2020-06-28 17:42:47 +02:00
\documentclass [xcolor=x11names,compress] { beamer}
%% General document %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage { graphicx}
\usepackage { mathpazo}
\usepackage [english] { babel}
\usepackage [T1] { fontenc}
\usepackage [utf8] { inputenc}
2020-06-28 19:44:14 +02:00
\usepackage { xcolor}
2020-06-28 17:42:47 +02:00
\usepackage { siunitx}
\usepackage { graphicx}
\usepackage { physics}
\usepackage { multimedia}
\usepackage [absolute,overlay] { textpos}
\usepackage { ragged2e}
\usepackage { amssymb}
\usepackage [version=4] { mhchem}
2020-06-29 13:47:25 +02:00
\usepackage [style=verbose,backend=bibtex] { biblatex}
\bibliography { SlideToulouse}
2020-06-28 17:42:47 +02:00
2020-06-28 19:44:14 +02:00
2020-06-28 17:42:47 +02:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Beamer Layout %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\useoutertheme [subsection=false,shadow] { miniframes}
\useinnertheme { default}
\setbeamerfont { title like} { shape=\scshape }
\setbeamerfont { frametitle} { shape=\scshape }
\setbeamerfont { framesubtitle} { size=\normalsize }
\setbeamerfont { caption} { size=\scriptsize }
\setbeamercolor * { lower separation line head} { bg=DeepSkyBlue4}
\setbeamercolor * { normal text} { fg=black,bg=white}
\setbeamercolor * { alerted text} { fg=red}
\setbeamercolor * { example text} { fg=black}
\setbeamercolor * { structure} { fg=black}
\setbeamercolor * { palette tertiary} { fg=black,bg=black!10}
\setbeamercolor * { palette quaternary} { fg=black,bg=black!10}
\setbeamercolor { caption name} { fg=DeepSkyBlue4}
\setbeamercolor { title} { fg=DeepSkyBlue4}
\setbeamercolor { itemize item} { fg=DeepSkyBlue4}
\setbeamercolor { frametitle} { fg=DeepSkyBlue4}
\renewcommand { \( } { \begin { columns } }
\renewcommand { \) } { \end { columns} }
\newcommand { \< } [1]{ \begin { column} { #1} }
\renewcommand { \> } { \end { column} }
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\setbeamertemplate { navigation symbols} { }
\setbeamertemplate { footline} [frame number]
\setbeamertemplate { caption} [numbered]
\setbeamertemplate { section in toc} [ball]
\setbeamertemplate { itemize items} [circle]
\beamerboxesdeclarecolorscheme { clair} { Coral4} { Ivory2}
\beamerboxesdeclarecolorscheme { foncé} { DarkSeaGreen4} { Ivory2}
2020-06-28 19:44:14 +02:00
\title [Title] { Perturbation theories in the complex plane}
2020-06-28 17:42:47 +02:00
\author [] { Antoine \textsc { Marie} }
\setbeamersize { text margin left=5mm}
\setbeamersize { text margin right=5mm}
\institute { Supervised by Pierre-François \textsc { LOOS} }
\begin { document}
2020-06-28 19:44:14 +02:00
2020-06-28 17:42:47 +02:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin { frame} [plain]
2020-06-28 19:44:14 +02:00
\date { 30th June 2020}
2020-06-28 17:42:47 +02:00
\titlepage
\end { frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2020-06-28 19:44:14 +02:00
\begin { frame} { Why do we use perturbation theories in computational chemistry?}
\pause [1]
The Hartree-Fock theory is \textcolor { Green4} { computationally cheap} and can be applied even to \textcolor { Green4} { large systems} .
But this method is missing the \textcolor { red} { correlation energy} ...
\vspace { 0.5cm}
\pause [2]
$ \rightarrow $ We need methods to get this correlation energy!
\vspace { 0.5cm}
\pause [3]
\begin { beamerboxesrounded} [scheme=foncé]{ \centering A general method}
In physics perturbation theory is often a good way to improve the obtained results with an approximated Hamiltonian.
