sfBSE/sfBSE.tex

441 lines
14 KiB
TeX
Raw Normal View History

2020-10-20 21:58:35 +02:00
\documentclass[aip,jcp,reprint,noshowkeys,superscriptaddress]{revtex4-1}
\usepackage{graphicx,dcolumn,bm,xcolor,microtype,multirow,amscd,amsmath,amssymb,amsfonts,physics,longtable,wrapfig,txfonts}
\usepackage[version=4]{mhchem}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{txfonts}
\usepackage[
colorlinks=true,
citecolor=blue,
breaklinks=true
]{hyperref}
\urlstyle{same}
\begin{document}
\title{Spin-Conserved and Spin-Flip Optical Excitations From the Bethe-Salpeter Equation Formalism}
\author{Enzo \surname{Monino}}
\affiliation{\LCPQ}
\author{Pierre-Fran\c{c}ois \surname{Loos}}
\email{loos@irsamc.ups-tlse.fr}
\affiliation{\LCPQ}
\begin{abstract}
\alert{Here comes the abstract.}
%\bigskip
%\begin{center}
% \boxed{\includegraphics[width=0.5\linewidth]{TOC}}
%\end{center}
%\bigskip
\end{abstract}
\maketitle
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Introduction}
\label{sec:intro}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\alert{Here comes the introduction.}
Unless otherwise stated, atomic units are used, and we assume real quantities throughout this manuscript.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Unrestricted $GW$ formalism}
\label{sec:UGW}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2020-10-21 22:58:11 +02:00
Let us consider an electronic system consisting of $n = n_\up + n_\dw$ electrons (where $n_\up$ and $n_\dw$ are the number of spin-up and spin-down electrons respectively) and $N$ one-electron basis functions.
The number of spin-up and spin-down occupied orbitals are $O_\up = n_\up$ and $O_\dw = n_\dw$, respectively, and there is $V_\up = N - O_\up$ and $V_\dw = N - O_\dw$ spin-up and spin-down virtual (\ie, unoccupied) orbitals.
The number of spin-conserved single excitations is then $S^\spc = S_{\up\up}^\spc + S_{\dw\dw}^\spc = O_\up V_\up + O_\dw V_\dw$, while the number of spin-flip excitations is $S^\spf = S_{\up\dw}^\spf + S_{\dw\up}^\spf = O_\up V_\dw + O_\dw V_\up$.
2020-10-23 15:13:15 +02:00
Let us denote as $\MO{p_\sig}$ the $p$th orbital of spin $\sig$ (where $\sig =$ $\up$ or $\dw$) and $\e{p_\sig}{}$ its one-electron energy.
In the present context these orbitals can originate from a HF or KS calculation.
2020-10-21 22:58:11 +02:00
In the following, $i$ and $j$ are occupied orbitals, $a$ and $b$ are unoccupied orbitals, $p$, $q$, $r$, and $s$ indicate arbitrary orbitals, and $m$ labels single excitations.
2020-10-22 12:40:48 +02:00
It is important to understand that, in a spin-conserved excitation the hole orbital $\MO{i_\sig}$ and particle orbital $\MO{a_\sig}$ have the same spin $\sig$.
2020-10-23 15:13:15 +02:00
In a spin-flip excitation, the hole and particle states, $\MO{i_\sig}$ and $\MO{a_\bsig}$, have opposite spins, $\sig$ and $\bsig$.
2020-10-21 22:58:11 +02:00
%================================
2020-10-20 21:58:35 +02:00
\subsection{The dynamical screening}
2020-10-21 22:58:11 +02:00
%================================
2020-10-23 15:13:15 +02:00
The one-body Green's function is defined as
\begin{equation}
G^{\sig}(\br_1,\br_2;\omega)
= \sum_i \frac{\MO{i_\sig}(\br_1) \MO{i_\sig}(\br_2)}{\omega - \e{i_\sig}{} - i\eta}
+ \sum_a \frac{\MO{a_\sig}(\br_1) \MO{a_\sig}(\br_2)}{\omega - \e{a_\sig}{} + i\eta}
\end{equation}
Based on this Green's function, one can easily compute the non-interacting polarizability
\begin{equation}
\chi_0(\br_1,\br_2;\omega) = - \frac{i}{2\pi} \sum_\sig \int G^{\sig}(\br_1,\br_2;\omega+\omega') G^{\sig}(\br_1,\br_2;\omega') d\omega'
\end{equation}
and subseauently the dielectric function
\begin{equation}
\epsilon(\br_1,\br-2;\omega) = \delta(\br_1 - \br_2) - \int \frac{\chi_0(\br_1,\br_3;\omega) }{\abs{\br_2 - \br_3}} d\br_3
\end{equation}
Based on this latter ingredient, one can access the dynamically-screened Coulomb potential
\begin{equation}
W(\br_1,\br_2;\omega) = \int \frac{\epsilon^{-1}(\br_1,\br_3;\omega) }{\abs{\br_2 - \br_3}} d\br_3
\end{equation}
2020-10-20 21:58:35 +02:00
2020-10-20 23:14:57 +02:00
Within the $GW$ formalism, the dynamical screening $W(\omega)$ is computed at the RPA level using the spin-conserved neutral excitations.
