saving work

This commit is contained in:
Pierre-Francois Loos 2020-10-22 12:40:48 +02:00
parent 87bff2be08
commit 82853b8d65
2 changed files with 89 additions and 45 deletions

View File

@ -127,9 +127,8 @@
\newcommand{\bdeHF}{\mathbf{\Delta\epsilon}^\text{HF}}
\newcommand{\bdeGW}{\mathbf{\Delta\epsilon}^{GW}}
\newcommand{\bOm}[1]{\mathbf{\Omega}^{#1}}
\newcommand{\bA}[1]{\mathbf{A}^{#1}}
\newcommand{\btA}[1]{\Tilde{\mathbf{A}}^{#1}}
\newcommand{\bB}[1]{\mathbf{B}^{#1}}
\newcommand{\bA}[2]{\mathbf{A}_{#1}^{#2}}
\newcommand{\bB}[2]{\mathbf{B}_{#1}^{#2}}
\newcommand{\bX}[2]{\mathbf{X}_{#1}^{#2}}
\newcommand{\bY}[2]{\mathbf{Y}_{#1}^{#2}}
\newcommand{\bZ}[2]{\mathbf{Z}_{#1}^{#2}}
@ -153,8 +152,11 @@
\newcommand{\EgOpt}{\Eg^\text{opt}}
\newcommand{\EB}{E_B}
\newcommand{\si}{\sigma}
\newcommand{\sip}{\sigma'}
\newcommand{\sig}{\sigma}
\newcommand{\bsig}{{\Bar{\sigma}}}
\newcommand{\sigp}{{\sigma'}}
\newcommand{\bsigp}{{\Bar{\sigma}'}}
\newcommand{\taup}{{\tau'}}
\newcommand{\up}{\downarrow}
\newcommand{\dw}{\uparrow}
@ -165,7 +167,6 @@
\newcommand{\spc}{\text{sc}}
\newcommand{\spf}{\text{sf}}
% addresses
\newcommand{\LCPQ}{Laboratoire de Chimie et Physique Quantiques (UMR 5626), Universit\'e de Toulouse, CNRS, UPS, France}

121
sfBSE.tex
View File

@ -48,11 +48,11 @@ Unless otherwise stated, atomic units are used, and we assume real quantities th
Let us consider an electronic system consisting of $n = n_\up + n_\dw$ electrons (where $n_\up$ and $n_\dw$ are the number of spin-up and spin-down electrons respectively) and $N$ one-electron basis functions.
The number of spin-up and spin-down occupied orbitals are $O_\up = n_\up$ and $O_\dw = n_\dw$, respectively, and there is $V_\up = N - O_\up$ and $V_\dw = N - O_\dw$ spin-up and spin-down virtual (\ie, unoccupied) orbitals.
The number of spin-conserved single excitations is then $S^\spc = S_{\up\up}^\spc + S_{\dw\dw}^\spc = O_\up V_\up + O_\dw V_\dw$, while the number of spin-flip excitations is $S^\spf = S_{\up\dw}^\spf + S_{\dw\up}^\spf = O_\up V_\dw + O_\dw V_\up$.
Let us denote as $\MO{p\si}$ the $p$th orbital of spin $\sigma$ (where $\sigma = \up$ or $\dw$).
Let us denote as $\MO{p_\sig}$ the $p$th orbital of spin $\sig$ (where $\sig =$ $\up$ or $\dw$).
In the following, $i$ and $j$ are occupied orbitals, $a$ and $b$ are unoccupied orbitals, $p$, $q$, $r$, and $s$ indicate arbitrary orbitals, and $m$ labels single excitations.
It is important to understand that, in a spin-conserved excitation the hole orbital $\MO{i\si}$ and particle orbital $\MO{a\si}$ have the same spin $\si$.
A bra and ket composed by these two orbitals will be denoted as $\rbra{ia\si}$ and $\rket{ia\si}$.
In a spin-flip excitation, the hole and the particle states have different spin.
