sfBSE/sfBSE.tex

610 lines
27 KiB
TeX
Raw Normal View History

2020-10-20 21:58:35 +02:00
\documentclass[aip,jcp,reprint,noshowkeys,superscriptaddress]{revtex4-1}
\usepackage{graphicx,dcolumn,bm,xcolor,microtype,multirow,amscd,amsmath,amssymb,amsfonts,physics,longtable,wrapfig,txfonts}
\usepackage[version=4]{mhchem}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{txfonts}
\usepackage[
colorlinks=true,
citecolor=blue,
breaklinks=true
]{hyperref}
\urlstyle{same}
\begin{document}
\title{Spin-Conserved and Spin-Flip Optical Excitations From the Bethe-Salpeter Equation Formalism}
\author{Enzo \surname{Monino}}
\affiliation{\LCPQ}
\author{Pierre-Fran\c{c}ois \surname{Loos}}
\email{loos@irsamc.ups-tlse.fr}
\affiliation{\LCPQ}
\begin{abstract}
\alert{Here comes the abstract.}
%\bigskip
%\begin{center}
% \boxed{\includegraphics[width=0.5\linewidth]{TOC}}
%\end{center}
%\bigskip
\end{abstract}
\maketitle
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Introduction}
\label{sec:intro}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\alert{Here comes the introduction.}
Unless otherwise stated, atomic units are used, and we assume real quantities throughout this manuscript.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Unrestricted $GW$ formalism}
\label{sec:UGW}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2020-10-27 14:01:50 +01:00
Let us consider an electronic system consisting of $n = n_\up + n_\dw$ electrons (where $n_\up$ and $n_\dw$ are the number of spin-up and spin-down electrons, respectively) and $N$ one-electron basis functions.
The number of spin-up and spin-down occupied orbitals are $O_\up = n_\up$ and $O_\dw = n_\dw$, respectively, and, assuming no linear dependencies in the one-electron basis set, there is $V_\up = N - O_\up$ and $V_\dw = N - O_\dw$ spin-up and spin-down virtual (\ie, unoccupied) orbitals.
2020-10-21 22:58:11 +02:00
The number of spin-conserved single excitations is then $S^\spc = S_{\up\up}^\spc + S_{\dw\dw}^\spc = O_\up V_\up + O_\dw V_\dw$, while the number of spin-flip excitations is $S^\spf = S_{\up\dw}^\spf + S_{\dw\up}^\spf = O_\up V_\dw + O_\dw V_\up$.
2020-10-27 14:01:50 +01:00
Let us denote as $\MO{p_\sig}(\br)$ the $p$th (spin)orbital of spin $\sig$ (where $\sig =$ $\up$ or $\dw$) and $\e{p_\sig}{}$ its one-electron energy.
2020-10-22 12:40:48 +02:00
It is important to understand that, in a spin-conserved excitation the hole orbital $\MO{i_\sig}$ and particle orbital $\MO{a_\sig}$ have the same spin $\sig$.
2020-10-23 15:13:15 +02:00
In a spin-flip excitation, the hole and particle states, $\MO{i_\sig}$ and $\MO{a_\bsig}$, have opposite spins, $\sig$ and $\bsig$.
2020-10-27 14:01:50 +01:00
In the following, we assume real quantities throughout this manuscript, $i$ and $j$ are occupied orbitals, $a$ and $b$ are unoccupied orbitals, $p$, $q$, $r$, and $s$ indicate arbitrary orbitals, and $m$ labels single excitations.
Moreover, we consider systems with collinear spins and a spin-independent hamiltonian without contributions such as spin-orbit interaction.
2020-10-21 22:58:11 +02:00
%================================
2020-10-20 21:58:35 +02:00
\subsection{The dynamical screening}
2020-10-21 22:58:11 +02:00
%================================
2020-10-25 21:29:40 +01:00
The pillar of Green's function many-body perturbation theory is the (time-ordered) one-body Green's function, which has poles at the charged excitations (i.e., ionization potentials and electron affinities) of the system. \cite{ReiningBook}
The spin-$\sig$ component of the one-body Green's function reads \cite{ReiningBook,Bruneval_2016a}
2020-10-23 15:13:15 +02:00
\begin{equation}
2020-10-27 14:01:50 +01:00
\label{eq:G}
G^{\sig}(\br_1,\br_2;\omega)
= \sum_i \frac{\MO{i_\sig}(\br_1) \MO{i_\sig}(\br_2)}{\omega - \e{i_\sig}{} - i\eta}
+ \sum_a \frac{\MO{a_\sig}(\br_1) \MO{a_\sig}(\br_2)}{\omega - \e{a_\sig}{} + i\eta}
2020-10-23 15:13:15 +02:00
\end{equation}
where $\eta$ is a positive infinitesimal.
2020-10-25 21:29:40 +01:00
Based on the spin-up and spin-down components of $G$, one can easily compute the non-interacting polarizability (which is a sum over spins)
2020-10-23 15:13:15 +02:00
\begin{equation}
2020-10-27 22:32:24 +01:00
\label{eq:chi0}
2020-10-23 15:13:15 +02:00
\chi_0(\br_1,\br_2;\omega) = - \frac{i}{2\pi} \sum_\sig \int G^{\sig}(\br_1,\br_2;\omega+\omega') G^{\sig}(\br_1,\br_2;\omega') d\omega'
\end{equation}
and subsequently the dielectric function
2020-10-23 15:13:15 +02:00
\begin{equation}
2020-10-27 22:32:24 +01:00
\label{eq:eps}
2020-10-27 14:01:50 +01:00
\epsilon(\br_1,\br_2;\omega) = \delta(\br_1 - \br_2) - \int \frac{\chi_0(\br_1,\br_3;\omega) }{\abs{\br_2 - \br_3}} d\br_3
2020-10-23 15:13:15 +02:00
\end{equation}
2020-10-25 21:29:40 +01:00
where $\delta(\br_1 - \br_2)$ is the Dirac function.
