EPAWTFT/SlideToulouse/main.tex

447 lines
11 KiB
TeX
Raw Normal View History

2020-06-28 17:42:47 +02:00
\documentclass[xcolor=x11names,compress]{beamer}
%% General document %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage{graphicx}
\usepackage{tikz}
\usetikzlibrary{decorations.fractals}
\usepackage{mathpazo}
\usepackage[english]{babel}
\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}
\usepackage{siunitx}
\usepackage{graphicx}
\usepackage{physics}
\usepackage{multimedia}
\usepackage{subfigure}
2020-06-28 17:52:03 +02:00
\usepackage{xcolor}
2020-06-28 17:42:47 +02:00
\usepackage[absolute,overlay]{textpos}
\usepackage{ragged2e}
\usepackage{amssymb}
\usepackage[version=4]{mhchem}
2020-06-28 17:52:03 +02:00
\renewcommand{\thefootnote}{\alph{footnote}}
2020-06-28 17:42:47 +02:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Beamer Layout %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\useoutertheme[subsection=false,shadow]{miniframes}
\useinnertheme{default}
\setbeamerfont{title like}{shape=\scshape}
\setbeamerfont{frametitle}{shape=\scshape}
\setbeamerfont{framesubtitle}{size=\normalsize}
\setbeamerfont{caption}{size=\scriptsize}
\setbeamercolor*{lower separation line head}{bg=DeepSkyBlue4}
\setbeamercolor*{normal text}{fg=black,bg=white}
\setbeamercolor*{alerted text}{fg=red}
\setbeamercolor*{example text}{fg=black}
\setbeamercolor*{structure}{fg=black}
\setbeamercolor*{palette tertiary}{fg=black,bg=black!10}
\setbeamercolor*{palette quaternary}{fg=black,bg=black!10}
\setbeamercolor{caption name}{fg=DeepSkyBlue4}
\setbeamercolor{title}{fg=DeepSkyBlue4}
\setbeamercolor{itemize item}{fg=DeepSkyBlue4}
\setbeamercolor{frametitle}{fg=DeepSkyBlue4}
\renewcommand{\(}{\begin{columns}}
\renewcommand{\)}{\end{columns}}
\newcommand{\<}[1]{\begin{column}{#1}}
\renewcommand{\>}{\end{column}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\setbeamertemplate{navigation symbols}{}
\setbeamertemplate{footline}[frame number]
\setbeamertemplate{caption}[numbered]
\setbeamertemplate{section in toc}[ball]
\setbeamertemplate{itemize items}[circle]
\beamerboxesdeclarecolorscheme{clair}{Coral4}{Ivory2}
\beamerboxesdeclarecolorscheme{foncé}{DarkSeaGreen4}{Ivory2}
2020-06-28 17:52:03 +02:00
\title[Title]{Perturbative theories in the complex plane}
2020-06-28 17:42:47 +02:00
\author[]{Antoine \textsc{Marie}}
2020-06-28 17:52:03 +02:00
\date{30 Juin 2020}
2020-06-28 17:42:47 +02:00
\setbeamersize{text margin left=5mm}
\setbeamersize{text margin right=5mm}
\institute{Supervised by Pierre-François \textsc{LOOS}}
\begin{document}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[plain]
2020-06-28 17:52:03 +02:00
\date{24 Avril 2020}
2020-06-28 17:42:47 +02:00
\titlepage
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{\textsc{Strange behaviors of the MP series}}
2020-06-28 17:52:03 +02:00
\begin{frame}{The Möller-Plesset theory}
2020-06-28 17:42:47 +02:00
\begin{beamerboxesrounded}[scheme=foncé]{\centering Partitioning of the Hamiltonian}
\begin{equation}
H = H_0 + \lambda V
\end{equation}
\end{beamerboxesrounded}
\begin{itemize}
\centering
2020-06-28 17:52:03 +02:00
\item $H_0$ : Unperturbed Hamiltonian
