BSEdyn/BSEdyn.tex
2020-05-18 12:21:08 +02:00

537 lines
20 KiB
TeX

\documentclass[aps,prb,reprint,noshowkeys,superscriptaddress]{revtex4-1}
\usepackage{graphicx,dcolumn,bm,xcolor,microtype,multirow,amscd,amsmath,amssymb,amsfonts,physics,longtable,wrapfig,txfonts}
\usepackage[version=4]{mhchem}
%\usepackage{natbib}
%\usepackage[extra]{tipa}
%\bibliographystyle{achemso}
%\AtBeginDocument{\nocite{achemso-control}}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{txfonts}
\usepackage[
colorlinks=true,
citecolor=blue,
breaklinks=true
]{hyperref}
\urlstyle{same}
\newcommand{\ie}{\textit{i.e.}}
\newcommand{\eg}{\textit{e.g.}}
\newcommand{\alert}[1]{\textcolor{red}{#1}}
\definecolor{darkgreen}{HTML}{009900}
\usepackage[normalem]{ulem}
\newcommand{\titou}[1]{\textcolor{red}{#1}}
\newcommand{\xavier}[1]{\textcolor{darkgreen}{#1}}
\newcommand{\trashPFL}[1]{\textcolor{red}{\sout{#1}}}
\newcommand{\trashXB}[1]{\textcolor{darkgreen}{\sout{#1}}}
\newcommand{\PFL}[1]{\titou{(\underline{\bf PFL}: #1)}}
\newcommand{\XB}[1]{\xavier{(\underline{\bf XB}: #1)}}
\newcommand{\mc}{\multicolumn}
\newcommand{\fnm}{\footnotemark}
\newcommand{\fnt}{\footnotetext}
\newcommand{\tabc}[1]{\multicolumn{1}{c}{#1}}
\newcommand{\SI}{\textcolor{blue}{supporting information}}
\newcommand{\QP}{\textsc{quantum package}}
\newcommand{\T}[1]{#1^{\intercal}}
% coordinates
\newcommand{\br}[1]{\mathbf{r}_{#1}}
\newcommand{\dbr}[1]{d\br{#1}}
% methods
\newcommand{\evGW}{ev$GW$}
\newcommand{\qsGW}{qs$GW$}
\newcommand{\GOWO}{$G_0W_0$}
\newcommand{\Hxc}{\text{Hxc}}
\newcommand{\xc}{\text{xc}}
\newcommand{\Ha}{\text{H}}
\newcommand{\co}{\text{x}}
%
\newcommand{\Norb}{N}
\newcommand{\Nocc}{O}
\newcommand{\Nvir}{V}
\newcommand{\IS}{\lambda}
% operators
\newcommand{\hH}{\Hat{H}}
% methods
\newcommand{\RPA}{\text{RPA}}
\newcommand{\BSE}{\text{BSE}}
% energies
\newcommand{\Enuc}{E^\text{nuc}}
\newcommand{\Ec}{E_\text{c}}
\newcommand{\EHF}{E^\text{HF}}
\newcommand{\EBSE}{E^\text{BSE}}
\newcommand{\EcRPA}{E_\text{c}^\text{RPA}}
\newcommand{\EcRPAx}{E_\text{c}^\text{RPAx}}
\newcommand{\EcBSE}{E_\text{c}^\text{BSE}}
\newcommand{\IP}{\text{IP}}
\newcommand{\EA}{\text{EA}}
\newcommand{\Req}{R_\text{eq}}
% orbital energies
\newcommand{\e}[1]{\epsilon_{#1}}
\newcommand{\eHF}[1]{\epsilon^\text{HF}_{#1}}
\newcommand{\eKS}[1]{\epsilon^\text{KS}_{#1}}
\newcommand{\eQP}[1]{\epsilon^\text{QP}_{#1}}
\newcommand{\eGOWO}[1]{\epsilon^\text{\GOWO}_{#1}}