2020-10-23 15:13:15 +02:00
Based on this latter ingredient, one can access the dynamically-screened Coulomb potential
\begin{equation}
2020-10-27 22:32:24 +01:00
\label{eq:W}
2020-10-23 15:13:15 +02:00
W(\br_1,\br_2;\omega) = \int \frac{\epsilon^{-1}(\br_1,\br_3;\omega) }{\abs{\br_2 - \br_3}} d\br_3
\end{equation}
2020-10-27 14:01:50 +01:00
which is naturally spin independent as the bare Coulomb interaction $\abs{\br_1 - \br_2}^{-1}$ does not depend on spin coordinates.
2020-10-25 21:29:40 +01:00
2020-10-27 14:01:50 +01:00
Within the $GW$ formalism, the dynamical screening is computed at the random-phase approximation (RPA) level by considering only the manifold of the spin-conserved neutral excitations.
In the orbital basis, the spectral representation of $W$ is
2020-10-20 23:14:57 +02:00
\begin{multline}
2020-10-27 22:32:24 +01:00
\label{eq:W_spectral}
2020-10-22 12:40:48 +02:00
W_{p_\sig q_\sig,r_\sigp s_\sigp}(\omega) = \ERI{p_\sig q_\sig}{r_\sigp s_\sigp}
+ \sum_m \ERI{p_\sig q_\sig}{m}\ERI{r_\sigp s_\sigp}{m}
2020-10-20 23:14:57 +02:00
\\
2020-10-21 22:58:11 +02:00
\times \qty[ \frac{1}{\omega - \Om{m}{\spc,\RPA} + i \eta} - \frac{1}{\omega + \Om{m}{\spc,\RPA} - i \eta} ]
2020-10-20 23:14:57 +02:00
\end{multline}
where the bare two-electron integrals are \cite{Gill_1994}
2020-10-20 23:14:57 +02:00
\begin{equation}
2020-10-23 15:13:15 +02:00
\ERI{p_\sig q_\tau}{r_\sigp s_\taup} = \int \frac{\MO{p_\sig}(\br_1) \MO{q_\tau}(\br_1) \MO{r_\sigp}(\br_2) \MO{s_\taup}(\br_2)}{\abs{\br_1 - \br_2}} d\br_1 d\br_2
2020-10-20 23:14:57 +02:00
\end{equation}
and the screened two-electron integrals (or spectral weights) are explicitly given by
2020-10-20 23:14:57 +02:00
\begin{equation}
2020-10-27 14:01:50 +01:00
\label{eq:sERI}
2020-10-22 12:40:48 +02:00
\ERI{p_\sig q_\sig}{m} = \sum_{ia\sigp} \ERI{p_\sig q_\sig}{r_\sigp s_\sigp} (\bX{m}{\spc,\RPA}+\bY{m}{\spc,\RPA})_{i_\sigp a_\sigp}
2020-10-20 23:14:57 +02:00
\end{equation}
2020-10-27 22:32:24 +01:00
In Eqs.~\eqref{eq:W_spectral} and \eqref{eq:sERI}, the RPA spin-conserved neutral excitations $\Om{m}{\spc,\RPA}$ and their corresponding eigenvectors, $\bX{m}{\spc,\RPA}$ and $\bY{m}{\spc,\RPA}$, are obtained by solving a linear response system of the form
2020-10-20 23:14:57 +02:00
\begin{equation}
\label{eq:LR-RPA}
\begin{pmatrix}
2020-10-25 21:29:40 +01:00
\bA{}{} & \bB{}{} \\
-\bB{}{} & -\bA{}{} \\
2020-10-20 23:14:57 +02:00
\end{pmatrix}
\cdot
\begin{pmatrix}
2020-10-25 21:29:40 +01:00
\bX{m}{} \\
\bY{m}{} \\
2020-10-20 23:14:57 +02:00
\end{pmatrix}
=
2020-10-25 21:29:40 +01:00
\Om{m}{}
2020-10-20 23:14:57 +02:00
\begin{pmatrix}
2020-10-25 21:29:40 +01:00
\bX{m}{} \\
\bY{m}{} \\
\end{pmatrix}
2020-10-20 23:14:57 +02:00
\end{equation}
2020-10-25 21:29:40 +01:00
where the expressions of the matrix elements of $\bA{}{}$ and $\bB{}{}$ are specific of the method and of the spin manifold.
