2020-06-28 17:42:47 +02:00
\documentclass [xcolor=x11names,compress] { beamer}
%% General document %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage { graphicx}
\usepackage { tikz}
\usetikzlibrary { decorations.fractals}
\usepackage { mathpazo}
\usepackage [english] { babel}
\usepackage [T1] { fontenc}
\usepackage [utf8] { inputenc}
\usepackage { siunitx}
\usepackage { graphicx}
\usepackage { physics}
\usepackage { multimedia}
\usepackage { subfigure}
2020-06-28 17:52:03 +02:00
\usepackage { xcolor}
2020-06-28 17:42:47 +02:00
\usepackage [absolute,overlay] { textpos}
\usepackage { ragged2e}
\usepackage { amssymb}
\usepackage [version=4] { mhchem}
2020-06-28 17:52:03 +02:00
\renewcommand { \thefootnote } { \alph { footnote} }
2020-06-28 17:42:47 +02:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Beamer Layout %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\useoutertheme [subsection=false,shadow] { miniframes}
\useinnertheme { default}
\setbeamerfont { title like} { shape=\scshape }
\setbeamerfont { frametitle} { shape=\scshape }
\setbeamerfont { framesubtitle} { size=\normalsize }
\setbeamerfont { caption} { size=\scriptsize }
\setbeamercolor * { lower separation line head} { bg=DeepSkyBlue4}
\setbeamercolor * { normal text} { fg=black,bg=white}
\setbeamercolor * { alerted text} { fg=red}
\setbeamercolor * { example text} { fg=black}
\setbeamercolor * { structure} { fg=black}
\setbeamercolor * { palette tertiary} { fg=black,bg=black!10}
\setbeamercolor * { palette quaternary} { fg=black,bg=black!10}
\setbeamercolor { caption name} { fg=DeepSkyBlue4}
\setbeamercolor { title} { fg=DeepSkyBlue4}
\setbeamercolor { itemize item} { fg=DeepSkyBlue4}
\setbeamercolor { frametitle} { fg=DeepSkyBlue4}
\renewcommand { \( } { \begin { columns } }
\renewcommand { \) } { \end { columns} }
\newcommand { \< } [1]{ \begin { column} { #1} }
\renewcommand { \> } { \end { column} }
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\setbeamertemplate { navigation symbols} { }
\setbeamertemplate { footline} [frame number]
\setbeamertemplate { caption} [numbered]
\setbeamertemplate { section in toc} [ball]
\setbeamertemplate { itemize items} [circle]
\beamerboxesdeclarecolorscheme { clair} { Coral4} { Ivory2}
\beamerboxesdeclarecolorscheme { foncé} { DarkSeaGreen4} { Ivory2}
2020-06-28 17:52:03 +02:00
\title [Title] { Perturbative theories in the complex plane}
2020-06-28 17:42:47 +02:00
\author [] { Antoine \textsc { Marie} }
2020-06-28 17:52:03 +02:00
\date { 30 Juin 2020}
2020-06-28 17:42:47 +02:00
\setbeamersize { text margin left=5mm}
\setbeamersize { text margin right=5mm}
\institute { Supervised by Pierre-François \textsc { LOOS} }
\begin { document}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin { frame} [plain]
2020-06-28 17:52:03 +02:00
\date { 24 Avril 2020}
2020-06-28 17:42:47 +02:00
\titlepage
\end { frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section { \textsc { Strange behaviors of the MP series} }
2020-06-28 17:52:03 +02:00
\begin { frame} { The Möller-Plesset theory}
2020-06-28 17:42:47 +02:00
\begin { beamerboxesrounded} [scheme=foncé]{ \centering Partitioning of the Hamiltonian}
\begin { equation}
H = H_ 0 + \lambda V
\end { equation}
\end { beamerboxesrounded}
\begin { itemize}
\centering
2020-06-28 17:52:03 +02:00
\item $ H _ 0 $ : Unperturbed Hamiltonian
\item $ V $ : Perturbation operator