2020-10-23 15:13:15 +02:00
In the orbital basis, the spectral representation of $W(\omega)$ read
2020-10-20 23:14:57 +02:00
\begin{multline}
2020-10-22 12:40:48 +02:00
W_{p_\sig q_\sig,r_\sigp s_\sigp}(\omega) = \ERI{p_\sig q_\sig}{r_\sigp s_\sigp}
+ \sum_m \ERI{p_\sig q_\sig}{m}\ERI{r_\sigp s_\sigp}{m}
2020-10-20 23:14:57 +02:00
\\
2020-10-21 22:58:11 +02:00
\times \qty[ \frac{1}{\omega - \Om{m}{\spc,\RPA} + i \eta} - \frac{1}{\omega + \Om{m}{\spc,\RPA} - i \eta} ]
2020-10-20 23:14:57 +02:00
\end{multline}
2020-10-21 22:58:11 +02:00
where the two-electron integrals are
2020-10-20 23:14:57 +02:00
\begin{equation}
2020-10-23 15:13:15 +02:00
\ERI{p_\sig q_\tau}{r_\sigp s_\taup} = \int \frac{\MO{p_\sig}(\br_1) \MO{q_\tau}(\br_1) \MO{r_\sigp}(\br_2) \MO{s_\taup}(\br_2)}{\abs{\br_1 - \br_2}} d\br_1 d\br_2
2020-10-20 23:14:57 +02:00
\end{equation}
\begin{equation}
2020-10-22 12:40:48 +02:00
\ERI{p_\sig q_\sig}{m} = \sum_{ia\sigp} \ERI{p_\sig q_\sig}{r_\sigp s_\sigp} (\bX{m}{\spc,\RPA}+\bY{m}{\spc,\RPA})_{i_\sigp a_\sigp}
2020-10-20 23:14:57 +02:00
\end{equation}
\begin{equation}
\label{eq:LR-RPA}
\begin{pmatrix}
2020-10-22 12:40:48 +02:00
\bA{}{\spc,\RPA} & \bB{}{\spc,\RPA} \\
-\bB{}{\spc,\RPA} & -\bA{}{\spc,\RPA} \\
2020-10-20 23:14:57 +02:00
\end{pmatrix}
\cdot
\begin{pmatrix}
2020-10-21 22:58:11 +02:00
\bX{m}{\spc,\RPA} \\
\bY{m}{\spc,\RPA} \\
2020-10-20 23:14:57 +02:00
\end{pmatrix}
=
2020-10-21 22:58:11 +02:00
\Om{m}{\spc,\RPA}
2020-10-20 23:14:57 +02:00
\begin{pmatrix}
2020-10-21 22:58:11 +02:00
\bX{m}{\spc,\RPA} \\
\bY{m}{\spc,\RPA} \\
2020-10-20 23:14:57 +02:00
\end{pmatrix},
\end{equation}
2020-10-21 22:58:11 +02:00
2020-10-22 12:40:48 +02:00
The spin structure of these matrices are general and reads
2020-10-21 22:58:11 +02:00
\begin{align}
\label{eq:LR-RPA-AB}
2020-10-22 12:40:48 +02:00
\bA{}{\spc} & = \begin{pmatrix}
\bA{\upup,\upup}{} & \bA{\upup,\dwdw}{} \\
\bA{\dwdw,\upup}{} & \bA{\dwdw,\dwdw}{} \\
2020-10-21 22:58:11 +02:00
\end{pmatrix}
&