\item $V$ : Perturbation operator
2020-06-28 17:42:47 +02:00
\end{itemize}
\begin{beamerboxesrounded}[scheme=foncé]{\centering The Fock operator}
\begin{equation}
F = T + J + K
\end{equation}
\end{beamerboxesrounded}
\begin{itemize}
\centering
2020-06-28 17:52:03 +02:00
\item $T$ : Kinetic energy operator
\item $J$ : Coulomb operator
\item $K$ : Exchange operator
2020-06-28 17:42:47 +02:00
\end{itemize}
\end{frame}
\begin{frame}{Deceptive or slow convergences}
\begin{figure}
\centering
2020-06-28 17:52:03 +02:00
\includegraphics[width=0.5\textwidth]{gill1986.png}
\caption{\centering Barriers to homolytic fission of \ce{He2^2+} using minimal basis set MPn theory (n~=~1-20).}
2020-06-28 17:42:47 +02:00
\label{fig:my_label}
\end{figure}
2020-06-28 17:52:03 +02:00
\footnotetext{\tiny{Gill et al.~Deceptive convergence in Møller-Plesset perturbation energies, \textit{Chemical Physics Letter}, 1986}}
2020-06-28 17:42:47 +02:00
\end{frame}
\begin{frame}{Multi-reference and spin contamination}
\begin{table}
\centering
\begin{tabular}{c c c c c c c}
\hline
2020-06-28 17:52:03 +02:00
$r$ & UHF & UMP2 & UMP3 & UMP4 & $<S^2>$ \\
2020-06-28 17:42:47 +02:00
\hline
0.75 & 0.0\% & 63.8\% & 87.4\% & 95.9\% & 0.00\\
1.35 & 0.0\% & 15.2\% & 26.1\% & 34.9\% & 0.49\\
2.00 & 0.0\% & 01.0\% & 01.8\% & 02.6\% & 0.95\\
2.50 & 0.0\% & 00.1\% & 00.3\% & 00.4\% & 0.99\\
\hline
\end{tabular}
2020-06-28 17:52:03 +02:00
\caption{\centering Percentage of electron correlation energy recovered and $<S^2>$ for the \ce{H2} molecule as a function of bond length (r,A) in the minimal basis.}
2020-06-28 17:42:47 +02:00
\label{tab:my_label}
\end{table}
\footnotetext{\tiny{Gill et al. Why does unrestricted MøllerPlesset perturbation theory converge so slowly for spin-contaminated wave functions, \textit{Journal of chemical physics}, 1988}}
\end{frame}
\begin{frame}{Divergent cases}
\begin{figure}
\centering
\includegraphics[width=0.6\textwidth]{The-energy-corrections-for-HF-at-stretched-geometry-in-the-cc-pVDZ-basis.png}
\caption{The energy corrections for HF at stretched geometry in the cc-pVDZ basis.}
\label{fig:my_label}
\end{figure}
\footnotetext{\tiny{Olsen et al. Divergence in MøllerPlesset theory: A simple explanation based on a two-state model, \textit{Journal of chemical physics}, 2000}}
\end{frame}
\section{The complex plane}
\begin{frame}{A simple example}
\begin{columns}
\column{0.48\textwidth}
\begin{beamerboxesrounded}[scheme=foncé]{An example function}
\begin{equation*}
\frac{1}{1 + x^4}
\end{equation*}
\end{beamerboxesrounded}
\vspace{1cm}
\begin{itemize}
\item Smooth for $x \in \mathbb{R}$
\item Infinitely differentiable on $\mathbb{R}$
\end{itemize}
\column{0.48\textwidth}
\begin{figure}
\centering
\includegraphics[width=0.6\textwidth]{exemplesingu.pdf}
\caption{Plot of $1/(1+x^4)$}
\label{fig:my_label}
\end{figure}
\end{columns}
2020-06-28 17:52:03 +02:00
But the Taylor expansion of this function does not converge for $x\geq1$ ...
2020-06-28 17:42:47 +02:00
\vspace{0.3cm}
\centering Why ?
\end{frame}
\begin{frame}{And if we look in the complex plane ?}
\begin{columns}
\column{0.48\textwidth}
\centering The function has 4 singularities in the complex plane !