2020-06-28 17:42:47 +02:00
\end { itemize}
\begin { beamerboxesrounded} [scheme=foncé]{ \centering The Fock operator}
\begin { equation}
F = T + J + K
\end { equation}
\end { beamerboxesrounded}
\begin { itemize}
\centering
2020-06-28 17:52:03 +02:00
\item $ T $ : Kinetic energy operator
\item $ J $ : Coulomb operator
\item $ K $ : Exchange operator
2020-06-28 17:42:47 +02:00
\end { itemize}
\end { frame}
\begin { frame} { Deceptive or slow convergences}
\begin { figure}
\centering
2020-06-28 17:52:03 +02:00
\includegraphics [width=0.5\textwidth] { gill1986.png}
\caption { \centering Barriers to homolytic fission of \ce { He2^ 2+} using minimal basis set MPn theory (n~=~1-20).}
2020-06-28 17:42:47 +02:00
\label { fig:my_ label}
\end { figure}
2020-06-28 17:52:03 +02:00
\footnotetext { \tiny { Gill et al.~Deceptive convergence in Møller-Plesset perturbation energies, \textit { Chemical Physics Letter} , 1986} }
2020-06-28 17:42:47 +02:00
\end { frame}
\begin { frame} { Multi-reference and spin contamination}
\begin { table}
\centering
\begin { tabular} { c c c c c c c}
\hline
2020-06-28 17:52:03 +02:00
$ r $ & UHF & UMP2 & UMP3 & UMP4 & $ <S ^ 2 > $ \\
2020-06-28 17:42:47 +02:00
\hline
0.75 & 0.0\% & 63.8\% & 87.4\% & 95.9\% & 0.00\\
1.35 & 0.0\% & 15.2\% & 26.1\% & 34.9\% & 0.49\\
2.00 & 0.0\% & 01.0\% & 01.8\% & 02.6\% & 0.95\\
2.50 & 0.0\% & 00.1\% & 00.3\% & 00.4\% & 0.99\\
\hline
\end { tabular}
2020-06-28 17:52:03 +02:00
\caption { \centering Percentage of electron correlation energy recovered and $ <S ^ 2 > $ for the \ce { H2} molecule as a function of bond length (r,A) in the minimal basis.}
2020-06-28 17:42:47 +02:00
\label { tab:my_ label}
\end { table}
\footnotetext { \tiny { Gill et al. Why does unrestricted Møller– Plesset perturbation theory converge so slowly for spin-contaminated wave functions, \textit { Journal of chemical physics} , 1988} }
\end { frame}
\begin { frame} { Divergent cases}
\begin { figure}
\centering
\includegraphics [width=0.6\textwidth] { The-energy-corrections-for-HF-at-stretched-geometry-in-the-cc-pVDZ-basis.png}
\caption { The energy corrections for HF at stretched geometry in the cc-pVDZ basis.}
\label { fig:my_ label}
\end { figure}
\footnotetext { \tiny { Olsen et al. Divergence in Møller– Plesset theory: A simple explanation based on a two-state model, \textit { Journal of chemical physics} , 2000} }
\end { frame}
\section { The complex plane}
\begin { frame} { A simple example}
\begin { columns}
\column { 0.48\textwidth }
\begin { beamerboxesrounded} [scheme=foncé]{ An example function}
\begin { equation*}
\frac { 1} { 1 + x^ 4}
\end { equation*}
\end { beamerboxesrounded}
\vspace { 1cm}
\begin { itemize}
\item Smooth for $ x \in \mathbb { R } $
\item Infinitely differentiable on $ \mathbb { R } $
\end { itemize}
\column { 0.48\textwidth }
\begin { figure}
\centering
\includegraphics [width=0.6\textwidth] { exemplesingu.pdf}
\caption { Plot of $ 1 / ( 1 + x ^ 4 ) $ }
\label { fig:my_ label}
\end { figure}
\end { columns}
2020-06-28 17:52:03 +02:00
But the Taylor expansion of this function does not converge for $ x \geq 1 $ ...
2020-06-28 17:42:47 +02:00
\vspace { 0.3cm}
\centering Why ?
\end { frame}
\begin { frame} { And if we look in the complex plane ?}
\begin { columns}
\column { 0.48\textwidth }
\centering The function has 4 singularities in the complex plane !