2020-10-22 12:40:48 +02:00
\bB{}{\spc} & = \begin{pmatrix}
\bB{\upup,\upup}{} & \bB{\upup,\dwdw}{} \\
\bB{\dwdw,\upup}{} & \bB{\dwdw,\dwdw}{} \\
2020-10-21 22:58:11 +02:00
\end{pmatrix}
2020-10-22 12:40:48 +02:00
\\
2020-10-21 22:58:11 +02:00
\label{eq:LR-RPA-AB}
2020-10-22 12:40:48 +02:00
\bA{}{\spf} & = \begin{pmatrix}
\bA{\updw,\updw}{} & \bO \\
\bO & \bA{\dwup,\dwup}{} \\
2020-10-21 22:58:11 +02:00
\end{pmatrix}
&
2020-10-22 12:40:48 +02:00
\bB{}{\spf} & = \begin{pmatrix}
\bO & \bB{\updw,\dwup}{} \\
\bB{\dwup,\updw}{} & \bO \\
2020-10-21 22:58:11 +02:00
\end{pmatrix}
\end{align}
2020-10-20 23:14:57 +02:00
with
\begin{subequations}
2020-10-22 12:40:48 +02:00
\begin{align}
\label{eq:LR_RPA-A}
\A{i_\sig a_\tau,j_\sigp b_\taup}{\RPA} & = \delta_{ij} \delta_{ab} \delta_{\sig \sigp} \delta_{\tau \taup} (\e{a_\tau} - \e{i_\sig}) + \ERI{i_\sig a_\tau}{b_\sigp j_\taup}
\\
\label{eq:LR_RPA-B}
\B{i_\sig a_\tau,j_\sigp b_\taup}{\RPA} & = \ERI{i_\sig a_\tau}{j_\sigp b_\taup}
\end{align}
\end{subequations}
from which we obtain, at the RPA level, the following expressions
\begin{subequations}
2020-10-20 23:14:57 +02:00
\begin{align}
2020-10-21 22:58:11 +02:00
\label{eq:LR_RPA-Asc}
2020-10-22 12:40:48 +02:00
\A{i_\sig a_\sig,j_\sigp b_\sigp}{\spc,\RPA} & = \delta_{ij} \delta_{ab} \delta_{\sig \sigp} (\e{a_\sig} - \e{i_\sig}) + \ERI{i_\sig a_\sig}{b_\sigp j_\sigp}
2020-10-20 23:14:57 +02:00
\\
2020-10-21 22:58:11 +02:00
\label{eq:LR_RPA-Bsc}
2020-10-22 12:40:48 +02:00
\B{i_\sig a_\sig,j_\sigp b_\sigp}{\spc,\RPA} & = \ERI{i_\sig a_\sig}{j_\sigp b_\sigp}
2020-10-20 23:14:57 +02:00
\end{align}
\end{subequations}
2020-10-22 12:40:48 +02:00
for the spin-conserved excitations and
\begin{subequations}
\begin{align}
\label{eq:LR_RPA-Asf}
\A{i_\sig a_\bsig,j_\sig b_\bsig}{\spf,\RPA} & = \delta_{ij} \delta_{ab} (\e{a_\bsig} - \e{i_\sig})
\\
\label{eq:LR_RPA-Bsf}
\B{i_\sig a_\bsig,j_\bsig b_\sig}{\spf,\RPA} & = 0
\end{align}
\end{subequations}
for the spin-flip excitations.