\end { beamerboxesrounded}
\end { frame}
2020-06-28 17:42:47 +02:00
\section { \textsc { Strange behaviors of the MP series} }
2020-06-28 19:44:14 +02:00
\begin { frame} { The Møller-Plesset perturbation theory}
\pause [1]
2020-06-28 17:42:47 +02:00
\begin { beamerboxesrounded} [scheme=foncé]{ \centering Partitioning of the Hamiltonian}
\begin { equation}
H = H_ 0 + \lambda V
\end { equation}
\end { beamerboxesrounded}
\begin { itemize}
\centering
2020-06-28 19:44:14 +02:00
\item $ H _ 0 $ : Unperturbed Hamiltonian
\item $ V $ : Perturbation operator
2020-06-28 17:42:47 +02:00
\end { itemize}
2020-06-28 19:44:14 +02:00
\pause [2]
2020-06-28 17:42:47 +02:00
\begin { beamerboxesrounded} [scheme=foncé]{ \centering The Fock operator}
\begin { equation}
2020-06-29 23:31:41 +02:00
F = \sum \limits _ { i=1} ^ { n} f(i) \hspace { 0.3cm} ; \hspace { 0.3cm} f(i) = h(i) + \sum \limits _ { i=1} ^ { n/2} \left [2J_j(i) - K_j(i)\right]
2020-06-28 17:42:47 +02:00
\end { equation}
2020-06-28 19:44:14 +02:00
2020-06-28 17:42:47 +02:00
\end { beamerboxesrounded}
\begin { itemize}
\centering
2020-06-29 23:31:41 +02:00
\item $ f ( i ) $ : Fock operator
\item $ h ( i ) $ : One electron Hamiltonian
\item $ J _ j ( i ) $ : Coulomb operator
\item $ K _ j ( i ) $ : Exchange operator
2020-06-28 17:42:47 +02:00
\end { itemize}
2020-06-28 19:44:14 +02:00
\pause [3]
\begin { beamerboxesrounded} [scheme=foncé]{ }
\centering
2020-06-29 23:31:41 +02:00
Full Configuration Interaction gives access to high-order terms of the perturbation series !
2020-06-28 19:44:14 +02:00
\end { beamerboxesrounded}
2020-06-28 17:42:47 +02:00
\end { frame}
2020-06-29 13:47:25 +02:00
\begin { frame} { Deceptive or slow convergences\footcite { gill_ deceptive_ 1986} }
2020-06-28 17:42:47 +02:00
\begin { figure}
\centering
2020-06-29 13:47:25 +02:00
\includegraphics [width=0.45\textwidth] { gill1986.png}
2020-06-28 21:35:41 +02:00
\caption { \centering Barriers to homolytic fission of \ce { He2^ 2+} at MPn/STO-3G level ($ n = 1 $ --$ 20 $ ).}
2020-06-28 17:42:47 +02:00
\label { fig:my_ label}
\end { figure}
\end { frame}
2020-06-29 13:47:25 +02:00
\begin { frame} { Multi-reference and spin contamination\footcite { gill_ why_ 1988} }
2020-06-28 17:42:47 +02:00
\begin { table}
\centering
\begin { tabular} { c c c c c c c}
\hline
2020-06-28 19:44:14 +02:00
$ r $ & UHF & UMP2 & UMP3 & UMP4 & $ \expval { S ^ 2 } $ \\
2020-06-28 17:42:47 +02:00
\hline
0.75 & 0.0\% & 63.8\% & 87.4\% & 95.9\% & 0.00\\
1.35 & 0.0\% & 15.2\% & 26.1\% & 34.9\% & 0.49\\
2.00 & 0.0\% & 01.0\% & 01.8\% & 02.6\% & 0.95\\
2.50 & 0.0\% & 00.1\% & 00.3\% & 00.4\% & 0.99\\
\hline
\end { tabular}
2020-06-28 19:44:14 +02:00
\caption { \centering Percentage of electron correlation energy recovered and $ \expval { S ^ 2 } $ for the \ce { H2} molecule as a function of bond length (r,\si { \angstrom } ) in the STO-3G basis set.}
2020-06-28 17:42:47 +02:00
\label { tab:my_ label}
\end { table}
\end { frame}
\begin { frame} { Divergent cases}
\begin { figure}
\centering
\includegraphics [width=0.6\textwidth] { The-energy-corrections-for-HF-at-stretched-geometry-in-the-cc-pVDZ-basis.png}
2020-06-29 13:47:25 +02:00
\caption { The energy corrections for HF at stretched geometry in the cc-pVDZ basis. \footcite { olsen_ divergence_ 2000} }
2020-06-28 17:42:47 +02:00
\label { fig:my_ label}
\end { figure}
\end { frame}
\section { The complex plane}
\begin { frame} { A simple example}
\begin { columns}
\column { 0.48\textwidth }
\begin { beamerboxesrounded} [scheme=foncé]{ An example function}
\begin { equation*}
\frac { 1} { 1 + x^ 4}
\end { equation*}
\end { beamerboxesrounded}
\vspace { 1cm}
\begin { itemize}
\item Smooth for $ x \in \mathbb { R } $
2020-06-28 21:35:41 +02:00
\item Infinitely differentiable in $ \mathbb { R } $
2020-06-28 17:42:47 +02:00
\end { itemize}
\column { 0.48\textwidth }
\begin { figure}
\centering
\includegraphics [width=0.6\textwidth] { exemplesingu.pdf}
\caption { Plot of $ 1 / ( 1 + x ^ 4 ) $ }
\label { fig:my_ label}
\end { figure}
\end { columns}
2020-06-28 19:44:14 +02:00
But the Taylor expansion of this function does not converge for $ x \geq 1 $ ...