It is important to understand that, in a spin-conserved excitation the hole orbital $\MO{i_\sig}$ and particle orbital $\MO{a_\sig}$ have the same spin $\sig$.
A bra and ket composed by these two orbitals will be denoted as $\rbra{ia\sig}$ and $\rket{ia\sig}$.
In a spin-flip excitation, the hole has a spin $\sig$ and the particle has the opposite spin $\bsig$.
%================================
\subsection{The dynamical screening}
@ -61,25 +61,25 @@ In a spin-flip excitation, the hole and the particle states have different spin.
Within the $GW$ formalism, the dynamical screening $W(\omega)$ is computed at the RPA level using the spin-conserved neutral excitations.
The matrix elements of $W(\omega)$ read
\begin{multline}
W_{pq\si,rs\sip}(\omega) = \ERI{pq\si}{rs\sip}
+ \sum_m \sERI{pq\si}{m}\sERI{rs\sip}{m}
W_{p_\sig q_\sig,r_\sigp s_\sigp}(\omega) = \ERI{p_\sig q_\sig}{r_\sigp s_\sigp}
+ \sum_m \ERI{p_\sig q_\sig}{m}\ERI{r_\sigp s_\sigp}{m}
\\
\times \qty[ \frac{1}{\omega - \Om{m}{\spc,\RPA} + i \eta} - \frac{1}{\omega + \Om{m}{\spc,\RPA} - i \eta} ]
\end{multline}
where the two-electron integrals are
\begin{equation}
\ERI{pq\si}{rs\sip} = \iint \MO{p\si}(\br) \MO{q\si}(\br) \frac{1}{\abs{\br - \br'}} \MO{r\sip}(\br') \MO{s\sip}(\br') d\br d\br'
\ERI{p_\sig q_\tau}{r_\sigp s_\taup} = \iint \MO{p_\sig}(\br) \MO{q_\tau}(\br) \frac{1}{\abs{\br - \br'}} \MO{r_\sigp}(\br') \MO{s_\taup}(\br') d\br d\br'
\end{equation}
\begin{equation}
\sERI{pq\si}{m} = \sum_{ia\sip} \ERI{pq\si}{rs\sip} (\bX{m}{\spc,\RPA}+\bY{m}{\spc,\RPA})_{ia\sip}
\ERI{p_\sig q_\sig}{m} = \sum_{ia\sigp} \ERI{p_\sig q_\sig}{r_\sigp s_\sigp} (\bX{m}{\spc,\RPA}+\bY{m}{\spc,\RPA})_{i_\sigp a_\sigp}
\end{equation}
\begin{equation}
\label{eq:LR-RPA}
\begin{pmatrix}
\bA{\spc,\RPA} & \bB{\spc,\RPA} \\
-\bB{\spc,\RPA} & -\bA{\spc,\RPA} \\
\bA{}{\spc,\RPA} & \bB{}{\spc,\RPA} \\
-\bB{}{\spc,\RPA} & -\bA{}{\spc,\RPA} \\
\end{pmatrix}
\cdot
\begin{pmatrix}
@ -94,43 +94,61 @@ where the two-electron integrals are
\end{pmatrix},
\end{equation}
The spin structure of these matrices are general and reads
\begin{align}
\label{eq:LR-RPA-AB}
\bA{\spc} & = \begin{pmatrix}
\bA{\upup,\upup} & \bA{\upup,\dwdw} \\