2020-10-21 22:58:11 +02:00
%================================
2020-10-20 21:58:35 +02:00
\subsection{The $GW$ self-energy}
2020-10-21 22:58:11 +02:00
%================================
2020-10-23 15:13:15 +02:00
\begin{equation}
\Sig{}^{\sig}(\br_1,\br_2;\omega)
= \frac{i}{2\pi} \int G^{\sig}(\br_1,\br_2;\omega+\omega') W(\br_1,\br_2;\omega') e^{i \eta \omega'} d\omega'
\end{equation}
\begin{equation}
\SigX{p_\sig q_\sig}(\omega)
= - \frac{1}{2} \sum_{i\sigp} \ERI{p_\sig i_\sigp}{i_\sigp q_\sig}
\end{equation}
2020-10-21 22:58:11 +02:00
\begin{equation}
\begin{split}
2020-10-22 12:40:48 +02:00
\SigC{p_\sig q_\sig}(\omega)
2020-10-23 15:13:15 +02:00
& = \sum_{im} \frac{\ERI{p_\sig i_\sig}{m} \ERI{q_\sig i_\sig}{m}}{\omega - \e{i_\sig} + \Om{m}{\spc,\RPA} - i \eta}
2020-10-21 22:58:11 +02:00
\\
2020-10-23 15:13:15 +02:00
& + \sum_{am} \frac{\ERI{p_\sig a_\sig}{m} \ERI{q_\sig a_\sig}{m}}{\omega - \e{a_\sig} - \Om{m}{\spc,\RPA} + i \eta}
2020-10-21 22:58:11 +02:00
\end{split}
\end{equation}
2020-10-20 21:58:35 +02:00
2020-10-20 23:14:57 +02:00
The quasiparticle energies $\eGW{p}$ are obtained by solving the frequency-dependent quasiparticle equation
2020-10-20 21:58:35 +02:00
\begin{equation}
2020-10-21 22:58:11 +02:00
\omega = \eHF{p\sigma} + \SigC{p\sigma}(\omega)
2020-10-20 21:58:35 +02:00
\end{equation}
2020-10-21 22:58:11 +02:00
%================================
2020-10-22 12:40:48 +02:00
\subsection{The Bethe-Salpeter equation formalism}
2020-10-21 22:58:11 +02:00
%================================
2020-10-23 15:13:15 +02:00
\begin{multline}
L^{\sig\sigp}(\br_1,\br_2;\br_1',\br_2';\omega)
= L_{0}^{\sig\sigp}(\br_1,\br_2;\br_1',\br_2';\omega)
\\
+ \int L_{0}^{\sig\sigp}(\br_1,\br_4;\br_1',\br_3;\omega)
\Xi^{\sig\sigp}(\br_3,\br_5;\br_4,\br_6;\omega)
\\
\times L^{\sig\sigp}(\br_6,\br_2;\br_5,\br_2';\omega)
d\br_3 d\br_4 d\br_5 d\br_6
\end{multline}
\begin{multline}
i \Xi^{\sig\sigp}(\br_3,\br_5;\br_4,\br_6;\omega)
= \frac{\delta(\br_3 - \br_4) \delta(\br_5 - \br_6) }{\abs{\br_3-\br_6}}
\\
- \delta_{\sig\sigp} W(\br_3,\br_4;\omega) \delta(\br_3 - \br_6) \delta(\br_4 - \br_6)
\end{multline}
2020-10-22 12:40:48 +02:00
Defining $W^{\stat}_{p_\sig q_\sig,r_\sigp s_\sigp} = W_{p_\sig q_\sig,r_\sigp s_\sigp}(\omega = 0)$, we have
\begin{subequations}
\begin{align}
\label{eq:LR_BSE-A}
\A{i_\sig a_\tau,j_\sigp b_\taup}{\BSE} & = \A{i_\sig a_\tau,j_\sigp b_\taup}{\RPA} - \delta_{\sig \sigp} W^{\stat}_{i_\sig j_\sigp,b_\taup a_\tau}
\\
\label{eq:LR_BSE-B}
\B{i_\sig a_\tau,j_\sigp b_\taup}{\BSE} & = \B{i_\sig a_\tau,j_\sigp b_\taup}{\RPA} - \delta_{\sig \sigp} W^{\stat}_{i_\sig b_\taup,j_\sigp a_\tau}
\end{align}
\end{subequations}
from which we obtain, at the BSE level, the following expressions
2020-10-21 22:58:11 +02:00
\begin{subequations}
\begin{align}
\label{eq:LR_BSE-Asc}
2020-10-22 12:40:48 +02:00
\A{i_\sig a_\sig,j_\sigp b_\sigp}{\spc,\BSE} & = \A{i_\sig a_\sig,j_\sigp b_\sigp}{\spc,\RPA} - \delta_{\sig \sigp} W^{\stat}_{i_\sig j_\sigp,b_\sigp a_\sig}
2020-10-21 22:58:11 +02:00
\\
\label{eq:LR_BSE-Bsc}
2020-10-22 12:40:48 +02:00
\B{i_\sig a_\sig,j_\sigp b_\sigp}{\spc,\BSE} & = \B{i_\sig a_\sig,j_\sigp b_\sigp}{\spc,\RPA} - \delta_{\sig \sigp} W^{\stat}_{i_\sig b_\sigp,j_\sigp a_\sig}
\end{align}
\end{subequations}
for the spin-conserved excitations and
\begin{subequations}
\begin{align}
\label{eq:LR_BSE-Asf}
\A{i_\sig a_\bsig,j_\sig b_\bsig}{\spf,\BSE} & = \A{i_\sig a_\bsig,j_\sig b_\bsig}{\spf,\RPA} - W^{\stat}_{i_\sig j_\sig,b_\bsig a_\bsig}
\\
\label{eq:LR_BSE-Bsf}
\B{i_\sig a_\bsig,j_\bsig b_\sig}{\spf,\BSE} & = - W^{\stat}_{i_\sig b_\sig,j_\bsig a_\bsig}
2020-10-21 22:58:11 +02:00
\end{align}
\end{subequations}
2020-10-22 12:40:48 +02:00
for the spin-flip excitations.