The spin structure of these matrices, though, is general
2020-10-27 14:01:50 +01:00
\begin{subequations}
2020-10-21 22:58:11 +02:00
\begin{align}
\label{eq:LR-RPA-AB}
2020-10-22 12:40:48 +02:00
\bA{}{\spc} & = \begin{pmatrix}
2020-10-24 14:19:04 +02:00
\bA{}{\upup,\upup} & \bA{}{\upup,\dwdw} \\
\bA{}{\dwdw,\upup} & \bA{}{\dwdw,\dwdw} \\
2020-10-21 22:58:11 +02:00
\end{pmatrix}
&
2020-10-22 12:40:48 +02:00
\bB{}{\spc} & = \begin{pmatrix}
2020-10-24 14:19:04 +02:00
\bB{}{\upup,\upup} & \bB{}{\upup,\dwdw} \\
\bB{}{\dwdw,\upup} & \bB{}{\dwdw,\dwdw} \\
2020-10-21 22:58:11 +02:00
\end{pmatrix}
2020-10-22 12:40:48 +02:00
\\
2020-10-21 22:58:11 +02:00
\label{eq:LR-RPA-AB}
2020-10-22 12:40:48 +02:00
\bA{}{\spf} & = \begin{pmatrix}
2020-10-24 14:19:04 +02:00
\bA{}{\updw,\updw} & \bO \\
\bO & \bA{}{\dwup,\dwup} \\
2020-10-21 22:58:11 +02:00
\end{pmatrix}
&
2020-10-22 12:40:48 +02:00
\bB{}{\spf} & = \begin{pmatrix}
2020-10-24 14:19:04 +02:00
\bO & \bB{}{\updw,\dwup} \\
\bB{}{\dwup,\updw} & \bO \\
2020-10-21 22:58:11 +02:00
\end{pmatrix}
\end{align}
2020-10-27 14:01:50 +01:00
\end{subequations}
2020-10-25 21:29:40 +01:00
In the absence of instabilities, the linear eigenvalue problem \eqref{eq:LR-RPA} has particle-hole symmetry which means that the eigenvalues are obtained by pairs $\pm \Om{m}{}$.
In such a case, $(\bA{}{}-\bB{}{})^{1/2}$ is positive definite, and Eq.~\eqref{eq:LR-RPA} can be recast as a Hermitian problem of half the dimension
\begin{equation}
\label{eq:small-LR}
(\bA{}{} - \bB{}{})^{1/2} \cdot (\bA{}{} + \bB{}{}) \cdot (\bA{}{} - \bB{}{})^{1/2} \cdot \bZ{}{} = \bOm{2} \cdot \bZ{}{}
\end{equation}
where the excitation amplitudes are
\begin{equation}
\bX{}{} + \bY{}{} = \bOm{-1/2} \cdot (\bA{}{} - \bB{}{})^{1/2} \cdot \bZ{}{}
\end{equation}
2020-10-27 14:01:50 +01:00
Within the Tamm-Dancoff approximation (TDA), the coupling terms between the resonant and anti-resonant parts, $\bA{}{}$ and $-\bA{}{}$, are neglected, which consists in setting $\bB{}{} = \bO$.
In such a case, Eq.~\eqref{eq:LR-RPA} reduces to straightforward Hermitian problem of the form:
\begin{equation}
\bA{}{} \cdot \bX{m}{} = \Om{m}{} \bX{m}{}
\end{equation}
At the RPA level, the matrix elements of $\bA{}{}$ and $\bB{}{}$ are
2020-10-20 23:14:57 +02:00
\begin{subequations}
2020-10-22 12:40:48 +02:00
\begin{align}
\label{eq:LR_RPA-A}
\A{i_\sig a_\tau,j_\sigp b_\taup}{\RPA} & = \delta_{ij} \delta_{ab} \delta_{\sig \sigp} \delta_{\tau \taup} (\e{a_\tau} - \e{i_\sig}) + \ERI{i_\sig a_\tau}{b_\sigp j_\taup}
\\
\label{eq:LR_RPA-B}
\B{i_\sig a_\tau,j_\sigp b_\taup}{\RPA} & = \ERI{i_\sig a_\tau}{j_\sigp b_\taup}
\end{align}
\end{subequations}
from which we obtain the following expressions
2020-10-22 12:40:48 +02:00
\begin{subequations}
2020-10-20 23:14:57 +02:00
\begin{align}
2020-10-21 22:58:11 +02:00
\label{eq:LR_RPA-Asc}
2020-10-22 12:40:48 +02:00
\A{i_\sig a_\sig,j_\sigp b_\sigp}{\spc,\RPA} & = \delta_{ij} \delta_{ab} \delta_{\sig \sigp} (\e{a_\sig} - \e{i_\sig}) + \ERI{i_\sig a_\sig}{b_\sigp j_\sigp}
2020-10-20 23:14:57 +02:00
\\
2020-10-21 22:58:11 +02:00
\label{eq:LR_RPA-Bsc}
2020-10-22 12:40:48 +02:00
\B{i_\sig a_\sig,j_\sigp b_\sigp}{\spc,\RPA} & = \ERI{i_\sig a_\sig}{j_\sigp b_\sigp}
2020-10-20 23:14:57 +02:00
\end{align}
\end{subequations}
2020-10-22 12:40:48 +02:00
for the spin-conserved excitations and
\begin{subequations}
\begin{align}
\label{eq:LR_RPA-Asf}
\A{i_\sig a_\bsig,j_\sig b_\bsig}{\spf,\RPA} & = \delta_{ij} \delta_{ab} (\e{a_\bsig} - \e{i_\sig})
\\
\label{eq:LR_RPA-Bsf}
\B{i_\sig a_\bsig,j_\bsig b_\sig}{\spf,\RPA} & = 0
\end{align}
\end{subequations}
for the spin-flip excitations.