\newcommand{\eGW}[1]{\epsilon^{GW}_{#1}}
\newcommand{\eevGW}[1]{\epsilon^\text{\evGW}_{#1}}
\newcommand{\eGnWn}[2]{\epsilon^\text{\GnWn{#2}}_{#1}}
\newcommand{\Om}[2]{\Omega_{#1}^{#2}}
% Matrix elements
\newcommand{\A}[2]{A_{#1}^{#2}}
\newcommand{\tA}[2]{\Tilde{A}_{#1}^{#2}}
\newcommand{\B}[2]{B_{#1}^{#2}}
\renewcommand{\S}[1]{S_{#1}}
\newcommand{\ABSE}[2]{A_{#1}^{#2,\text{BSE}}}
\newcommand{\BBSE}[2]{B_{#1}^{#2,\text{BSE}}}
\newcommand{\ARPA}[2]{A_{#1}^{#2,\text{RPA}}}
\newcommand{\BRPA}[2]{B_{#1}^{#2,\text{RPA}}}
\newcommand{\ARPAx}[2]{A_{#1}^{#2,\text{RPAx}}}
\newcommand{\BRPAx}[2]{B_{#1}^{#2,\text{RPAx}}}
\newcommand{\G}[1]{G_{#1}}
\newcommand{\LBSE}[1]{L_{#1}}
\newcommand{\XiBSE}[1]{\Xi_{#1}}
\newcommand{\Po}[1]{P_{#1}}
\newcommand{\W}[2]{W_{#1}^{#2}}
\newcommand{\Wc}[1]{W^\text{c}_{#1}}
\newcommand{\vc}[1]{v_{#1}}
\newcommand{\Sig}[1]{\Sigma_{#1}}
\newcommand{\SigGW}[1]{\Sigma^{GW}_{#1}}
\newcommand{\Z}[1]{Z_{#1}}
\newcommand{\MO}[1]{\phi_{#1}}
\newcommand{\ERI}[2]{(#1|#2)}
\newcommand{\sERI}[2]{[#1|#2]}
%% bold in Table
\newcommand{\bb}[1]{\textbf{#1}}
\newcommand{\rb}[1]{\textbf{\textcolor{red}{#1}}}
\newcommand{\gb}[1]{\textbf{\textcolor{darkgreen}{#1}}}
% excitation energies
\newcommand{\OmRPA}[1]{\Omega_{#1}^{\text{RPA}}}
\newcommand{\OmRPAx}[1]{\Omega_{#1}^{\text{RPAx}}}
\newcommand{\OmBSE}[1]{\Omega_{#1}^{\text{BSE}}}
\newcommand{\spinup}{\downarrow}
\newcommand{\spindw}{\uparrow}
\newcommand{\singlet}{\uparrow\downarrow}
\newcommand{\triplet}{\uparrow\uparrow}
% Matrices
\newcommand{\bO}{\mathbf{0}}
\newcommand{\bI}{\mathbf{1}}
\newcommand{\bvc}{\mathbf{v}}
\newcommand{\bSig}{\mathbf{\Sigma}}
\newcommand{\bSigX}{\mathbf{\Sigma}^\text{x}}
\newcommand{\bSigC}{\mathbf{\Sigma}^\text{c}}
\newcommand{\bSigGW}{\mathbf{\Sigma}^{GW}}
\newcommand{\be}{\mathbf{\epsilon}}
\newcommand{\beGW}{\mathbf{\epsilon}^{GW}}
\newcommand{\beGnWn}[1]{\mathbf{\epsilon}^\text{\GnWn{#1}}}
\newcommand{\bde}{\mathbf{\Delta\epsilon}}
\newcommand{\bdeHF}{\mathbf{\Delta\epsilon}^\text{HF}}
\newcommand{\bdeGW}{\mathbf{\Delta\epsilon}^{GW}}
\newcommand{\bOm}[1]{\mathbf{\Omega}^{#1}}
\newcommand{\bA}[1]{\mathbf{A}^{#1}}
\newcommand{\btA}[1]{\Tilde{\mathbf{A}}^{#1}}
\newcommand{\bB}[1]{\mathbf{B}^{#1}}
\newcommand{\bX}[2]{\mathbf{X}_{#1}^{#2}}
\newcommand{\bY}[2]{\mathbf{Y}_{#1}^{#2}}
\newcommand{\bZ}[2]{\mathbf{Z}_{#1}^{#2}}
\newcommand{\bK}{\mathbf{K}}
\newcommand{\bP}[1]{\mathbf{P}^{#1}}
% units
