mirror of
https://github.com/TREX-CoE/irpjast.git
synced 2024-11-03 20:54:10 +01:00
README
This commit is contained in:
parent
7b9db3808b
commit
c1a4638886
2
Makefile
2
Makefile
@ -1,4 +1,4 @@
|
||||
IRPF90 = irpf90 --codelet=factor_een:100000 #-a -d
|
||||
IRPF90 = irpf90 -s nelec:10 -s nnuc:2 -s ncord:5 #-a -d
|
||||
FC = ifort -xHost -g -mkl=sequential
|
||||
FCFLAGS= -O2 -ffree-line-length-none -I .
|
||||
NINJA = ninja
|
||||
|
47
README.org
47
README.org
@ -4,34 +4,35 @@
|
||||
|
||||
Original equation:
|
||||
|
||||
$$
|
||||
\sum_{i=2}^{Ne} \sum_{j=1}^i \sum_{pkl} \sum_a^{Nn} c_{apkl}\, r_{ij}^k\, ( R_{ia}^l + R_{ja}^l) ( R_{ia} R_{ja})^m
|
||||
$$
|
||||
$$
|
||||
\sum_{i=2}^{Ne} \sum_{j=1}^i \sum_{pkl} \sum_a^{Nn} c_{apkl}\, r_{ij}^k\, ( R_{ia}^l + R_{ja}^l) ( R_{ia} R_{ja})^m
|
||||
$$
|
||||
|
||||
Expanding, one obtains:
|
||||
Expanding, one obtains:
|
||||
|
||||
$$
|
||||
\sum_{i=2}^{Ne} \sum_{j=1}^i \sum_{pkl} \sum_a^{Nn} c_{apkl} R_{ia}^{p-k-l}\, r_{ij}^k\, R_{ja}^{p-k+l} + c_{apkl} R_{ia}^{p-k+l}\, r_{ij}^k\, R_{ja}^{p-k-l}
|
||||
$$
|
||||
$$
|
||||
\sum_{i=2}^{Ne} \sum_{j=1}^i \sum_{pkl} \sum_a^{Nn} c_{apkl} R_{ia}^{p-k-l}\, r_{ij}^k\, R_{ja}^{p-k+l} + c_{apkl} R_{ia}^{p-k+l}\, r_{ij}^k\, R_{ja}^{p-k-l}
|
||||
$$
|
||||
|
||||
The equation is symmetric if we exchange $i$ and $j$, so we can rewrite
|
||||
The equation is symmetric if we exchange $i$ and $j$, so we can rewrite
|
||||
|
||||
$$
|
||||
\sum_{i=1}^{Ne} \sum_{j=1}^{Ne} \sum_{pkl} \sum_a^{Nn} c_{apkl} R_{ia}^{p-k-l}\, r_{ij}^k\, R_{ja}^{p-k+l}
|
||||
$$
|
||||
$$
|
||||
\sum_{i=1}^{Ne} \sum_{j=1}^{Ne} \sum_{pkl} \sum_a^{Nn} c_{apkl} R_{ia}^{p-k-l}\, r_{ij}^k\, R_{ja}^{p-k+l}
|
||||
$$
|
||||
|
||||
If we reshape $R_{ja}^p$ as a matrix $R_{j,al}$ of size
|
||||
$N_e \times N_n(N_c+1)$,
|
||||
for every $k$, we can pre-compute the matrix product
|
||||
If we reshape $R_{ja}^p$ as a matrix $R_{j,al}$ of size
|
||||
$N_e \times N_n(N_c+1)$,
|
||||
for every $k$, we can pre-compute the matrix product
|
||||
|
||||
$$
|
||||
C_{i,al}^{k} = \sum_j r_{ij}^k\, R_{i,al}
|
||||
$$
|
||||
which can be computed efficiently with BLAS.
|
||||
We can express the total Jastrow as:
|
||||
$$
|
||||
C_{i,al}^{k} = \sum_j r_{ij}^k\, R_{i,al}
|
||||
$$
|
||||
which can be computed efficiently with BLAS.
|
||||
We can express the total Jastrow as:
|
||||
|
||||
$$
|
||||
\sum_{i=1}^{Ne} \sum_{pkl} \sum_a^{Nn}
|
||||
c_{apkl} R_{ia}^{p-k-l}\, C_{i,a(p-k+l)}^k
|
||||
$$
|
||||
$$
|
||||
\sum_{i=1}^{Ne} \sum_{pkl} \sum_a^{Nn}
|
||||
c_{apkl} R_{ia}^{p-k-l}\, C_{i,a(p-k+l)}^k
|
||||
$$
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user