2020-10-21 22:58:11 +02:00
%================================
2020-10-20 21:58:35 +02:00
\subsection{The $GW$ self-energy}
2020-10-21 22:58:11 +02:00
%================================
2020-10-25 13:30:30 +01:00
Within the acclaimed $GW$ approximation, \cite{Hedin_1965,Golze_2019} the exchange-correlation (xc) part of the self-energy
2020-10-23 15:13:15 +02:00
\begin{equation}
2020-10-27 22:32:24 +01:00
\label{eq:Sig}
2020-10-24 14:19:04 +02:00
\begin{split}
2020-10-27 14:01:50 +01:00
\Sig{}{\xc,\sig}(\br_1,\br_2;\omega)
& = \Sig{}{\x,\sig}(\br_1,\br_2) + \Sig{}{\co,\sig}(\br_1,\br_2;\omega)
2020-10-24 14:19:04 +02:00
\\
& = \frac{i}{2\pi} \int G^{\sig}(\br_1,\br_2;\omega+\omega') W(\br_1,\br_2;\omega') e^{i \eta \omega'} d\omega'
\end{split}
2020-10-23 15:13:15 +02:00
\end{equation}
2020-10-25 21:29:40 +01:00
is, like the one-body Green's function, spin-diagonal, and its spectral representation reads
2020-10-24 14:19:04 +02:00
\begin{gather}
2020-10-27 14:01:50 +01:00
\Sig{p_\sig q_\sig}{\x}
= - \sum_{i} \ERI{p_\sig i_\sig}{i_\sig q_\sig}
2020-10-24 14:19:04 +02:00
\\
2020-10-21 22:58:11 +02:00
\begin{split}
2020-10-27 14:01:50 +01:00
\Sig{p_\sig q_\sig}{\co}(\omega)
2020-10-23 15:13:15 +02:00
& = \sum_{im} \frac{\ERI{p_\sig i_\sig}{m} \ERI{q_\sig i_\sig}{m}}{\omega - \e{i_\sig} + \Om{m}{\spc,\RPA} - i \eta}
2020-10-21 22:58:11 +02:00
\\
2020-10-23 15:13:15 +02:00
& + \sum_{am} \frac{\ERI{p_\sig a_\sig}{m} \ERI{q_\sig a_\sig}{m}}{\omega - \e{a_\sig} - \Om{m}{\spc,\RPA} + i \eta}
2020-10-21 22:58:11 +02:00
\end{split}
2020-10-24 14:19:04 +02:00
\end{gather}
2020-10-27 14:01:50 +01:00
which the self-energy has been split in its exchange (x) and correlation (c) contributions.
The Dyson equation linking the Green's function and the self-energy holds separately for each spin component
2020-10-27 22:32:24 +01:00
\begin{equation}
\label{eq:Dyson_G}
\begin{split}
2020-10-27 14:01:50 +01:00
\qty[ G^{\sig}(\br_1,\br_2;\omega) ]^{-1}
2020-10-27 22:32:24 +01:00
& = \qty[ G_{\KS}^{\sig}(\br_1,\br_2;\omega) ]^{-1}
2020-10-27 14:01:50 +01:00
\\
2020-10-27 22:32:24 +01:00
& + \Sig{}{\xc,\sig}(\br_1,\br_2;\omega) - v^{\xc}(\br_1) \delta(\br_1 - \br_2)
\end{split}
\end{equation}
where $G_{\KS}^{\sig}$ is the Kohn-Sham Green's function built with Kohn-Sham orbitals $\MO{p_\sig}^{\KS}(\br)$ and one-electron energies $\e{p_\sig}^{\KS}$ according to Eq.~\eqref{eq:G} and $v^{\xc}(\br)$ is the Kohn-Sham local exchange-correlation potential.
The target quantities here are the quasiparticle energies $\eGW{p_\sig}$, \ie, the poles of $G$ [see Eq.~\eqref{eq:G}], which correspond to well-defined addition/removal energies (unlike the KS orbital energies).
Because the exchange-correlation part of the self-energy is, itself, constructed with the Green's function [see Eq.~\eqref{eq:Sig}], the present process is, by nature, self-consistent.
The same comment applies to the dynamically-screened Coulomb potential $W$ entering the definition of $\Sig{}{\xc}$ [see Eq.~\eqref{eq:Sig}] which is also constructed from $G$ [see Eqs.~\eqref{eq:chi0}, \eqref{eq:eps}, and \eqref{eq:W}].
2020-10-27 14:01:50 +01:00
2020-10-27 22:32:24 +01:00
%================================
\subsection{Level of self-consistency}
%================================
This is where $GW$ schemes differ.
In its simplest perturbative (\ie, one-shot) version, known as {\GOWO}, a single iteration is performed, and the quasiparticle energies $\eGOWO{p_\sig}$ are obtained by solving the frequency-dependent quasiparticle equation
2020-10-20 21:58:35 +02:00
\begin{equation}
2020-10-27 22:32:24 +01:00
\label{eq:QP-eq}
\omega = \e{p_\sig}{} + \Sig{p_\sig}{\xc}(\omega) - V_{p_\sig}^{\xc}
2020-10-20 21:58:35 +02:00
\end{equation}
2020-10-27 22:32:24 +01:00
where $\Sig{p_\sig}{\xc}(\omega) \equiv \Sig{p_\sig p_\sig}{\xc}(\omega)$ and its offspring quantities have been constructed at the Kohn-Sham level, and
\begin{equation}
V_{p_\sigma}^{\xc} = \int \MO{p_\sig}(\br) v^{\xc}(\br) \MO{p_\sig}(\br) d\br
\end{equation}
2020-10-27 22:32:24 +01:00
Because, from a practical point of view, one is usually interested by the so-called quasiparticle solution (or peak), the quasiparticle equation \eqref{eq:QP-eq} is often linearized around $\omega = \e{p_\sig}^{\KS}$, yielding
\begin{equation}
\eGOWO{p_\sig}
= \e{p_\sig}^{\KS} + Z_{p_\sig} [\Sig{p_\sig p_\sig}{\xc}(\e{p_\sig}^{\KS}) - V_{p_\sig}^{\xc} ]
\end{equation}
where
\begin{equation}
Z_{p_\sig} = \qty[ 1 - \left. \pdv{\Sig{p_\sig p_\sig}{\xc}(\omega)}{\omega} \right|_{\omega = \e{p_\sig}^{\KS}} ]^{-1}
\end{equation}
is a renormalization factor which also represents the spectral weight of the quasiparticle solution.