\newcommand{\IneV}[1]{#1 eV}
\newcommand{\InAU}[1]{#1 a.u.}
\newcommand{\InAA}[1]{#1 \AA}
\newcommand{\kcal}{kcal/mol}
\DeclareMathOperator*{\argmax}{argmax}
\DeclareMathOperator*{\argmin}{argmin}
\newcommand\vari{{\varepsilon}_i}
\newcommand\vara{{\varepsilon}_a}
\newcommand\varj{{\varepsilon}_j}
\newcommand\varb{{\varepsilon}_b}
\newcommand\varn{{\varepsilon}_n}
\newcommand\varm{{\varepsilon}_m}
\newcommand\Oms{{\Omega}_s}
\newcommand\hOms{\frac{{\Omega}_s}{2}}
\newcommand{\NEEL}{Universit\'e Grenoble Alpes, CNRS, Institut NEEL, F-38042 Grenoble, France}
\newcommand{\LCPQ}{Laboratoire de Chimie et Physique Quantiques (UMR 5626), Universit\'e de Toulouse, CNRS, UPS, France}
\begin{document}
\title{Dynamical Correction to the Bethe-Salpeter Equation}
\author{Pierre-Fran\c{c}ois \surname{Loos}}
\email{loos@irsamc.ups-tlse.fr}
\affiliation{\LCPQ}
\author{Xavier \surname{Blase}}
\email{xavier.blase@neel.cnrs.fr }
\affiliation{\NEEL}
\begin{abstract}
This is the abstract
%\\
%\bigskip
%\begin{center}
% \boxed{\includegraphics[width=0.5\linewidth]{TOC}}
%\end{center}
%\bigskip
\end{abstract}
\maketitle
%%%%%%%%%%%%%%%%%%%%%%%%
\section{Introduction}
\label{sec:intro}
%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%
\section{Theory}
\label{sec:theory}
%%%%%%%%%%%%%%%%%%%%%%%%
%================================
\subsection{Theory for physics}
%=================================
The Fourier components with respect to time $t_1$ of $iL_0(1, 4; 1', 3) = G(1, 3)G(4, 1')$ reads, dropping the (space/spin)-variables:
\begin{align*}
[iL_0]( \omega_1 ) = \frac{ 1 }{ 2\pi } \int d \omega \; G(\omega - \frac{\omega_1}{2} ) G( {\omega} + \frac{\omega_1}{2} ) e^{ i \omega \tau_{34} } e^{ i \omega_1 t^{34} }
\end{align*}
with $\tau_{34} = t_3 - t_4$ and
$t^{34} = (t_3 + t_4)/2$. Plugging now the 1-body Green's function Lehman representation, e.g.
$$
G(x_1,x_3 ; \omega) = \sum_n \frac{ \phi_n(x_1) \phi_n^*(x_3) } { \omega - \varepsilon_n + i \eta \text{sgn}(\varepsilon_n - \mu) }
$$
and projecting on $\phi_a^*(x_1) \phi_i(x_{1'})$, one obtains the $\omega_1= \Oms$ component
\begin{align*}
\int dx_1 dx_{1'} \; & \phi_a^*(x_1) \phi_i(x_{1'}) L_0(x_1,3;x_{1'},4; \Oms) = e^{i \Oms t^{34} } \times \\
& \frac{ \phi_a^*(x_3) \phi_i(x_4) } { \Oms - ( \vara - \vari ) + i \eta }
\Big( \theta( \tau ) e^{i ( \vari + \hOms) \tau }
+ \theta( - \tau ) e^{i (\vara - \hOms \tau } \Big)
\end{align*}
with $\tau = \tau_{34}$.