2020-10-21 22:58:11 +02:00
2020-10-22 12:40:48 +02:00
%================================
2020-10-22 13:23:19 +02:00
\subsection{Dynamical correction}
2020-10-22 12:40:48 +02:00
%================================
2020-10-22 13:23:19 +02:00
\begin{multline}
\widetilde{W}_{p_\sig q_\sig,r_\sigp s_\sigp}(\omega) = \ERI{p_\sig q_\sig}{r_\sigp s_\sigp}
+ \sum_m \ERI{p_\sig q_\sig}{m}\ERI{r_\sigp s_\sigp}{m}
\\
\times \qty[ \frac{1}{\omega - (\e{s_\sigp}{} - \e{q_\sig}{}) - \Om{m}{\spc,\RPA} + i \eta} + \frac{1}{\omega - (\e{r_\sigp}{} - \e{p_\sig}{}) - \Om{m}{\spc,\RPA} + i \eta} ]
\end{multline}
\begin{equation}
\label{eq:LR-dyn}
\begin{pmatrix}
\bA{}{\dBSE}(\omega) & \bB{}{\dBSE}(\omega)
\\
-\bB{}{\dBSE}(-\omega) & -\bA{}{\dBSE}(-\omega)
\\
\end{pmatrix}
\cdot
\begin{pmatrix}
\bX{m}{\dBSE} \\
\bY{m}{\dBSE} \\
\end{pmatrix}
=
\Om{m}{\dBSE}
\begin{pmatrix}
\bX{m}{\dBSE} \\
\bY{m}{\dBSE} \\
\end{pmatrix}
\end{equation}
\begin{subequations}
\begin{align}
\label{eq:LR_dBSE-A}
\A{i_\sig a_\tau,j_\sigp b_\taup}{\dBSE}(\omega) & = \A{i_\sig a_\tau,j_\sigp b_\taup}{\RPA} - \delta_{\sig \sigp} \widetilde{W}_{i_\sig j_\sigp,b_\taup a_\tau}(\omega)
\\
\label{eq:LR_dBSE-B}
\B{i_\sig a_\tau,j_\sigp b_\taup}{\dBSE}(\omega) & = \B{i_\sig a_\tau,j_\sigp b_\taup}{\RPA} - \delta_{\sig \sigp} \widetilde{W}_{i_\sig b_\taup,j_\sigp a_\tau}(\omega)
\end{align}
\end{subequations}
\begin{multline}
\label{eq:LR-PT}
\begin{pmatrix}
\bA{}{\dBSE}(\omega) & \bB{}{\dBSE}(\omega) \\
-\bB{}{\dBSE}(-\omega) & -\bA{}{\dBSE}(-\omega) \\
\end{pmatrix}
\\
=
\begin{pmatrix}
\bA{}{(0)} & \bB{}{(0)}
\\
-\bB{}{(0)} & -\bA{}{(0)}
\\
\end{pmatrix}
+
\begin{pmatrix}
\bA{}{(1)}(\omega) & \bB{}{(1)}(\omega) \\
-\bB{}{(1)}(-\omega) & -\bA{}{(1)}(-\omega) \\
\end{pmatrix}
\end{multline}
with
\begin{subequations}
\begin{align}
\label{eq:BSE-A0}
\A{i_\sig a_\tau,j_\sigp b_\taup}{(0)} & = \A{i_\sig a_\tau,j_\sigp b_\taup}{\BSE}
\\
\label{eq:BSE-B0}
\B{i_\sig a_\tau,j_\sigp b_\taup}{(0)} & = \B{i_\sig a_\tau,j_\sigp b_\taup}{\BSE}
\end{align}
\end{subequations}
and
\begin{subequations}
\begin{align}
\label{eq:BSE-A1}
\A{i_\sig a_\tau,j_\sigp b_\taup}{(1)}(\omega) & = - \delta_{\sig \sigp} \widetilde{W}_{i_\sig j_\sigp,b_\taup a_\tau}(\omega) + \delta_{\sig \sigp} W^{\stat}_{i_\sig j_\sigp,b_\taup a_\tau}
\\
\label{eq:BSE-B1}