In addition to the principal quasiparticle peak which, in a well-behaved case, contains most of the spectral weight, the frequency-dependent quasiparticle equation \eqref{eq:QP-eq} generates a finite number of satellite resonances with smaller weights.
Within the ``eigenvalue'' self-consistent $GW$ scheme (known as ev$GW$), several iterations are performed during which only the one-electron energies entering the definition of the Green's function [see Eq.~\eqref{eq:G}] are updated by the quasiparticle energies obtained at the previous iteration (the corresponding orbitals remain evaluated at the Kohn-Sham level).
Finally, within the quasiparticle self-consistent $GW$ scheme (qs$GW$), both the one-electron energies and the orbitals are updated until convergence is reached.
These are obtained via the diagonalization of an effective Fock matrix which includes explicitly a frequency-independent and hermitian self-energy defined as
\begin{equation}
\Tilde{\Sigma}_{p_\sig q_\sig}^{\xc} = \frac{1}{2} \qty[ \Sig{p_\sig q_\sig}{\xc}(\e{p_\sig}{}) + \Sig{q_\sig p_\sig}{\xc}(\e{p_\sig}{}) ]
\end{equation}
2020-10-21 22:58:11 +02:00
%================================
2020-10-22 12:40:48 +02:00
\subsection{The Bethe-Salpeter equation formalism}
2020-10-21 22:58:11 +02:00
%================================
2020-10-25 13:30:30 +01:00
Like its TD-DFT cousin, BSE deals with the calculation of (neutral) optical excitations as measured by absorption spectroscopy. \cite{Salpeter_1951,Strinati_1988}
Using the BSE formalism, one can access the spin-conserved and spin-flip excitations.
The Dyson equation that links the generalized four-point susceptibility $L^{\sig\sigp}(\br_1,\br_2;\br_1',\br_2';\omega)$ and the BSE kernel $\Xi^{\sig\sigp}(\br_3,\br_5;\br_4,\br_6;\omega)$ is
2020-10-23 15:13:15 +02:00
\begin{multline}
L^{\sig\sigp}(\br_1,\br_2;\br_1',\br_2';\omega)
= L_{0}^{\sig\sigp}(\br_1,\br_2;\br_1',\br_2';\omega)
\\
+ \int L_{0}^{\sig\sigp}(\br_1,\br_4;\br_1',\br_3;\omega)
\Xi^{\sig\sigp}(\br_3,\br_5;\br_4,\br_6;\omega)
\\
\times L^{\sig\sigp}(\br_6,\br_2;\br_5,\br_2';\omega)
d\br_3 d\br_4 d\br_5 d\br_6
\end{multline}
where
\begin{multline}
L_{0}^{\sig\sigp}(\br_1,\br_2;\br_1',\br_2';\omega)
\\
= \frac{1}{2\pi} \int G^{\sig}(\br_1,\br_2';\omega+\omega') G^{\sig}(\br_1',\br_2;\omega') d\omega'
\end{multline}
2020-10-25 13:30:30 +01:00
is the non-interacting analog of the two-particle correlation function $L$.
2020-10-23 15:13:15 +02:00
Within the $GW$ approximation, the BSE kernel is
2020-10-23 15:13:15 +02:00
\begin{multline}
i \Xi^{\sig\sigp}(\br_3,\br_5;\br_4,\br_6;\omega)
= \frac{\delta(\br_3 - \br_4) \delta(\br_5 - \br_6) }{\abs{\br_3-\br_6}}
\\
- \delta_{\sig\sigp} W(\br_3,\br_4;\omega) \delta(\br_3 - \br_6) \delta(\br_4 - \br_6)
\end{multline}
2020-10-25 13:30:30 +01:00
where, as usual, we have not considered the higher-order terms in $W$ by neglecting the derivative $\partial W/\partial G$. \cite{Hanke_1980, Strinati_1982, Strinati_1984, Strinati_1988}
2020-10-25 21:29:40 +01:00
Within the static approximation which consists in neglecting the frequency dependence of the dynamically-screened Coulomb potential, the spin-conserved and spin-flip optical excitation at the BSE level are obtained by solving a similar linear response problem
2020-10-25 13:30:30 +01:00
\begin{equation}
2020-10-25 21:29:40 +01:00
\label{eq:LR-BSE}
2020-10-25 13:30:30 +01:00
\begin{pmatrix}
\bA{}{\BSE} & \bB{}{\BSE} \\
-\bB{}{\BSE} & -\bA{}{\BSE} \\
\end{pmatrix}
\cdot
\begin{pmatrix}
\bX{m}{\BSE} \\
\bY{m}{\BSE} \\
\end{pmatrix}
=
\Om{m}{\BSE}