We further obtain the spectral representation of
$\langle N | T {\hat \psi}(3) {\hat \psi}^{\dagger}(4) | N,s \rangle$
expanding the field operators over a complete orbital basis creation/destruction operators:
\begin{align*}
\langle N | T {\hat \psi}(3) {\hat \psi}^{\dagger}(4) & | N,s \rangle = - \Big( e^{ -i \Omega_s t^{34} } \Big) \sum_{mn} \phi_m(x_3) \phi_n^*(x_4) \langle N | {\hat a}_n^{\dagger} {\hat a}_m | N,s \rangle \times \nonumber \\
\times & \Big( \theta( \tau ) e^{- i ( \varepsilon_m - \hOms ) \tau }
+ \theta( -\tau ) e^{ - i ( \varepsilon_n + \hOms) \tau } \Big)
\end{align*}
with $\tau = \tau_{34}$ and where the $ \lbrace \varepsilon_{n/m} \rbrace$ are proper addition/removal energies such that e.g.
$$
e^{ i H \tau } {\hat a}_m^{\dagger} | N \rangle = e^{ i (E_0^N + \varepsilon_m ) \tau } {\hat a} _m^{\dagger} | N \rangle
$$
Selecting (n,m)=(j,b) yields the largest components
$A_{jb}^{s} = \langle N | {\hat a}_j^{\dagger} {\hat a}_b | N,s \rangle $, while (n,m)=(b,j) yields much weaker
$B_{jb}^{s} = \langle N | {\hat a}_b^{\dagger} {\hat a}_j | N,s \rangle $ contributions. We used chemist notations with (i,j) indexing occupied orbitals and (a,b) virtual ones. Neglecting the $B_{jb}^{s}$ leads to the Tamm Dancoff approximation (TDA). Obtaining similarly the spectral representation of $ \langle N | T {\hat \psi}(1) {\hat \psi}^{\dagger}(1') | N,s \rangle$ ($t_{1'} = t_1^{+}$) projected onto $\phi_a^*(x_1) \phi_i(x_{1'})$,
one obtains after a few tedious manipulations (see Supplemental Information) the dynamical Bethe-Salpeter equation (DBSE) :
\begin{align}
( \varepsilon_a - \varepsilon_i - \Omega_s ) A_{ia}^{s}
&+ \sum_{jb} \Big( v_{ai,bj} - \widetilde{W}_{ij,ab}(\Oms) \Big) A_{jb}^{s} \\
&+ \sum_{bj} \Big( v_{ai,jb} - \widetilde{W}_{ib,aj}(\Oms) \Big) B_{jb}^{s}
= 0
\end{align}
with an effective dynamically screened Coulomb potential (see Pina eq. 24):
\begin{align}
\widetilde{W}_{ij,ab}(\Oms) &= { i \over 2 \pi} \int d\omega \; e^{-i \omega 0^+ } W_{ij,ab}(\omega) \times \\
\hskip 1cm &\times \left[ \frac{1}{ (\Oms - \omega) - ( \varb - \vari ) +i \eta } + \frac{1}{ (\Oms + \omega) - ( \vara - \varj ) + i\eta } \right] \nonumber
\end{align}
In the present study, we use the exact spectral representation of $W(\omega)$ at the RPA level:
\begin{align*}
W_{ij,ab}(\omega) &= (ij|ab) + 2 \sum_m^{OV} [ij|m] [ab|m] \times \\
& \times \Big( \frac{1}{ \omega-\Omega_m^{RPA} + i\eta } - \frac{1}{ \omega + \Omega_m^{RPA} - i\eta } \Big)
\end{align*}
so that
\begin{align}
\widetilde{W}_{ij,ab}( \Oms ) &= (ij|ab) + 2 \sum_m^{OV} [ij|m] [ab|m] \times \\
& \times \left[ \frac{ 1 }{ \Omega_{ib}^{s} - \Omega_m^{RPA} + i\eta } + \frac{ 1}{ \Omega_{ja}^{s} - \Omega_m^{RPA} + i\eta }
\right] \nonumber
\end{align}
with e.g. $ \Omega_{ib}^{s} = \Oms - ( \varepsilon_b - \varepsilon_i) $. \textcolor{red}{Due to excitonic effects, the lowest BSE ${\Omega}_1$ excitation energy stands lower than the lowest $\Omega_m^{RPA}$ excitation energy, so that
e.g. $( \Omega_{ib}^{s} - \Omega_m^{RPA} )$ is strictly negative and cannot diverge. Further, $\Omega_{ib}^{s}$ and $\Omega_{ja}^{s}$ are necessarily negative for in-gap low lying BSE excitations, such that
$$
\left[ \frac{ 1 }{ \Omega_{ib}^{s} - \Omega_m^{RPA} + i\eta } + \frac{ 1}{ \Omega_{ja}^{s} - \Omega_m^{RPA} + i\eta }
\right]
<
\Big( \frac{1}{ \omega-\Omega_m^{RPA} + i\eta } - \frac{1}{ \omega + \Omega_m^{RPA} - i\eta } \Big) < 0
$$
in the limit $(\omega \rightarrow 0)$ of the standard adiabatic BSE . WELL, do we know the sign of
$[ij|m] [ab|m]$ ?? }
%In order to compute the neutral (optical) excitations of the system and their associated oscillator strengths, the BSE expresses the two-body propagator \cite{Strinati_1988, Martin_2016}
%\begin{multline}
%\label{eq:BSE}
% \LBSE{}(1,2,1',2') = \LBSE{0}(1,2,1',2')
% \\
% + \int d3 d4 d5 d6 \LBSE{0}(1,4,1',3) \XiBSE{}(3,5,4,6) \LBSE{}(6,2,5,2')
%\end{multline}
%as the linear response of the one-body Green's function $\G{}$ with respect to a general non-local external potential
%\begin{equation}
% \XiBSE{}(3,5,4,6) = i \fdv{[\vc{\Ha}(3) \delta(3,4) + \Sig{\xc}(3,4)]}{\G{}(6,5)},
%\end{equation}
%which takes into account the self-consistent variation of the Hartree potential
%\begin{equation}
% \vc{\Ha}(1) = - i \int d2 \vc{}(2) \G{}(2,2^+),
%\end{equation}
%(where $\vc{}$ is the bare Coulomb operator) and the exchange-correlation self-energy $\Sig{\xc}$.
%In Eq.~\eqref{eq:BSE}, $\LBSE{0}(1,2,1',2') = - i \G{}(1,2')\G{}(2,1')$, and $(1)=(\br{1},\sigma_1,t_1)$ is a composite index gathering space, spin and time variables.