\B{i_\sig a_\tau,j_\sigp b_\taup}{(1)}(\omega) & = - \delta_{\sig \sigp} \widetilde{W}_{i_\sig b_\taup,j_\sigp a_\tau}(\omega) + \delta_{\sig \sigp} W^{\stat}_{i_\sig b_\taup,j_\sigp a_\tau}
\end{align}
\end{subequations}
\begin{subequations}
\begin{gather}
\Om{m}{\dBSE} = \Om{m}{(0)} + \Om{m}{(1)} + \ldots
\\
\begin{pmatrix}
\bX{m}{\dBSE} \\
\bY{m}{\dBSE} \\
\end{pmatrix}
=
\begin{pmatrix}
\bX{m}{(0)} \\
\bY{m}{(0)} \\
\end{pmatrix}
+
\begin{pmatrix}
\bX{m}{(1)} \\
\bY{m}{(1)} \\
\end{pmatrix}
+ \ldots
\end{gather}
\end{subequations}
\begin{equation}
\label{eq:LR-BSE-stat}
\begin{pmatrix}
\bA{}{(0)} & \bB{}{(0)} \\
-\bB{}{(0)} & -\bA{}{(0)} \\
\end{pmatrix}
\cdot
\begin{pmatrix}
\bX{S}{(0)} \\
\bY{S}{(0)} \\
\end{pmatrix}
=
\Om{m}{(0)}
\begin{pmatrix}
\bX{m}{(0)} \\
\bY{m}{(0)} \\
\end{pmatrix}
\end{equation}
\begin{equation}
\label{eq:Om1}
\Om{m}{(1)} =
\T{\begin{pmatrix}
\bX{m}{(0)} \\
\bY{m}{(0)} \\
\end{pmatrix}}
\cdot
\begin{pmatrix}
\bA{}{(1)}(\Om{m}{(0)}) & \bB{}{(1)}(\Om{m}{(0)}) \\
-\bB{}{(1)}(-\Om{m}{(0)}) & -\bA{}{(1)}(-\Om{m}{(0)}) \\
\end{pmatrix}
\cdot
\begin{pmatrix}
\bX{m}{(0)} \\
\bY{m}{(0)} \\
\end{pmatrix}
\end{equation}
\begin{equation}
\label{eq:Om1-TDA}
\Om{S}{(1)} = \T{(\bX{m}{(0)})} \cdot \bA{}{(1)}(\Om{m}{(0)}) \cdot \bX{m}{(0)}
\end{equation}
\begin{equation}
\label{eq:Z}
Z_{m} = \qty[ 1 - \T{(\bX{m}{(0)})} \cdot \left. \pdv{\bA{}{(1)}(\Om{m}{})}{\Om{S}{}} \right|_{\Om{m}{} = \Om{m}{(0)}} \cdot \bX{m}{(0)} ]^{-1}
\end{equation}
\begin{equation}
\Om{m}{\dBSE} = \Om{m}{(0)} + Z_{m} \Om{m}{(1)}
\end{equation}
2020-10-20 21:58:35 +02:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2020-10-21 22:58:11 +02:00
\section{Computational details}
2020-10-20 21:58:35 +02:00
\label{sec:compdet}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Conclusion}
\label{sec:ccl}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%
\acknowledgements{
We would like to thank Xavier Blase and Denis Jacquemin for insightful discussions.
2020-10-22 12:40:48 +02:00
This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No.~863481).}
2020-10-20 21:58:35 +02:00
%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section*{Data availability statement}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
The data that supports the findings of this study are available within the article and its supplementary material.
%%%%%%%%%%%%%%%%%%%%%%%%
\bibliography{sf-BSE}
%%%%%%%%%%%%%%%%%%%%%%%%
\end{document}