\begin{pmatrix}
\bX{m}{\BSE} \\
\bY{m}{\BSE} \\
\end{pmatrix}
\end{equation}
2020-10-22 12:40:48 +02:00
Defining $W^{\stat}_{p_\sig q_\sig,r_\sigp s_\sigp} = W_{p_\sig q_\sig,r_\sigp s_\sigp}(\omega = 0)$, we have
\begin{subequations}
\begin{align}
\label{eq:LR_BSE-A}
\A{i_\sig a_\tau,j_\sigp b_\taup}{\BSE} & = \A{i_\sig a_\tau,j_\sigp b_\taup}{\RPA} - \delta_{\sig \sigp} W^{\stat}_{i_\sig j_\sigp,b_\taup a_\tau}
\\
\label{eq:LR_BSE-B}
\B{i_\sig a_\tau,j_\sigp b_\taup}{\BSE} & = \B{i_\sig a_\tau,j_\sigp b_\taup}{\RPA} - \delta_{\sig \sigp} W^{\stat}_{i_\sig b_\taup,j_\sigp a_\tau}
\end{align}
\end{subequations}
from which we obtain, at the BSE level, the following expressions
2020-10-21 22:58:11 +02:00
\begin{subequations}
\begin{align}
\label{eq:LR_BSE-Asc}
2020-10-22 12:40:48 +02:00
\A{i_\sig a_\sig,j_\sigp b_\sigp}{\spc,\BSE} & = \A{i_\sig a_\sig,j_\sigp b_\sigp}{\spc,\RPA} - \delta_{\sig \sigp} W^{\stat}_{i_\sig j_\sigp,b_\sigp a_\sig}
2020-10-21 22:58:11 +02:00
\\
\label{eq:LR_BSE-Bsc}
2020-10-22 12:40:48 +02:00
\B{i_\sig a_\sig,j_\sigp b_\sigp}{\spc,\BSE} & = \B{i_\sig a_\sig,j_\sigp b_\sigp}{\spc,\RPA} - \delta_{\sig \sigp} W^{\stat}_{i_\sig b_\sigp,j_\sigp a_\sig}
\end{align}
\end{subequations}
for the spin-conserved excitations and
\begin{subequations}
\begin{align}
\label{eq:LR_BSE-Asf}
\A{i_\sig a_\bsig,j_\sig b_\bsig}{\spf,\BSE} & = \A{i_\sig a_\bsig,j_\sig b_\bsig}{\spf,\RPA} - W^{\stat}_{i_\sig j_\sig,b_\bsig a_\bsig}
\\
\label{eq:LR_BSE-Bsf}
\B{i_\sig a_\bsig,j_\bsig b_\sig}{\spf,\BSE} & = - W^{\stat}_{i_\sig b_\sig,j_\bsig a_\bsig}
2020-10-21 22:58:11 +02:00
\end{align}
\end{subequations}
2020-10-22 12:40:48 +02:00
for the spin-flip excitations.
2020-10-21 22:58:11 +02:00
2020-10-22 12:40:48 +02:00
%================================
2020-10-22 13:23:19 +02:00
\subsection{Dynamical correction}
2020-10-22 12:40:48 +02:00
%================================
2020-10-25 13:30:30 +01:00
The dynamical correction to the static BSE kernel is defined in the Tamm-Dancoff approximation as \cite{Strinati_1988,Rohlfing_2000,Ma_2009a,Ma_2009b,Romaniello_2009b,Sangalli_2011,Loos_2020e}
2020-10-22 13:23:19 +02:00
\begin{multline}
\widetilde{W}_{p_\sig q_\sig,r_\sigp s_\sigp}(\omega) = \ERI{p_\sig q_\sig}{r_\sigp s_\sigp}
+ \sum_m \ERI{p_\sig q_\sig}{m}\ERI{r_\sigp s_\sigp}{m}
\\
\times \qty[ \frac{1}{\omega - (\e{s_\sigp}{} - \e{q_\sig}{}) - \Om{m}{\spc,\RPA} + i \eta} + \frac{1}{\omega - (\e{r_\sigp}{} - \e{p_\sig}{}) - \Om{m}{\spc,\RPA} + i \eta} ]
\end{multline}
\begin{equation}
\label{eq:LR-dyn}
\begin{pmatrix}
\bA{}{\dBSE}(\omega) & \bB{}{\dBSE}(\omega)
\\
-\bB{}{\dBSE}(-\omega) & -\bA{}{\dBSE}(-\omega)
\\
\end{pmatrix}
\cdot
\begin{pmatrix}
\bX{m}{\dBSE} \\
\bY{m}{\dBSE} \\
\end{pmatrix}
=
\Om{m}{\dBSE}
\begin{pmatrix}
\bX{m}{\dBSE} \\
\bY{m}{\dBSE} \\
\end{pmatrix}
\end{equation}
\begin{subequations}
\begin{align}
\label{eq:LR_dBSE-A}
\A{i_\sig a_\tau,j_\sigp b_\taup}{\dBSE}(\omega) & = \A{i_\sig a_\tau,j_\sigp b_\taup}{\RPA} - \delta_{\sig \sigp} \widetilde{W}_{i_\sig j_\sigp,b_\taup a_\tau}(\omega)
\\
\label{eq:LR_dBSE-B}
\B{i_\sig a_\tau,j_\sigp b_\taup}{\dBSE}(\omega) & = \B{i_\sig a_\tau,j_\sigp b_\taup}{\RPA} - \delta_{\sig \sigp} \widetilde{W}_{i_\sig b_\taup,j_\sigp a_\tau}(\omega)
\end{align}
\end{subequations}
\begin{multline}
\label{eq:LR-PT}
\begin{pmatrix}
\bA{}{\dBSE}(\omega) & \bB{}{\dBSE}(\omega) \\
-\bB{}{\dBSE}(-\omega) & -\bA{}{\dBSE}(-\omega) \\
\end{pmatrix}
\\
=
\begin{pmatrix}
\bA{}{(0)} & \bB{}{(0)}
\\
-\bB{}{(0)} & -\bA{}{(0)}
\\
\end{pmatrix}
+
\begin{pmatrix}
\bA{}{(1)}(\omega) & \bB{}{(1)}(\omega) \\