%In the $GW$ approximation, \cite{Hedin_1965,Aryasetiawan_1998,Onida_2002,Martin_2016,Reining_2017} we have
%\begin{equation}
% \SigGW{\xc}(1,2) = i \G{}(1,2) \W{}{}(1^+,2),
%\end{equation}
%where $\W{}{}$ is the screened Coulomb operator, and hence the BSE reduces to
%\begin{equation}
% \XiBSE{}(3,5,4,6) = \delta(3,4) \delta(5,6) \vc{}(3,6) - \delta(3,6) \delta(4,5) \W{}{}(3,4),
%\end{equation}
%where, as commonly done, we have neglected the term $\delta \W{}{}/\delta \G{}$ in the functional derivative of the self-energy. \cite{Hanke_1980,Strinati_1984,Strinati_1982}
%Finally, the static approximation is enforced, \ie, $\W{}{}(1,2) = \W{}{}(\{\br{1}, \sigma_1, t_1\},\{\br{2}, \sigma_2, t_2\}) \delta(t_1-t_2)$, which corresponds to restricting $\W{}{}$ to its static limit, \ie, $\W{}{}(1,2) = \W{}{}(\{\br{1},\sigma_1\},\{\br{2},\sigma_2\}; \omega=0)$.
%================================
\subsection{Theory for chemists}
%=================================
For a closed-shell system in a finite basis, to compute the BSE excitation energies, one must solve the following (non-linear) dynamical (\ie, frequency-dependent) response problem
\begin{equation}
\label{eq:LR-dyn}
\begin{pmatrix}
\bA{}(\omega) & \bB{}(\omega) \\
-\bB{}(\omega) & -\bA{}(\omega) \\
\end{pmatrix}
\cdot
\begin{pmatrix}
\bX{m}{}(\omega) \\
\bY{m}{}(\omega) \\
\end{pmatrix}
=
\omega
\begin{pmatrix}
\bX{m}{}(\omega) \\
\bY{m}{}(\omega) \\
\end{pmatrix},
\end{equation}
where the dynamical matrices $\bA{}(\omega)$, $\bB{}(\omega)$, $\bX{}{}(\omega)$, and $\bY{}{}(\omega)$ are all of size $\Nocc \Nvir \times \Nocc \Nvir$ where $\Nocc$ and $\Nvir$ are the number of occupied and virtual orbitals (\ie, $\Norb = \Nocc + \Nvir$ is the total number of spatial orbitals), respectively.
In the following, the index $m$ labels the $\Nocc \Nvir$ single excitations, $i$ and $j$ are occupied orbitals, $a$ and $b$ are unoccupied orbitals, while $p$, $q$, $r$, and $s$ indicate arbitrary orbitals.
The BSE matrix elements read
\begin{subequations}
\begin{align}
\label{eq:BSE-Adyn}
\A{ia,jb}{}(\omega) & = \delta_{ij} \delta_{ab} \eGW{ia} + 2 \ERI{ia}{jb} - \W{ij,ab}{}(\omega),
\\
\label{eq:BSE-Bdyn}
\B{ia,jb}{}(\omega) & = 2 \ERI{ia}{bj} - \W{ib,aj}{}(\omega),
\end{align}
\end{subequations}
where $\eGW{ia} = \eGW{a} - \eGW{i}$ are occupied-to-virtual differences of $GW$ quasiparticle energies,
\begin{equation}
\ERI{pq}{rs} = \iint \frac{\MO{p}(\br{}) \MO{q}(\br{}) \MO{r}(\br{}') \MO{s}(\br{}')}{\abs*{\br{} - \br{}'}} \dbr{} \dbr{}'
\end{equation}
are the bare two-electron integrals in the molecular orbital basis $\lbrace \MO{p}(\br{}) \rbrace_{1 \le p \le \Norb}$, and the dynamically-screened Coulomb potential reads
\begin{multline}
\label{eq:W}
\W{ij,ab}{}(\omega) = \ERI{ij}{ab} + 2 \sum_m^{\Nocc \Nvir} \sERI{ij}{m} \sERI{ab}{m}
\\
\times \qty(\frac{1}{\omega - \OmRPA{m}{} - \eGW{ib} + i \eta} + \frac{1}{\omega - \OmRPA{m}{} - \eGW{ja} + i \eta}),
\end{multline}
where $\eta$ is a positive infinitesimal, and
\begin{equation}
\label{eq:sERI}
\sERI{pq}{m} = \sum_i^{\Nocc} \sum_a^{\Nvir} \ERI{pq}{ia} (\bX{m}{\RPA} + \bY{m}{\RPA})_{ia}
\end{equation}
are the spectral weights.
