale_een_e(i, j, k)
|
||||
|
||||
do ii = 1, 4
|
||||
drijk(ii) = rescale_een_e_deriv_e(ii, j, i, k)
|
||||
enddo
|
||||
|
||||
v1 = rijk * rial ! v(x)
|
||||
v2 = rjam_cn * riam ! u(x)
|
||||
|
||||
lap1 = 0.0d0
|
||||
lap2 = 0.0d0
|
||||
do ii = 1, 3
|
||||
d1 = drijk(ii) * rial + rijk * drjal(ii)
|
||||
d2 = drjam_cn(ii) * riam
|
||||
lap1 = lap1 + d1 * d2
|
||||
lap2 = lap2 + drijk(ii) * drjal(ii)
|
||||
factor_een_deriv_e_blas(ii, j) = factor_een_deriv_e_blas(ii, j) + v1 * d2 + d1 * v2
|
||||
enddo
|
||||
|
||||
! v(x) u''(x) + 2 * u'(x) v'(x) + u(x) v''(x)
|
||||
ii = 4
|
||||
d1 = drijk(ii) * rial + rijk * drjal(ii) + lap2 + lap2
|
||||
d2 = drjam_cn(ii) * riam
|
||||
factor_een_deriv_e_blas(ii, j) = factor_een_deriv_e_blas(ii, j) + v1 * d2 + d1 * v2 + lap1 + lap1
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
! r_{ij}^k . R_{ja}^l -> tmp_c_{ia}^{kl}
|
||||
do k=0,ncord-1
|
||||
call dgemm('N','N', nelec, nnuc*(ncord+1), nelec, 1.d0, &
|
||||
rescale_een_e(1,1,k), size(rescale_een_e,1), &
|
||||
rescale_een_n(1,1,0), size(rescale_een_n,1), 0.d0, &
|
||||
tmp_c(1,1,0,k), size(tmp_c,1))
|
||||
enddo
|
||||
|
||||
! dr_{ij}^k . R_{ja}^l -> dtmp_c_{ia}^{kl}
|
||||
do k=0,ncord-1
|
||||
call dgemm('N','N', 4*nelec, nnuc*(ncord+1), nelec, 1.d0, &
|
||||
rescale_een_e_deriv_e(1,1,1,k), 4*size(rescale_een_e_deriv_e,2),&
|
||||
rescale_een_n(1,1,0), size(rescale_een_n,1), 0.d0, &
|
||||
dtmp_c(1,1,1,0,k), 4*size(dtmp_c,2))
|
||||
enddo
|
||||
|
||||
do p = 2, ncord
|
||||
do k = 0, p - 1
|
||||
m = p-k
|
||||
if (k > 0) then
|
||||
lmax = m
|
||||
else
|
||||
lmax = m - 2
|
||||
endif
|
||||
|
||||
n = shiftr(m,1)
|
||||
do l = iand(m, 1), lmax, 2
|
||||
|
||||
do a = 1, nnuc
|
||||
cn(a) = cord_vect_lkp(l, k, p, typenuc_arr(a))
|
||||
enddo
|
||||
|
||||
do a = 1, nnuc
|
||||
do i=1,nelec
|
||||
accu(1:4) = rescale_een_n(i,a,n) * dtmp_c(1:4,i,a,n+l,k) &
|
||||
+ rescale_een_n_deriv_e(1:4,i,a,n) * tmp_c(i,a,n+l,k)
|
||||
factor_een_deriv_e_blas(1:4,i) = factor_een_deriv_e_blas(1:4,i) + accu(1:4) * cn(a)
|
||||
enddo
|
||||
enddo
|
||||
n = n-1
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
@ -2,6 +2,12 @@ program jastrow
|
||||
implicit none
|
||||
print *, 'The total Jastrow factor'
|
||||
print *, jastrow_full
|
||||
print *, 'REF'
|
||||
print *, factor_een_deriv_e_ref
|
||||
print *, 'X'
|
||||
print *, factor_een_deriv_e
|
||||
print *, 'BLAS'
|
||||
print *, factor_een_deriv_e_blas
|
||||
!PROVIDE jastrow_full
|
||||
|
||||
end program
|
||||
|
@ -279,6 +279,7 @@ BEGIN_PROVIDER [double precision, rescale_een_e_deriv_e, (4, nelec, nelec, 0:nco
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [double precision, elec_dist_deriv_e, (4, nelec, nelec)]
|
||||
BEGIN_DOC
|
||||
! Derivative of R_{ij} wrt x
|
||||
|
Loading…
Reference in New Issue
Block a user