minor corrections on slides
This commit is contained in:
parent
6dcc993213
commit
d7f56a3695
@ -150,7 +150,7 @@ In physics perturbation theory is often a good way to improve the obtained resul
|
||||
|
||||
\begin{beamerboxesrounded}[scheme=foncé]{}
|
||||
\centering
|
||||
Full Configuration Interaction gives us access to high order terms of the perturbation series !
|
||||
Full Configuration Interaction gives access to high-order terms of the perturbation series!
|
||||
\end{beamerboxesrounded}
|
||||
|
||||
\end{frame}
|
||||
@ -159,8 +159,8 @@ Full Configuration Interaction gives us access to high order terms of the pertur
|
||||
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=0.4\textwidth]{gill1986.png}
|
||||
\caption{\centering Barriers to homolytic fission of \ce{He2^2+} using STO-3G basis set MPn theory (n~=~1-20).}
|
||||
\includegraphics[width=0.5\textwidth]{gill1986.png}
|
||||
\caption{\centering Barriers to homolytic fission of \ce{He2^2+} at MPn/STO-3G level ($n = 1$--$20$).}
|
||||
\label{fig:my_label}
|
||||
\end{figure}
|
||||
|
||||
@ -184,7 +184,7 @@ Full Configuration Interaction gives us access to high order terms of the pertur
|
||||
\label{tab:my_label}
|
||||
\end{table}
|
||||
|
||||
\footnotetext{\tiny{Gill et al. Why does unrestricted Møller–Plesset perturbation theory converge so slowly for spin-contaminated wave functions, \textit{Journal of chemical physics}, 1988}}
|
||||
\footnotetext{\tiny{Gill et al. Why does unrestricted M{\o}ller-Plesset perturbation theory converge so slowly for spin-contaminated wave functions, \textit{Journal of chemical physics}, 1988}}
|
||||
|
||||
\end{frame}
|
||||
|
||||
@ -222,7 +222,7 @@ Full Configuration Interaction gives us access to high order terms of the pertur
|
||||
\begin{itemize}
|
||||
\item Smooth for $x \in \mathbb{R}$
|
||||
|
||||
\item Infinitely differentiable on $\mathbb{R}$
|
||||
\item Infinitely differentiable in $\mathbb{R}$
|
||||
\end{itemize}
|
||||
|
||||
\column{0.48\textwidth}
|
||||
@ -242,13 +242,13 @@ But the Taylor expansion of this function does not converge for $x\geq1$...
|
||||
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{And if we look in the complex plane ?}
|
||||
\begin{frame}{And if we look in the complex plane?}
|
||||
|
||||
\begin{columns}
|
||||
|
||||
\column{0.48\textwidth}
|
||||
|
||||
\centering The function has 4 singularities in the complex plane !
|
||||
\centering The function has 4 singularities in the complex plane!
|
||||
|
||||
\vspace{1cm}
|
||||
|
||||
@ -305,11 +305,11 @@ The \textcolor{red}{radius of convergence} of the Taylor expansion of a function
|
||||
|
||||
\section{Classifying the singularity}
|
||||
|
||||
\begin{frame}{Which features of the system localize the singularities ?}
|
||||
\begin{frame}{Which features of the system localize the singularities?}
|
||||
|
||||
\begin{itemize}
|
||||
\item Partitioning of the Hamiltonian: Møller-Plesset, Epstein-Nesbet,...
|
||||
\item Zeroth order reference: weak correlation or strongly correlated electrons.
|
||||
\item Partitioning of the Hamiltonian: Møller-Plesset, Epstein-Nesbet, \ldots
|
||||
\item Zeroth-order reference: weak or strong correlation.
|
||||
\item Finite or complete basis set.
|
||||
\item Localized or delocalized basis functions.
|
||||
\end{itemize}
|
||||
@ -409,7 +409,7 @@ We can separate singularities in two parts.
|
||||
\begin{itemize}
|
||||
\item Large avoided crossing
|
||||
\item Non-zero imaginary part
|
||||
\item Interaction with a low lying doubly excited states
|
||||
\item Interaction with a low-lying doubly excited states
|
||||
\end{itemize}
|
||||
\end{beamerboxesrounded}
|
||||
|
||||
@ -468,7 +468,7 @@ Proof of the existence of this group of sharp avoided crossings for Ne, He and H
|
||||
\vspace{0.5cm}
|
||||
|
||||
\begin{itemize}
|
||||
\item $E_{kin} >> E_p$
|
||||
\item $E_\text{kin} \gg E_\text{pot}$
|
||||
\item Uniform density of electrons
|
||||
\item \textcolor{red}{Weak correlation}
|
||||
\end{itemize}
|
||||
@ -481,7 +481,7 @@ Proof of the existence of this group of sharp avoided crossings for Ne, He and H
|
||||
\vspace{0.5cm}
|
||||
|
||||
\begin{itemize}
|
||||
\item $E_{kin} << E_p$
|
||||
\item $E_\text{kin} \ll E_\text{pot}$
|
||||
\item Electrons on the opposite sides of the sphere
|
||||
\item \textcolor{red}{Strong correlation}
|
||||
\end{itemize}
|
||||
|
Loading…
Reference in New Issue
Block a user