In Eqs.~\eqref{eq:W} and \eqref{eq:sERI}, $\OmRPA{m}{}$ and $(\bX{m}{\RPA} + \bY{m}{\RPA})$ are direct (\ie, without exchange) RPA neutral excitations and their corresponding transition vectors computed by solving the (linear) static response problem
\begin{equation}
\label{eq:LR-stat}
\begin{pmatrix}
\bA{\RPA} & \bB{\RPA} \\
-\bB{\RPA} & -\bA{\RPA} \\
\end{pmatrix}
\cdot
\begin{pmatrix}
\bX{m}{\RPA} \\
\bY{m}{\RPA} \\
\end{pmatrix}
=
\OmRPA{m}
\begin{pmatrix}
\bX{m}{\RPA} \\
\bY{m}{\RPA} \\
\end{pmatrix},
\end{equation}
with
\begin{subequations}
\begin{align}
\label{eq:LR_RPA-A}
\A{ia,jb}{\RPA} & = \delta_{ij} \delta_{ab} (\e{a} - \e{i}) + 2 \ERI{ia}{jb},
\\
\label{eq:LR_RPA-B}
\B{ia,jb}{\RPA} & = 2 \ERI{ia}{bj},
\end{align}
\end{subequations}
where the $\e{p}$'s are taken as the Hartree-Fock (HF) orbital energies in the case of $G_0W_0$ or as the $GW$ quasiparticle energies in the case of self-consistent scheme such as ev$GW$.
Now, let us decompose, using basis perturbation theory, the eigenproblem \eqref{eq:LR-dyn} as a zeroth-order static part and a first-order dynamic part, such that
\begin{equation}
\label{eq:LR-dyn}
\begin{pmatrix}
\bA{}(\omega) & \bB{}(\omega) \\
-\bB{}(\omega) & -\bA{}(\omega) \\
\end{pmatrix}
=
\begin{pmatrix}
\bA{(0)} & \bB{(0)} \\
-\bB{(0)} & -\bA{(0)} \\
\end{pmatrix}
+
\begin{pmatrix}
\bA{(1)}(\omega) & \bB{(1)}(\omega) \\
-\bB{(1)}(\omega) & -\bA{(1)}(\omega) \\
\end{pmatrix}
\end{equation}
where
\begin{subequations}
\begin{align}
\label{eq:BSE-0}
\A{ia,jb}{(0)} & = \delta_{ij} \delta_{ab} \eGW{ia} + 2 \ERI{ia}{jb} - \W{ij,ab}{\text{stat}},
\\
\label{eq:BSE-0}
\B{ia,jb}{(0)} & = 2 \ERI{ia}{bj} - \W{ib,aj}{\text{stat}},
\end{align}
\end{subequations}
and
\begin{subequations}
\begin{align}
\label{eq:BSE-1}
\A{ia,jb}{(1)}(\omega) & = - \W{ij,ab}{}(\omega) + \W{ij,ab}{\text{stat}},
\\
\label{eq:BSE-1}
\B{ia,jb}{(1)}(\omega) & = - \W{ib,aj}{}(\omega) + \W{ib,aj}{\text{stat}},
\end{align}
\end{subequations}
The static version of the screened Coulomb potential reads
\begin{equation}
\label{eq:Wstat}
\W{ij,ab}{\text{stat}} = \ERI{ij}{ab} - 4 \sum_m^{\Nocc \Nvir} \frac{\sERI{ij}{m} \sERI{ab}{m}}{\OmRPA{m}{} - i \eta}.