-\bB{}{(1)}(-\omega) & -\bA{}{(1)}(-\omega) \\
\end{pmatrix}
\end{multline}
with
\begin{subequations}
\begin{align}
\label{eq:BSE-A0}
\A{i_\sig a_\tau,j_\sigp b_\taup}{(0)} & = \A{i_\sig a_\tau,j_\sigp b_\taup}{\BSE}
\\
\label{eq:BSE-B0}
\B{i_\sig a_\tau,j_\sigp b_\taup}{(0)} & = \B{i_\sig a_\tau,j_\sigp b_\taup}{\BSE}
\end{align}
\end{subequations}
and
\begin{subequations}
\begin{align}
\label{eq:BSE-A1}
\A{i_\sig a_\tau,j_\sigp b_\taup}{(1)}(\omega) & = - \delta_{\sig \sigp} \widetilde{W}_{i_\sig j_\sigp,b_\taup a_\tau}(\omega) + \delta_{\sig \sigp} W^{\stat}_{i_\sig j_\sigp,b_\taup a_\tau}
\\
\label{eq:BSE-B1}
\B{i_\sig a_\tau,j_\sigp b_\taup}{(1)}(\omega) & = - \delta_{\sig \sigp} \widetilde{W}_{i_\sig b_\taup,j_\sigp a_\tau}(\omega) + \delta_{\sig \sigp} W^{\stat}_{i_\sig b_\taup,j_\sigp a_\tau}
\end{align}
\end{subequations}
\begin{subequations}
\begin{gather}
\Om{m}{\dBSE} = \Om{m}{(0)} + \Om{m}{(1)} + \ldots
\\
\begin{pmatrix}
\bX{m}{\dBSE} \\
\bY{m}{\dBSE} \\
\end{pmatrix}
=
\begin{pmatrix}
\bX{m}{(0)} \\
\bY{m}{(0)} \\
\end{pmatrix}
+
\begin{pmatrix}
\bX{m}{(1)} \\
\bY{m}{(1)} \\
\end{pmatrix}
+ \ldots
\end{gather}
\end{subequations}
\begin{equation}
\label{eq:LR-BSE-stat}
\begin{pmatrix}
\bA{}{(0)} & \bB{}{(0)} \\
-\bB{}{(0)} & -\bA{}{(0)} \\
\end{pmatrix}
\cdot
\begin{pmatrix}
\bX{S}{(0)} \\
\bY{S}{(0)} \\
\end{pmatrix}
=
\Om{m}{(0)}
\begin{pmatrix}
\bX{m}{(0)} \\
\bY{m}{(0)} \\
\end{pmatrix}
\end{equation}
\begin{equation}
\label{eq:Om1}
\Om{m}{(1)} =
\T{\begin{pmatrix}
\bX{m}{(0)} \\
\bY{m}{(0)} \\
\end{pmatrix}}
\cdot
\begin{pmatrix}
\bA{}{(1)}(\Om{m}{(0)}) & \bB{}{(1)}(\Om{m}{(0)}) \\
-\bB{}{(1)}(-\Om{m}{(0)}) & -\bA{}{(1)}(-\Om{m}{(0)}) \\
\end{pmatrix}
\cdot
\begin{pmatrix}
\bX{m}{(0)} \\
\bY{m}{(0)} \\
\end{pmatrix}
\end{equation}
\begin{equation}
\label{eq:Om1-TDA}
\Om{S}{(1)} = \T{(\bX{m}{(0)})} \cdot \bA{}{(1)}(\Om{m}{(0)}) \cdot \bX{m}{(0)}
\end{equation}
\begin{equation}
\label{eq:Z}
Z_{m} = \qty[ 1 - \T{(\bX{m}{(0)})} \cdot \left. \pdv{\bA{}{(1)}(\Om{m}{})}{\Om{S}{}} \right|_{\Om{m}{} = \Om{m}{(0)}} \cdot \bX{m}{(0)} ]^{-1}
\end{equation}
\begin{equation}
\Om{m}{\dBSE} = \Om{m}{(0)} + Z_{m} \Om{m}{(1)}
\end{equation}
2020-10-24 14:19:04 +02:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Oscillator strengths}
\label{sec:os}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
For the spin-conserved transition, the $x$ component of the transition dipole moment is
2020-10-24 14:19:04 +02:00
\begin{equation}
\mu_{x,m}^{\spc} = \sum_{ia\sig} (i_\sig|x|a_\sig)(\bX{m}{\spc}+\bY{m}{\spc})_{i_\sig a_\sig}
\end{equation}
with
\begin{equation}
(p_\sig|x|q_\sigp) = \int \MO{p_\sig}(\br) \, x \, \MO{q_\sigp}(\br) d\br
\end{equation}
and the total oscillator strength is given by
\begin{equation}
f_{m}^{\spc} = \frac{2}{3} \Om{m}{\spc} \qty[ \qty(\mu_{x,m}^{\spc})^2 + \qty(\mu_{x,m}^{\spc})^2 + \qty(\mu_{x,m}^{\spc})^2 ]
\end{equation}
For spin-flip transitions, we have $f_{m}^{\spf} = 0$ as the transition matrix elements $(i_\sig|x|a_\bsig)$ vanish.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Spin contamination}
\label{sec:spin}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{equation}
\expval{S^2}_m = \expval{S^2}_0 + \Delta \expval{S^2}_m
\end{equation}
\begin{equation}
\expval{S^2}_{0}
= \frac{n_{\up} - n_{\dw}}{2} \qty( \frac{n_{\up} - n_{\dw}}{2} + 1 )
+ n_{\dw} - \sum_p (p_{\up}|p_{\dw})^2
\end{equation}
where
\begin{equation}
(p_\sig|q_\sigp) = \int \MO{p_\sig}(\br) \MO{q_\sigp}(\br) d\br
\end{equation}
is the overlap between spin-up and spin-down orbitals.
