saving work

This commit is contained in:
Pierre-Francois Loos 2020-05-18 12:21:08 +02:00
parent d1826d0191
commit 573330e2b1

View File

@ -24,13 +24,10 @@
\definecolor{darkgreen}{HTML}{009900}
\usepackage[normalem]{ulem}
\newcommand{\titou}[1]{\textcolor{red}{#1}}
\newcommand{\denis}[1]{\textcolor{purple}{#1}}
\newcommand{\xavier}[1]{\textcolor{darkgreen}{#1}}
\newcommand{\trashPFL}[1]{\textcolor{red}{\sout{#1}}}
\newcommand{\trashDJ}[1]{\textcolor{purple}{\sout{#1}}}
\newcommand{\trashXB}[1]{\textcolor{darkgreen}{\sout{#1}}}
\newcommand{\PFL}[1]{\titou{(\underline{\bf PFL}: #1)}}
\renewcommand{\DJ}[1]{\denis{(\underline{\bf DJ}: #1)}}
\newcommand{\XB}[1]{\xavier{(\underline{\bf XB}: #1)}}
\newcommand{\mc}{\multicolumn}
@ -63,6 +60,10 @@
% operators
\newcommand{\hH}{\Hat{H}}
% methods
\newcommand{\RPA}{\text{RPA}}
\newcommand{\BSE}{\text{BSE}}
% energies
\newcommand{\Enuc}{E^\text{nuc}}
\newcommand{\Ec}{E_\text{c}}
@ -109,7 +110,7 @@
\newcommand{\Z}[1]{Z_{#1}}
\newcommand{\MO}[1]{\phi_{#1}}
\newcommand{\ERI}[2]{(#1|#2)}
\newcommand{\sERI}[3]{[#1|#2]^{#3}}
\newcommand{\sERI}[2]{[#1|#2]}
%% bold in Table
\newcommand{\bb}[1]{\textbf{#1}}
@ -117,9 +118,9 @@
\newcommand{\gb}[1]{\textbf{\textcolor{darkgreen}{#1}}}
% excitation energies
\newcommand{\OmRPA}[2]{\Omega_{#1}^{#2,\text{RPA}}}
\newcommand{\OmRPAx}[2]{\Omega_{#1}^{#2,\text{RPAx}}}
\newcommand{\OmBSE}[2]{\Omega_{#1}^{#2,\text{BSE}}}
\newcommand{\OmRPA}[1]{\Omega_{#1}^{\text{RPA}}}
\newcommand{\OmRPAx}[1]{\Omega_{#1}^{\text{RPAx}}}
\newcommand{\OmBSE}[1]{\Omega_{#1}^{\text{BSE}}}
\newcommand{\spinup}{\downarrow}
\newcommand{\spindw}{\uparrow}
@ -144,8 +145,8 @@
\newcommand{\bA}[1]{\mathbf{A}^{#1}}
\newcommand{\btA}[1]{\Tilde{\mathbf{A}}^{#1}}
\newcommand{\bB}[1]{\mathbf{B}^{#1}}
\newcommand{\bX}[1]{\mathbf{X}^{#1}}
\newcommand{\bY}[1]{\mathbf{Y}^{#1}}
\newcommand{\bX}[2]{\mathbf{X}_{#1}^{#2}}
\newcommand{\bY}[2]{\mathbf{Y}_{#1}^{#2}}
\newcommand{\bZ}[2]{\mathbf{Z}_{#1}^{#2}}
\newcommand{\bK}{\mathbf{K}}
\newcommand{\bP}[1]{\mathbf{P}^{#1}}
@ -170,9 +171,7 @@
\newcommand\hOms{\frac{{\Omega}_s}{2}}
\newcommand{\NEEL}{Universit\'e Grenoble Alpes, CNRS, Institut NEEL, F-38042 Grenoble, France}
\newcommand{\CEISAM}{Laboratoire CEISAM - UMR CNRS 6230, Universit\'e de Nantes, 2 Rue de la Houssini\`ere, BP 92208, 44322 Nantes Cedex 3, France}
\newcommand{\LCPQ}{Laboratoire de Chimie et Physique Quantiques (UMR 5626), Universit\'e de Toulouse, CNRS, UPS, France}
\newcommand{\CEA}{Universit\'e Grenoble Alpes, CEA, IRIG-MEM-L Sim, 38054 Grenoble, France}
\begin{document}
@ -206,6 +205,9 @@ This is the abstract
\section{Theory}
\label{sec:theory}
%%%%%%%%%%%%%%%%%%%%%%%%
%================================
\subsection{Theory for physics}
%=================================
The Fourier components with respect to time $t_1$ of $iL_0(1, 4; 1', 3) = G(1, 3)G(4, 1')$ reads, dropping the (space/spin)-variables:
\begin{align*}
@ -273,138 +275,233 @@ $$
in the limit $(\omega \rightarrow 0)$ of the standard adiabatic BSE . WELL, do we know the sign of
$[ij|m] [ab|m]$ ?? }
\titou{This is the theory section from the previous paper.}
%In order to compute the neutral (optical) excitations of the system and their associated oscillator strengths, the BSE expresses the two-body propagator \cite{Strinati_1988, Martin_2016}
%\begin{multline}
%\label{eq:BSE}
% \LBSE{}(1,2,1',2') = \LBSE{0}(1,2,1',2')
% \\
% + \int d3 d4 d5 d6 \LBSE{0}(1,4,1',3) \XiBSE{}(3,5,4,6) \LBSE{}(6,2,5,2')
%\end{multline}
%as the linear response of the one-body Green's function $\G{}$ with respect to a general non-local external potential
%\begin{equation}
% \XiBSE{}(3,5,4,6) = i \fdv{[\vc{\Ha}(3) \delta(3,4) + \Sig{\xc}(3,4)]}{\G{}(6,5)},
%\end{equation}
%which takes into account the self-consistent variation of the Hartree potential
%\begin{equation}
% \vc{\Ha}(1) = - i \int d2 \vc{}(2) \G{}(2,2^+),
%\end{equation}
%(where $\vc{}$ is the bare Coulomb operator) and the exchange-correlation self-energy $\Sig{\xc}$.