2020-06-28 17:42:47 +02:00
\vspace { 0.3cm}
\centering Why ?
\end { frame}
2020-06-28 21:35:41 +02:00
\begin { frame} { And if we look in the complex plane?}
2020-06-28 17:42:47 +02:00
\begin { columns}
\column { 0.48\textwidth }
2020-06-28 21:35:41 +02:00
\centering The function has 4 singularities in the complex plane!
2020-06-28 17:42:47 +02:00
\vspace { 1cm}
$ x = e ^ { i \pi / 4 } , e ^ { - i \pi / 4 } , e ^ { i 3 \pi / 4 } , e ^ { - i 3 \pi / 4 } $
\column { 0.48\textwidth }
\begin { figure}
\centering
\includegraphics [width=0.6\textwidth] { possingu.pdf}
\caption { \centering Singularities of the function $ 1 / ( 1 + x ^ 4 ) $ }
\label { fig:my_ label}
\end { figure}
\end { columns}
The \textcolor { red} { radius of convergence} of the Taylor expansion of a function is equal to the distance of the \textcolor { red} { closest singularity} to the origin in the \textcolor { red} { complex plane} .
\end { frame}
\begin { frame} { Extending chemistry in the complex plane}
\begin { beamerboxesrounded} [scheme=foncé]{ \centering $ \lambda $ a complex variable}
\begin { equation*}
2020-06-28 19:44:14 +02:00
H(\lambda ) = H_ 0 + \lambda V
2020-06-28 17:42:47 +02:00
\end { equation*}
\end { beamerboxesrounded}
\begin { columns}
\column { 0.48\textwidth }
\begin { itemize}
\item $ n $ Riemann sheets
\vspace { 0.3cm}
\item Exceptional points interconnecting the sheets
\vspace { 0.3cm}
\item No ordering property in the complex plane
2020-06-30 09:36:32 +02:00
\vspace { 0.3cm}
\item An avoided crossing on the real axis corresponds to two exceptionnal points in the complex plane.
2020-06-28 17:42:47 +02:00
\end { itemize}
\column { 0.48\textwidth }
\begin { figure}
\centering
\includegraphics [width=0.7\textwidth] { riemannsheet.png}
\label { fig:my_ label}
\end { figure}
\end { columns}
\end { frame}
\section { Classifying the singularity}
2020-06-28 21:35:41 +02:00
\begin { frame} { Which features of the system localize the singularities?}
2020-06-28 17:42:47 +02:00
\begin { itemize}
2020-06-28 21:35:41 +02:00
\item Partitioning of the Hamiltonian: Møller-Plesset, Epstein-Nesbet, \ldots
\item Zeroth-order reference: weak or strong correlation.
2020-06-28 17:42:47 +02:00
\item Finite or complete basis set.
\item Localized or delocalized basis functions.