\vspace{1cm}
$x = e^{i\pi/4}, e^{-i\pi/4}, e^{i3\pi/4}, e^{-i3\pi/4}$
2020-06-28 17:52:03 +02:00
2020-06-28 17:42:47 +02:00
\column{0.48\textwidth}
\begin{figure}
\centering
\includegraphics[width=0.6\textwidth]{possingu.pdf}
\caption{\centering Singularities of the function $1/(1+x^4)$}
\label{fig:my_label}
\end{figure}
\end{columns}
The \textcolor{red}{radius of convergence} of the Taylor expansion of a function is equal to the distance of the \textcolor{red}{closest singularity} to the origin in the \textcolor{red}{complex plane}.
\end{frame}
\begin{frame}{Extending chemistry in the complex plane}
\begin{beamerboxesrounded}[scheme=foncé]{\centering $\lambda$ a complex variable}
\begin{equation*}
2020-06-28 17:52:03 +02:00
H = H_0 + \lambda V
2020-06-28 17:42:47 +02:00
\end{equation*}
\end{beamerboxesrounded}
\begin{columns}
\column{0.48\textwidth}
\begin{itemize}
\item $n$ Riemann sheets
\vspace{0.3cm}
\item Exceptional points interconnecting the sheets
\vspace{0.3cm}
\item No ordering property in the complex plane
\end{itemize}
\column{0.48\textwidth}
\begin{figure}
\centering
\includegraphics[width=0.7\textwidth]{riemannsheet.png}
\label{fig:my_label}
\end{figure}
\end{columns}
\end{frame}
\section{Classifying the singularity}
\begin{frame}{Which features of the system localize the singularities ?}
\begin{itemize}
2020-06-28 17:52:03 +02:00
\item Partitioning of the Hamiltonian: Möller-Plesset, Epstein-Nesbet, ...
2020-06-28 17:42:47 +02:00
\item Zeroth order reference: weak correlation or strongly correlated electrons.
\item Finite or complete basis set.
\item Localized or delocalized basis functions.
\end{itemize}
\end{frame}
\begin{frame}{A two-state model}
\begin{columns}
\column{0.48\textwidth}
\begin{figure}
\centering
\includegraphics[width=0.8\textwidth]{avoidedcrossing.pdf}
\caption{Example of an avoided crossing.}
\label{fig:my_label}
\end{figure}
\column{0.48\textwidth}
2020-06-28 17:52:03 +02:00
\begin{beamerboxesrounded}[scheme=foncé]{A 2x2 matrix\textsuperscript{a}}
2020-06-28 17:42:47 +02:00
2020-06-28 17:52:03 +02:00
$
2020-06-28 17:42:47 +02:00
2020-06-28 17:52:03 +02:00
\small{\centering \begin{pmatrix}
\alpha & \delta \\
\delta & \beta
\end{pmatrix} =
\vspace{0.3cm}
\begin{pmatrix}
\alpha + \alpha_s & 0 \\
0 & \beta + \beta_s
\end{pmatrix} +
\begin{pmatrix}
- \alpha_s & \delta \\
\delta & - \beta_s
\end{pmatrix}}
$
2020-06-28 17:42:47 +02:00
\end{beamerboxesrounded}
\vspace{1cm}
\end{columns}
\footnotetext{\tiny{Olsen et al. Divergence in MøllerPlesset theory: A simple explanation based on a two-state model, \textit{Journal of chemical physics}, 2000}}
\end{frame}
2020-06-28 17:52:03 +02:00
\begin{frame}{Two state model}
2020-06-28 17:42:47 +02:00
\begin{figure}
\centering
\includegraphics[width=0.6\textwidth]{figure-fig14.png}
\caption{\centering The energy corrections for HF at stretched geometry in the aug'-cc-pVDZ basis with the two-state model.\textsuperscript{a}}
\label{fig:my_label}
\end{figure}
\footnotetext{\tiny{Olsen et al. Divergence in MøllerPlesset theory: A simple explanation based on a two-state model, \textit{Journal of chemical physics}, 2000}}
\end{frame}
\begin{frame}{Existence of a critical point}
2020-06-28 17:52:03 +02:00
For $\lambda<0$ :
2020-06-28 17:42:47 +02:00
\begin{equation*}
2020-06-28 17:52:03 +02:00
H(\lambda)=\sum\limits_{j=1}^{2n}\left[ \underbrace{-\frac{1}{2}\nabla_j^2 - \sum\limits_{k=1}^{N} \frac{Z_k}{|\vb{r}_j-\vb{R}_k|}}_{\text{Independant of }\lambda} + \overbrace{(1-\lambda)V_j^{(scf)}}^{\textcolor{red}{Repulsive}}+\underbrace{\lambda\sum\limits_{j<l}^{2n}\frac{1}{|\vb{r}_j-\vb{r}_l|}}_{\textcolor{blue}{Attractive}} \right]
2020-06-28 17:42:47 +02:00
\end{equation*}
\end{frame}
\begin{frame}{Critical point in a finite basis set}
\begin{beamerboxesrounded}[scheme=foncé]{\centering Exact energy $E(z)$}
2020-06-28 17:52:03 +02:00
$E(z)$ has a critical point on the negative real axis and $E(z)$ is continue for real value below $z_{crit}$.