\bA{\dwdw,\upup} & \bA{\dwdw,\dwdw} \\
\bA{}{\spc} & = \begin{pmatrix}
\bA{\upup,\upup}{} & \bA{\upup,\dwdw}{} \\
\bA{\dwdw,\upup}{} & \bA{\dwdw,\dwdw}{} \\
\end{pmatrix}
&
\bB{\spc} & = \begin{pmatrix}
\bB{\upup,\upup} & \bB{\upup,\dwdw} \\
\bB{\dwdw,\upup} & \bB{\dwdw,\dwdw} \\
\bB{}{\spc} & = \begin{pmatrix}
\bB{\upup,\upup}{} & \bB{\upup,\dwdw}{} \\
\bB{\dwdw,\upup}{} & \bB{\dwdw,\dwdw}{} \\
\end{pmatrix}
\end{align}
\begin{align}
\\
\label{eq:LR-RPA-AB}
\bA{\spf} & = \begin{pmatrix}
\bA{\updw,\updw} & \bO \\
\bO & \bA{\dwup,\dwup} \\
\bA{}{\spf} & = \begin{pmatrix}
\bA{\updw,\updw}{} & \bO \\
\bO & \bA{\dwup,\dwup}{} \\
\end{pmatrix}
&
\bB{\spf} & = \begin{pmatrix}
\bO & \bB{\updw,\dwup} \\
\bB{\dwup,\updw} & \bO \\
\bB{}{\spf} & = \begin{pmatrix}
\bO & \bB{\updw,\dwup}{} \\
\bB{\dwup,\updw}{} & \bO \\
\end{pmatrix}
\end{align}
with
\begin{subequations}
\begin{align}
\label{eq:LR_RPA-Asc}
\A{ia\si,jb\sip}{\spc,\RPA} & = \delta_{ij} \delta_{ab} \delta_{\si\sip} (\e{a\si} - \e{i\si}) + \ERI{ia\si}{jb\sip},
\label{eq:LR_RPA-A}
\A{i_\sig a_\tau,j_\sigp b_\taup}{\RPA} & = \delta_{ij} \delta_{ab} \delta_{\sig \sigp} \delta_{\tau \taup} (\e{a_\tau} - \e{i_\sig}) + \ERI{i_\sig a_\tau}{b_\sigp j_\taup}
\\
\label{eq:LR_RPA-Bsc}
\B{ia\si,jb\sip}{\spc,\RPA} & = 0,
\label{eq:LR_RPA-B}
\B{i_\sig a_\tau,j_\sigp b_\taup}{\RPA} & = \ERI{i_\sig a_\tau}{j_\sigp b_\taup}
\end{align}
\end{subequations}
from which we obtain, at the RPA level, the following expressions
\begin{subequations}
\begin{align}
\label{eq:LR_RPA-Asc}
\A{i_\sig a_\sig,j_\sigp b_\sigp}{\spc,\RPA} & = \delta_{ij} \delta_{ab} \delta_{\sig \sigp} (\e{a_\sig} - \e{i_\sig}) + \ERI{i_\sig a_\sig}{b_\sigp j_\sigp}
\\
\label{eq:LR_RPA-Bsc}
\B{i_\sig a_\sig,j_\sigp b_\sigp}{\spc,\RPA} & = \ERI{i_\sig a_\sig}{j_\sigp b_\sigp}
\end{align}
\end{subequations}
for the spin-conserved excitations and
\begin{subequations}
\begin{align}
\label{eq:LR_RPA-Asf}
\A{i_\sig a_\bsig,j_\sig b_\bsig}{\spf,\RPA} & = \delta_{ij} \delta_{ab} (\e{a_\bsig} - \e{i_\sig})
\\
\label{eq:LR_RPA-Bsf}
\B{i_\sig a_\bsig,j_\bsig b_\sig}{\spf,\RPA} & = 0
\end{align}
\end{subequations}
for the spin-flip excitations.