\end { itemize}
\end { frame}
2020-06-29 13:47:25 +02:00
\begin { frame} { A two-state model\footcite { olsen_ divergence_ 2000} }
2020-06-28 17:42:47 +02:00
\begin { columns}
\column { 0.48\textwidth }
\begin { figure}
\centering
\includegraphics [width=0.8\textwidth] { avoidedcrossing.pdf}
\caption { Example of an avoided crossing.}
\label { fig:my_ label}
\end { figure}
\column { 0.48\textwidth }
2020-06-28 19:44:14 +02:00
\begin { beamerboxesrounded} [scheme=foncé]{ A 2x2 matrix}
\centering \small { $ \mqty ( \alpha & \delta \\ \delta & \beta ) = $ }
2020-06-28 17:42:47 +02:00
2020-06-28 19:44:14 +02:00
\vspace { 0.15cm}
2020-06-28 17:42:47 +02:00
2020-06-28 19:44:14 +02:00
\small { $ \mqty ( \alpha + \alpha _ s & 0 \\ 0 & \beta + \beta _ s ) + \mqty ( - \alpha _ s & \delta \\ \delta & - \beta _ s ) $ }
2020-06-28 17:42:47 +02:00
\end { beamerboxesrounded}
\vspace { 1cm}
\end { columns}
\end { frame}
2020-06-29 13:47:25 +02:00
\begin { frame} { Two-state model\footcite { olsen_ divergence_ 2000} }
2020-06-28 17:42:47 +02:00
\begin { figure}
\centering
\includegraphics [width=0.6\textwidth] { figure-fig14.png}
2020-06-29 13:47:25 +02:00
\caption { \centering The energy corrections for HF at stretched geometry in the aug'-cc-pVDZ basis with the two-state model.}
2020-06-28 17:42:47 +02:00
\label { fig:my_ label}
\end { figure}
\end { frame}
2020-06-29 23:31:41 +02:00
\begin { frame} { The Møller-Plesset Hamiltonian}
\begin { equation}
H(\lambda )=H_ 0 + \lambda (H_ \text { phys} - H_ 0)
\end { equation}
\begin { equation}
H_ \text { phys} =\sum \limits _ { j=1} ^ { n} \left [ -\frac{1}{2}\grad_j^2 - \sum\limits_{k=1}^{N} \frac{Z_k}{|\vb{r}_j-\vb{R}_k|}+\sum\limits_{j<l}^{n}\frac{1}{|\vb{r}_j-\vb{r}_l|}\right]
\end { equation}
\begin { equation}
H_ 0=\sum \limits _ { j=1} ^ { n} \left [ -\frac{1}{2}\grad_j^2 - \sum\limits_{k=1}^{N} \frac{Z_k}{|\vb{r}_j-\vb{R}_k|}+V_j^{(scf)}\right]
\end { equation}
2020-06-30 09:36:32 +02:00
\begin { equation*}
H(\lambda )=\sum \limits _ { j=1} ^ { n} \left [-\frac{1}{2}\grad_j^2 - \sum\limits_{k=1}^{N} \frac{Z_k}{|\vb{r}_j-\vb{R}_k|} + (1-\lambda)V_j^{(scf)}+\lambda\sum\limits_{j<l}^{n}\frac{1}{|\vb{r}_j-\vb{r}_l|}} \right]
\end { equation*}
2020-06-29 23:31:41 +02:00
\end { frame}
2020-06-29 13:47:25 +02:00
\begin { frame} { Existence of a critical point\footcite { stillinger_ mollerplesset_ 2000} }
2020-06-28 17:42:47 +02:00
2020-06-28 19:44:14 +02:00
For $ \lambda < 0 $ :
2020-06-28 17:42:47 +02:00
\begin { equation*}
2020-06-29 23:31:41 +02:00
H(\lambda )=\sum \limits _ { j=1} ^ { n} \left [ \underbrace{-\frac{1}{2}\grad_j^2 - \sum\limits_{k=1}^{N} \frac{Z_k}{|\vb{r}_j-\vb{R}_k|}}_{\text{Independant of }\lambda} + \overbrace{(1-\lambda)V_j^{(scf)}}^{\textcolor{red}{Repulsive}}+\underbrace{\lambda\sum\limits_{j<l}^{n}\frac{1}{|\vb{r}_j-\vb{r}_l|}}_{\textcolor{blue}{Attractive}} \right]
2020-06-28 17:42:47 +02:00
\end { equation*}
\end { frame}
\begin { frame} { Critical point in a finite basis set}
2020-06-28 19:44:14 +02:00
\pause [1]
2020-06-28 17:42:47 +02:00
\begin { beamerboxesrounded} [scheme=foncé]{ \centering Exact energy $ E ( z ) $ }
2020-06-28 19:44:14 +02:00
$ E ( z ) $ has a critical point on the negative real axis and $ E ( z ) $ is continue for real values below $ z _ { crit } $ .