2020-06-28 17:42:47 +02:00
\end{beamerboxesrounded}
\vspace{0.5cm}
\begin{beamerboxesrounded}[scheme=foncé]{\centering In a finite basis set}
The singularities occur in complex conjugate pairs with non-zero imaginary parts and the energies are discrete.
\end{beamerboxesrounded}
\vspace{0.5cm}
2020-06-28 17:52:03 +02:00
\centering \Large{How is this connected ???}
2020-06-28 17:42:47 +02:00
\end{frame}
\begin{frame}{Singularities $\alpha$ and $\beta$}
\begin{beamerboxesrounded}[scheme=foncé]{\centering Observation}
We can separate singularities in two parts.
2020-06-28 17:52:03 +02:00
\end{beamerboxesrounded}
2020-06-28 17:42:47 +02:00
\begin{beamerboxesrounded}[scheme=foncé]{\centering Singularity $\alpha$}
\begin{itemize}
\item Large avoided crossing
\item Interaction with a low lying doubly excited states
2020-06-28 17:52:03 +02:00
\item Non-zero imaginary part
2020-06-28 17:42:47 +02:00
\end{itemize}
\end{beamerboxesrounded}
\begin{beamerboxesrounded}[scheme=foncé]{\centering Singularity $\alpha$}
\begin{itemize}
\item Sharp avoided crossing
\item Interaction with a diffuse function
2020-06-28 17:52:03 +02:00
\item Very small imaginary part
2020-06-28 17:42:47 +02:00
\end{itemize}
\end{beamerboxesrounded}
\end{frame}
\begin{frame}{Modeling the critical point}
\end{frame}
\section{The spherium model}
\begin{frame}{Spherium: a theoretical playground}
\begin{beamerboxesrounded}[scheme=foncé]{\centering Two electrons on a sphere Hamiltonian}
\begin{equation*}
2020-06-28 17:52:03 +02:00
H=-\frac{1}{2}(\nabla_1^2 + \nabla_2^2) + \frac{1}{r_{12}}
2020-06-28 17:42:47 +02:00
\end{equation*}
\end{beamerboxesrounded}
\vspace{0.5cm}
\begin{columns}
\column{0.48\textwidth}
\centering{Small $R$}
\vspace{0.5cm}
\begin{itemize}
\item $E_{kin} >> E_p$
\item Uniform density of electrons
\item \textcolor{red}{Weak correlation}
\end{itemize}
\vspace{0.5cm}
\column{0.48\textwidth}
\centering{Large $R$}
\vspace{0.5cm}
\begin{itemize}
\item $E_{kin} << E_p$
\item Electrons on the opposite sides of the sphere
\item \textcolor{red}{Strong correlation}
\end{itemize}
\end{columns}
\end{frame}
2020-06-28 17:52:03 +02:00
\begin{frame}{Why is there a class $\beta$ singularity ?}
2020-06-28 17:42:47 +02:00
\end{frame}
\begin{frame}{Conclusion}
\end{frame}
\end{document}