%In Eq.~\eqref{eq:BSE}, $\LBSE{0}(1,2,1',2') = - i \G{}(1,2')\G{}(2,1')$, and $(1)=(\br{1},\sigma_1,t_1)$ is a composite index gathering space, spin and time variables.
%In the $GW$ approximation, \cite{Hedin_1965,Aryasetiawan_1998,Onida_2002,Martin_2016,Reining_2017} we have
%\begin{equation}
% \SigGW{\xc}(1,2) = i \G{}(1,2) \W{}{}(1^+,2),
%\end{equation}
%where $\W{}{}$ is the screened Coulomb operator, and hence the BSE reduces to
%\begin{equation}
% \XiBSE{}(3,5,4,6) = \delta(3,4) \delta(5,6) \vc{}(3,6) - \delta(3,6) \delta(4,5) \W{}{}(3,4),
%\end{equation}
%where, as commonly done, we have neglected the term $\delta \W{}{}/\delta \G{}$ in the functional derivative of the self-energy. \cite{Hanke_1980,Strinati_1984,Strinati_1982}
%Finally, the static approximation is enforced, \ie, $\W{}{}(1,2) = \W{}{}(\{\br{1}, \sigma_1, t_1\},\{\br{2}, \sigma_2, t_2\}) \delta(t_1-t_2)$, which corresponds to restricting $\W{}{}$ to its static limit, \ie, $\W{}{}(1,2) = \W{}{}(\{\br{1},\sigma_1\},\{\br{2},\sigma_2\}; \omega=0)$.
In order to compute the neutral (optical) excitations of the system and their associated oscillator strengths, the BSE expresses the two-body propagator \cite{Strinati_1988, Martin_2016}
\begin{multline}
\label{eq:BSE}
\LBSE{}(1,2,1',2') = \LBSE{0}(1,2,1',2')
\\
+ \int d3 d4 d5 d6 \LBSE{0}(1,4,1',3) \XiBSE{}(3,5,4,6) \LBSE{}(6,2,5,2')
\end{multline}
as the linear response of the one-body Green's function $\G{}$ with respect to a general non-local external potential
\begin{equation}
\XiBSE{}(3,5,4,6) = i \fdv{[\vc{\Ha}(3) \delta(3,4) + \Sig{\xc}(3,4)]}{\G{}(6,5)},
\end{equation}
which takes into account the self-consistent variation of the Hartree potential
\begin{equation}
\vc{\Ha}(1) = - i \int d2 \vc{}(2) \G{}(2,2^+),
\end{equation}
(where $\vc{}$ is the bare Coulomb operator) and the exchange-correlation self-energy $\Sig{\xc}$.
In Eq.~\eqref{eq:BSE}, $\LBSE{0}(1,2,1',2') = - i \G{}(1,2')\G{}(2,1')$, and $(1)=(\br{1},\sigma_1,t_1)$ is a composite index gathering space, spin and time variables.