The explicit expressions of $\Delta \expval{S^2}_m^{\spc}$ and $\Delta \expval{S^2}_m^{\spf}$ can be found in the Appendix of Ref.~\onlinecite{Li_2010} for spin-conserved and spin-flip excitations, and are functions of the $\bX{m}{}$ and $\bY{m}{}$ vectors and the orbital overlaps.
2020-10-24 14:19:04 +02:00
As explained in Ref.~\onlinecite{Casanova_2020}, there are two sources of spin contamination: i) spin contamination of the reference, and ii) spin-contamination of the excited states due to the spin incompleteness.
2020-10-22 13:23:19 +02:00
2020-10-20 21:58:35 +02:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2020-10-21 22:58:11 +02:00
\section{Computational details}
2020-10-20 21:58:35 +02:00
\label{sec:compdet}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2020-10-25 21:29:40 +01:00
For the systems under investigation here, we consider either an open-shell doublet or triplet reference state.
We then adopt the unrestricted formalism throughout this work.
The $GW$ calculations performed to obtain the screened Coulomb operator and the quasiparticle energies are done using a (unrestricted) UHF starting point.
Perturbative $GW$ (or {\GOWO}) \cite{Hybertsen_1985a,Hybertsen_1986,vanSetten_2013} quasiparticle energies are employed as starting points to compute the BSE neutral excitations.
These quasiparticle energies are obtained by linearizing the frequency-dependent quasiparticle equation, and the entire set of orbitals is corrected.
Further details about our implementation of {\GOWO} can be found in Refs.~\onlinecite{Loos_2018b,Veril_2018,Loos_2020,Loos_2020e}.
%Note that, for the present (small) molecular systems, {\GOWO}@UHF and ev$GW$@UHF yield similar quasiparticle energies and fundamental gap.
%Moreover, {\GOWO} allows to avoid rather laborious iterations as well as the significant additional computational effort of ev$GW$.
%In the present study, the zeroth-order Hamiltonian [see Eq.~\eqref{eq:LR-PT}] is always the ``full'' BSE static Hamiltonian, \ie, without TDA.
The dynamical correction is computed in the TDA throughout.
As one-electron basis sets, we employ the Dunning families cc-pVXZ and aug-cc-pVXZ (X = D, T, and Q) defined with cartesian Gaussian functions.
Finally, the infinitesimal $\eta$ is set to $100$ meV for all calculations.
%It is important to mention that the small molecular systems considered here are particularly challenging for the BSE formalism, \cite{Hirose_2015,Loos_2018b} which is known to work best for larger systems where the amount of screening is more important. \cite{Jacquemin_2017b,Rangel_2017}
%For comparison purposes, we employ the theoretical best estimates (TBEs) and geometries of Refs.~\onlinecite{Loos_2018a,Loos_2019,Loos_2020b} from which CIS(D), \cite{Head-Gordon_1994,Head-Gordon_1995} ADC(2), \cite{Trofimov_1997,Dreuw_2015} CC2, \cite{Christiansen_1995a} CCSD, \cite{Purvis_1982} and CC3 \cite{Christiansen_1995b} excitation energies are also extracted.
%Various statistical quantities are reported in the following: the mean signed error (MSE), mean absolute error (MAE), root-mean-square error (RMSE), and the maximum positive [Max($+$)] and maximum negative [Max($-$)] errors.
All the static and dynamic BSE calculations have been performed with the software \texttt{QuAcK}, \cite{QuAcK} freely available on \texttt{github}.
2020-10-20 21:58:35 +02:00
2020-10-24 14:19:04 +02:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Results}
\label{sec:res}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% TABLE I %%%
%\begin{table}
%
%\end{table}
%%% %%% %%% %%%
2020-10-20 21:58:35 +02:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Conclusion}
\label{sec:ccl}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%
\acknowledgements{
We would like to thank Xavier Blase and Denis Jacquemin for insightful discussions.
2020-10-22 12:40:48 +02:00
This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No.~863481).}
2020-10-20 21:58:35 +02:00
%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section*{Data availability statement}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
The data that supports the findings of this study are available within the article and its supplementary material.
%%%%%%%%%%%%%%%%%%%%%%%%
2020-10-25 13:30:30 +01:00
\bibliography{sfBSE}
2020-10-20 21:58:35 +02:00
%%%%%%%%%%%%%%%%%%%%%%%%
\end{document}