\vspace { 1cm}
$ x = e ^ { i \pi / 4 } , e ^ { - i \pi / 4 } , e ^ { i 3 \pi / 4 } , e ^ { - i 3 \pi / 4 } $
2020-06-28 17:52:03 +02:00
2020-06-28 17:42:47 +02:00
\column { 0.48\textwidth }
\begin { figure}
\centering
\includegraphics [width=0.6\textwidth] { possingu.pdf}
\caption { \centering Singularities of the function $ 1 / ( 1 + x ^ 4 ) $ }
\label { fig:my_ label}
\end { figure}
\end { columns}
The \textcolor { red} { radius of convergence} of the Taylor expansion of a function is equal to the distance of the \textcolor { red} { closest singularity} to the origin in the \textcolor { red} { complex plane} .
\end { frame}
\begin { frame} { Extending chemistry in the complex plane}
\begin { beamerboxesrounded} [scheme=foncé]{ \centering $ \lambda $ a complex variable}
\begin { equation*}
2020-06-28 17:52:03 +02:00
H = H_ 0 + \lambda V
2020-06-28 17:42:47 +02:00
\end { equation*}
\end { beamerboxesrounded}
\begin { columns}
\column { 0.48\textwidth }
\begin { itemize}
\item $ n $ Riemann sheets
\vspace { 0.3cm}
\item Exceptional points interconnecting the sheets
\vspace { 0.3cm}
\item No ordering property in the complex plane
\end { itemize}
\column { 0.48\textwidth }
\begin { figure}
\centering
\includegraphics [width=0.7\textwidth] { riemannsheet.png}
\label { fig:my_ label}
\end { figure}
\end { columns}
\end { frame}
\section { Classifying the singularity}
\begin { frame} { Which features of the system localize the singularities ?}
\begin { itemize}
2020-06-28 17:52:03 +02:00
\item Partitioning of the Hamiltonian: Möller-Plesset, Epstein-Nesbet, ...
2020-06-28 17:42:47 +02:00
\item Zeroth order reference: weak correlation or strongly correlated electrons.
\item Finite or complete basis set.
\item Localized or delocalized basis functions.
\end { itemize}
\end { frame}
\begin { frame} { A two-state model}
\begin { columns}
\column { 0.48\textwidth }
\begin { figure}
\centering
\includegraphics [width=0.8\textwidth] { avoidedcrossing.pdf}
\caption { Example of an avoided crossing.}
\label { fig:my_ label}
\end { figure}
\column { 0.48\textwidth }
2020-06-28 17:52:03 +02:00
\begin { beamerboxesrounded} [scheme=foncé]{ A 2x2 matrix\textsuperscript { a} }
2020-06-28 17:42:47 +02:00
2020-06-28 17:52:03 +02:00
$
2020-06-28 17:42:47 +02:00
2020-06-28 17:52:03 +02:00
\small { \centering \begin { pmatrix}
\alpha & \delta \\
\delta & \beta
\end { pmatrix} =
\vspace { 0.3cm}
\begin { pmatrix}
\alpha + \alpha _ s & 0 \\
0 & \beta + \beta _ s
\end { pmatrix} +
\begin { pmatrix}
- \alpha _ s & \delta \\
\delta & - \beta _ s
\end { pmatrix} }
$
2020-06-28 17:42:47 +02:00
\end { beamerboxesrounded}
\vspace { 1cm}
\end { columns}
\footnotetext { \tiny { Olsen et al. Divergence in Møller– Plesset theory: A simple explanation based on a two-state model, \textit { Journal of chemical physics} , 2000} }
\end { frame}
2020-06-28 17:52:03 +02:00
\begin { frame} { Two state model}
2020-06-28 17:42:47 +02:00
\begin { figure}
\centering
\includegraphics [width=0.6\textwidth] { figure-fig14.png}
\caption { \centering The energy corrections for HF at stretched geometry in the aug'-cc-pVDZ basis with the two-state model.\textsuperscript { a} }
\label { fig:my_ label}
\end { figure}
\footnotetext { \tiny { Olsen et al. Divergence in Møller– Plesset theory: A simple explanation based on a two-state model, \textit { Journal of chemical physics} , 2000} }
\end { frame}
\begin { frame} { Existence of a critical point}
2020-06-28 17:52:03 +02:00
For $ \lambda < 0 $ :
2020-06-28 17:42:47 +02:00
\begin { equation*}
2020-06-28 17:52:03 +02:00
H(\lambda )=\sum \limits _ { j=1} ^ { 2n} \left [ \underbrace{-\frac{1}{2}\nabla_j^2 - \sum\limits_{k=1}^{N} \frac{Z_k}{|\vb{r}_j-\vb{R}_k|}}_{\text{Independant of }\lambda} + \overbrace{(1-\lambda)V_j^{(scf)}}^{\textcolor{red}{Repulsive}}+\underbrace{\lambda\sum\limits_{j<l}^{2n}\frac{1}{|\vb{r}_j-\vb{r}_l|}}_{\textcolor{blue}{Attractive}} \right]
2020-06-28 17:42:47 +02:00
\end { equation*}
\end { frame}
\begin { frame} { Critical point in a finite basis set}
\begin { beamerboxesrounded} [scheme=foncé]{ \centering Exact energy $ E ( z ) $ }
2020-06-28 17:52:03 +02:00
$ E ( z ) $ has a critical point on the negative real axis and $ E ( z ) $ is continue for real value below $ z _ { crit } $ .