\end{equation}
The $m$th BSE excitation energy and its corresponding eigenvector can then decomposed as
\begin{subequations}
\begin{gather}
\Om{m}{} = \Om{m}{(0)} + \Om{m}{(1)} + \ldots
\\
\begin{pmatrix}
\bX{m}{} \\
\bY{m}{} \\
\end{pmatrix}
=
\begin{pmatrix}
\bX{m}{(0)} \\
\bY{m}{(0)} \\
\end{pmatrix}
+
\begin{pmatrix}
\bX{m}{(1)} \\
\bY{m}{(1)} \\
\end{pmatrix}
+ \ldots
\end{gather}
\end{subequations}
Solving the zeroth-order static problem yields
\begin{equation}
\begin{pmatrix}
\bA{(0)} & \bB{(0)} \\
-\bB{(0)} & -\bA{(0)} \\
\end{pmatrix}
\cdot
\begin{pmatrix}
\bX{m}{(0)} \\
\bY{m}{(0)} \\
\end{pmatrix}
=
\Om{m}{(0)}
\begin{pmatrix}
\bX{m}{(0)} \\
\bY{m}{(0)} \\
\end{pmatrix},
\end{equation}
Thanks to first-order perturbation theory, the first-order correction to the $m$th excitation energy is
\begin{equation}
\Om{m}{(1)} =
\T{\begin{pmatrix}
\bX{m}{(0)} \\
\bY{m}{(0)} \\
\end{pmatrix}}
\cdot
\begin{pmatrix}
\bA{(1)}(\Om{m}{(0)}) & \bB{(1)}(\Om{m}{(0)}) \\
-\bB{(1)}(\Om{m}{(0)}) & -\bA{(1)}(\Om{m}{(0)}) \\
\end{pmatrix}
\cdot
\begin{pmatrix}
\bX{m}{(0)} \\
\bY{m}{(0)} \\
\end{pmatrix}.
\end{equation}
From a practical point of view, if one enforces the Tamm-Dancoff approximation (TDA), we obtain the very simple expression
\begin{equation}
\Om{m}{(1)} = \T{(\bX{m}{(0)})} \cdot \bA{(1)}(\Om{m}{(0)}) \cdot \bX{m}{(0)}.
\end{equation}
This correction can be renormalized by computing, at basically no extra cost, the renormalization factor
\begin{equation}
Z_{m} = \qty[ \T{(\bX{m}{(0)})} \cdot \left. \pdv{\bA{(1)}(\omega)}{\omega} \right|_{\omega = \Om{m}{(0)}} \cdot \bX{m}{(0)} ]^{-1}.
\end{equation}
which finally yields
\begin{equation}
\Om{m}{} \approx \Om{m}{(0)} + Z_{m} \Om{m}{(1)}.
\end{equation}
This is our final expression.
%%% FIG 1 %%%
%\begin{figure}
% \includegraphics[width=\linewidth]{}
%\caption{
%\label{fig:}
%}
%\end{figure}
%%% %%% %%%
%%%%%%%%%%%%%%%%%%%%%%%%
\section{Conclusion}
\label{sec:conclusion}
%%%%%%%%%%%%%%%%%%%%%%%%
This is the conclusion
%%%%%%%%%%%%%%%%%%%%%%%%
\acknowledgements{
%%%%%%%%%%%%%%%%%%%%%%%%
This work was performed using HPC resources from GENCI-TGCC (Grant No.~2019-A0060801738) and CALMIP (Toulouse) under allocation 2020-18005.
Funding from the \textit{``Centre National de la Recherche Scientifique''} is acknowledged.
This work has also been supported through the EUR grant NanoX ANR-17-EURE-0009 in the framework of the \textit{``Programme des Investissements d'Avenir''.}}
%%%%%%%%%%%%%%%%%%%%%%%%
\section*{Supporting Information}
%%%%%%%%%%%%%%%%%%%%%%%%
See {\SI} for plenty of stuff
\bibliography{BSEdyn}
\end{document}