%================================
\subsection{The $GW$ self-energy}
@ -138,10 +156,10 @@ with
\begin{equation}
\begin{split}
\SigC{pq\si}(\omega)
& = \sum_i \sum_m \frac{\sERI{pi\si}{m} \sERI{qi\si}{m}}{\omega - \e{i\si} + \Om{m}{\spc,\RPA} - i \eta}
\SigC{p_\sig q_\sig}(\omega)
& = \sum_i \sum_m \frac{\ERI{p_\sig i_\sig}{m} \ERI{q_\sig i_\sig}{m}}{\omega - \e{i_\sig} + \Om{m}{\spc,\RPA} - i \eta}
\\
& + \sum_a \sum_m \frac{\sERI{pa\si}{m} \sERI{qa\si}{m}}{\omega - \e{a\si} - \Om{m}{\spc,\RPA} + i \eta}
& + \sum_a \sum_m \frac{\ERI{p_\sig a_\sig}{m} \ERI{q_\sig a_\sig}{m}}{\omega - \e{a_\sig} - \Om{m}{\spc,\RPA} + i \eta}
\end{split}
\end{equation}
@ -151,19 +169,44 @@ The quasiparticle energies $\eGW{p}$ are obtained by solving the frequency-depen
\end{equation}
%================================
\subsection{The Bethe-Salpeter formalism}
\subsection{The Bethe-Salpeter equation formalism}
%================================
Defining $W^{\stat}_{p_\sig q_\sig,r_\sigp s_\sigp} = W_{p_\sig q_\sig,r_\sigp s_\sigp}(\omega = 0)$, we have
\begin{subequations}
\begin{align}
\label{eq:LR_BSE-A}
\A{i_\sig a_\tau,j_\sigp b_\taup}{\BSE} & = \A{i_\sig a_\tau,j_\sigp b_\taup}{\RPA} - \delta_{\sig \sigp} W^{\stat}_{i_\sig j_\sigp,b_\taup a_\tau}
\\
\label{eq:LR_BSE-B}
\B{i_\sig a_\tau,j_\sigp b_\taup}{\BSE} & = \B{i_\sig a_\tau,j_\sigp b_\taup}{\RPA} - \delta_{\sig \sigp} W^{\stat}_{i_\sig b_\taup,j_\sigp a_\tau}
\end{align}
\end{subequations}
from which we obtain, at the BSE level, the following expressions
\begin{subequations}
\begin{align}
\label{eq:LR_BSE-Asc}
\A{ia\si,jb\sip}{\spc,\BSE} & = \delta_{ij} \delta_{ab} \delta_{\si\sip} (\eGW{a\si} - \eGW{i\si}) + \ERI{ia\si}{jb\sip} - W_{ij}
\A{i_\sig a_\sig,j_\sigp b_\sigp}{\spc,\BSE} & = \A{i_\sig a_\sig,j_\sigp b_\sigp}{\spc,\RPA} - \delta_{\sig \sigp} W^{\stat}_{i_\sig j_\sigp,b_\sigp a_\sig}
\\
\label{eq:LR_BSE-Bsc}
\B{ia\si,jb\sip}{\spc,\BSE} & = 0,
\B{i_\sig a_\sig,j_\sigp b_\sigp}{\spc,\BSE} & = \B{i_\sig a_\sig,j_\sigp b_\sigp}{\spc,\RPA} - \delta_{\sig \sigp} W^{\stat}_{i_\sig b_\sigp,j_\sigp a_\sig}
\end{align}
\end{subequations}
for the spin-conserved excitations and
\begin{subequations}
\begin{align}
\label{eq:LR_BSE-Asf}
\A{i_\sig a_\bsig,j_\sig b_\bsig}{\spf,\BSE} & = \A{i_\sig a_\bsig,j_\sig b_\bsig}{\spf,\RPA} - W^{\stat}_{i_\sig j_\sig,b_\bsig a_\bsig}
\\
\label{eq:LR_BSE-Bsf}
\B{i_\sig a_\bsig,j_\bsig b_\sig}{\spf,\BSE} & = - W^{\stat}_{i_\sig b_\sig,j_\bsig a_\bsig}
\end{align}
\end{subequations}
for the spin-flip excitations.
%================================
\subsection{The dynamical Bethe-Salpeter equation correction}
%================================
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Computational details}
\label{sec:compdet}
@ -178,7 +221,7 @@ The quasiparticle energies $\eGW{p}$ are obtained by solving the frequency-depen
%%%%%%%%%%%%%%%%%%%%%%%%
\acknowledgements{
We would like to thank Xavier Blase and Denis Jacquemin for insightful discussions.
This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No.~863481).
This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No.~863481).}
%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%