2020-06-28 17:42:47 +02:00
\end { beamerboxesrounded}
\vspace { 0.5cm}
\begin { beamerboxesrounded} [scheme=foncé]{ \centering In a finite basis set}
The singularities occur in complex conjugate pairs with non-zero imaginary parts and the energies are discrete.
\end { beamerboxesrounded}
\vspace { 0.5cm}
2020-06-28 17:52:03 +02:00
\centering \Large { How is this connected ???}
2020-06-28 17:42:47 +02:00
\end { frame}
\begin { frame} { Singularities $ \alpha $ and $ \beta $ }
\begin { beamerboxesrounded} [scheme=foncé]{ \centering Observation}
We can separate singularities in two parts.
2020-06-28 17:52:03 +02:00
\end { beamerboxesrounded}
2020-06-28 17:42:47 +02:00
\begin { beamerboxesrounded} [scheme=foncé]{ \centering Singularity $ \alpha $ }
\begin { itemize}
\item Large avoided crossing
\item Interaction with a low lying doubly excited states
2020-06-28 17:52:03 +02:00
\item Non-zero imaginary part
2020-06-28 17:42:47 +02:00
\end { itemize}
\end { beamerboxesrounded}
\begin { beamerboxesrounded} [scheme=foncé]{ \centering Singularity $ \alpha $ }
\begin { itemize}
\item Sharp avoided crossing
\item Interaction with a diffuse function
2020-06-28 17:52:03 +02:00
\item Very small imaginary part
2020-06-28 17:42:47 +02:00
\end { itemize}
\end { beamerboxesrounded}
\end { frame}
\begin { frame} { Modeling the critical point}
\end { frame}
\section { The spherium model}
\begin { frame} { Spherium: a theoretical playground}
\begin { beamerboxesrounded} [scheme=foncé]{ \centering Two electrons on a sphere Hamiltonian}
\begin { equation*}
2020-06-28 17:52:03 +02:00
H=-\frac { 1} { 2} (\nabla _ 1^ 2 + \nabla _ 2^ 2) + \frac { 1} { r_ { 12} }
2020-06-28 17:42:47 +02:00
\end { equation*}
\end { beamerboxesrounded}
\vspace { 0.5cm}
\begin { columns}
\column { 0.48\textwidth }
\centering { Small $ R $ }
\vspace { 0.5cm}
\begin { itemize}
\item $ E _ { kin } >> E _ p $
\item Uniform density of electrons
\item \textcolor { red} { Weak correlation}
\end { itemize}
\vspace { 0.5cm}
\column { 0.48\textwidth }
\centering { Large $ R $ }
\vspace { 0.5cm}
\begin { itemize}
\item $ E _ { kin } << E _ p $
\item Electrons on the opposite sides of the sphere
\item \textcolor { red} { Strong correlation}
\end { itemize}
\end { columns}
\end { frame}
2020-06-28 17:52:03 +02:00
\begin { frame} { Why is there a class $ \beta $ singularity ?}
2020-06-28 17:42:47 +02:00
\end { frame}
\begin { frame} { Conclusion}
\end { frame}
\end { document}