2020-06-28 17:42:47 +02:00
\end { beamerboxesrounded}
\vspace { 0.5cm}
2020-06-28 19:44:14 +02:00
\pause [2]
2020-06-28 17:42:47 +02:00
\begin { beamerboxesrounded} [scheme=foncé]{ \centering In a finite basis set}
The singularities occur in complex conjugate pairs with non-zero imaginary parts and the energies are discrete.
\end { beamerboxesrounded}
\vspace { 0.5cm}
2020-06-28 19:44:14 +02:00
\pause [3]
\centering \Large { How is this connected???}
2020-06-28 17:42:47 +02:00
\end { frame}
2020-06-29 13:47:25 +02:00
\begin { frame} { Singularities $ \alpha $ and $ \beta $ \footcite { sergeev_ singularities_ 2006} }
2020-06-28 17:42:47 +02:00
2020-06-28 19:44:14 +02:00
\pause [1]
2020-06-28 17:42:47 +02:00
\begin { beamerboxesrounded} [scheme=foncé]{ \centering Observation}
We can separate singularities in two parts.
2020-06-28 19:44:14 +02:00
\end { beamerboxesrounded}
\pause [2]
2020-06-28 17:42:47 +02:00
\begin { beamerboxesrounded} [scheme=foncé]{ \centering Singularity $ \alpha $ }
\begin { itemize}
\item Large avoided crossing
2020-06-28 17:52:03 +02:00
\item Non-zero imaginary part
2020-06-28 21:35:41 +02:00
\item Interaction with a low-lying doubly excited states
2020-06-28 17:42:47 +02:00
\end { itemize}
\end { beamerboxesrounded}
2020-06-28 19:44:14 +02:00
\pause [3]
\begin { beamerboxesrounded} [scheme=foncé]{ \centering Singularity $ \beta $ }
2020-06-28 17:42:47 +02:00
\begin { itemize}
\item Sharp avoided crossing
2020-06-28 17:52:03 +02:00
\item Very small imaginary part
2020-06-28 19:44:14 +02:00
\item Interaction with a diffuse function
2020-06-28 17:42:47 +02:00
\end { itemize}
\end { beamerboxesrounded}
\end { frame}
2020-06-28 19:44:14 +02:00
2020-06-28 17:42:47 +02:00
\begin { frame} { Modeling the critical point}
2020-06-28 19:44:14 +02:00
\pause [1]
\begin { beamerboxesrounded} [scheme=foncé]{ \centering Stillinger}
\begin { quote}
\textit { "One might expect that $ E _ { FCI } ( z ) $ would try to model a continuum at $ z _ c $ with a grouping of discrete but closely spaced eigenstates that undergo sharp avoided crossing with the ground states."}
\end { quote}
\end { beamerboxesrounded}
\vspace { 0.5cm}
\pause [2]
\begin { beamerboxesrounded} [scheme=foncé]{ \centering Sergeev et al.}
Proof of the existence of this group of sharp avoided crossings for Ne, He and HF when the basis set contains diffuse functions.
\end { beamerboxesrounded}
2020-06-28 17:42:47 +02:00
\end { frame}
2020-06-29 23:31:41 +02:00
\section { Conclusion}
2020-06-28 17:42:47 +02:00
\begin { frame} { Conclusion}
2020-06-28 19:44:14 +02:00
\pause [1]
\begin { beamerboxesrounded} [scheme=foncé]{ \centering Møller-Plesset perturbation theory}
By understanding how the singularities are localized in the complex plane we hope that it will gives us a deep understanding of the strengths and weaknesses of the Møller-Plesset method to get the correlation energy.
\end { beamerboxesrounded}
\vspace { 0.5cm}
2020-06-29 23:31:41 +02:00
\pause [2]
2020-06-28 19:44:14 +02:00
2020-06-29 23:31:41 +02:00
\begin { beamerboxesrounded} [scheme=foncé]{ \centering Spherium: a theoretical playground}
We will use the spherium model (two opposite-spin electrons restricted to remain on a surface of a sphere of radius $ R $ ) to investigate the effects of symmetry breaking on singularities.
2020-06-28 19:44:14 +02:00
\end { beamerboxesrounded}
2020-06-28 17:42:47 +02:00
\end { frame}
2020-06-29 23:31:41 +02:00
\end { document}