In the $GW$ approximation, \cite{Hedin_1965,Aryasetiawan_1998,Onida_2002,Martin_2016,Reining_2017} we have
\begin{equation}
\SigGW{\xc}(1,2) = i \G{}(1,2) \W{}{}(1^+,2),
\end{equation}
where $\W{}{}$ is the screened Coulomb operator, and hence the BSE reduces to
\begin{equation}
\XiBSE{}(3,5,4,6) = \delta(3,4) \delta(5,6) \vc{}(3,6) - \delta(3,6) \delta(4,5) \W{}{}(3,4),
\end{equation}
where, as commonly done, we have neglected the term $\delta \W{}{}/\delta \G{}$ in the functional derivative of the self-energy. \cite{Hanke_1980,Strinati_1984,Strinati_1982}
Finally, the static approximation is enforced, \ie, $\W{}{}(1,2) = \W{}{}(\{\br{1}, \sigma_1, t_1\},\{\br{2}, \sigma_2, t_2\}) \delta(t_1-t_2)$, which corresponds to restricting $\W{}{}$ to its static limit, \ie, $\W{}{}(1,2) = \W{}{}(\{\br{1},\sigma_1\},\{\br{2},\sigma_2\}; \omega=0)$.
%================================
\subsection{Theory for chemists}
%=================================
For a closed-shell system in a finite basis, to compute the singlet BSE excitation energies (within the static approximation) of the physical system (\ie, $\IS = 1$), one must solve the following linear response problem \cite{Casida,Dreuw_2005,Martin_2016}
For a closed-shell system in a finite basis, to compute the BSE excitation energies, one must solve the following (non-linear) dynamical (\ie, frequency-dependent) response problem
\begin{equation}
\label{eq:LR}
\label{eq:LR-dyn}
\begin{pmatrix}
\bA{\IS} & \bB{\IS} \\
-\bB{\IS} & -\bA{\IS} \\
\bA{}(\omega) & \bB{}(\omega) \\
-\bB{}(\omega) & -\bA{}(\omega) \\
\end{pmatrix}
\cdot
\begin{pmatrix}
\bX{\IS}_m \\
\bY{\IS}_m \\
\bX{m}{}(\omega) \\
\bY{m}{}(\omega) \\
\end{pmatrix}
=
\Om{m}{\IS}
\omega
\begin{pmatrix}
\bX{\IS}_m \\
\bY{\IS}_m \\
\bX{m}{}(\omega) \\
\bY{m}{}(\omega) \\
\end{pmatrix},
\end{equation}
where $\Om{m}{\IS}$ is the $m$th excitation energy with eigenvector $\T{(\bX{\IS}_m \, \bY{\IS}_m)}$ at interaction strength $\IS$, $\T{}$ is the matrix transpose, and we assume real-valued spatial orbitals $\{\MO{p}(\br{})\}_{1 \le p \le \Norb}$.
The matrices $\bA{\IS}$, $\bB{\IS}$, $\bX{\IS}$, and $\bY{\IS}$ are all of size $\Nocc \Nvir \times \Nocc \Nvir$ where $\Nocc$ and $\Nvir$ are the number of occupied and virtual orbitals (\ie, $\Norb = \Nocc + \Nvir$ is the total number of spatial orbitals), respectively.
where the dynamical matrices $\bA{}(\omega)$, $\bB{}(\omega)$, $\bX{}{}(\omega)$, and $\bY{}{}(\omega)$ are all of size $\Nocc \Nvir \times \Nocc \Nvir$ where $\Nocc$ and $\Nvir$ are the number of occupied and virtual orbitals (\ie, $\Norb = \Nocc + \Nvir$ is the total number of spatial orbitals), respectively.
In the following, the index $m$ labels the $\Nocc \Nvir$ single excitations, $i$ and $j$ are occupied orbitals, $a$ and $b$ are unoccupied orbitals, while $p$, $q$, $r$, and $s$ indicate arbitrary orbitals.
In the absence of instabilities (\ie, when $\bA{\IS} - \bB{\IS}$ is positive-definite), \cite{Dreuw_2005} Eq.~\eqref{eq:LR} is usually transformed into an Hermitian eigenvalue problem of smaller dimension
\begin{equation}
\label{eq:small-LR}
(\bA{\IS} - \bB{\IS})^{1/2} (\bA{\IS} + \bB{\IS}) (\bA{\IS} - \bB{\IS})^{1/2} \bZ{m}{\IS} = (\Om{m}{\IS})^2 \bZ{m}{\IS},
\end{equation}
where the excitation amplitudes are
The BSE matrix elements read
\begin{subequations}
\begin{align}
(\bX{\IS} + \bY{\IS})_m = (\Om{m}{\IS})^{-1/2} (\bA{\IS} - \bB{\IS})^{+1/2} \bZ{m}{\IS},
\\
(\bX{\IS} - \bY{\IS})_m = (\Om{m}{\IS})^{+1/2} (\bA{\IS} - \bB{\IS})^{-1/2} \bZ{m}{\IS}.
\end{align}
\end{subequations}
Introducing the so-called Mulliken notation for the bare two-electron integrals
\begin{equation}
\ERI{pq}{rs} = \iint \frac{\MO{p}(\br{}) \MO{q}(\br{}) \MO{r}(\br{}') \MO{s}(\br{}')}{\abs*{\br{} - \br{}'}} \dbr{} \dbr{}',
\end{equation}
and the corresponding (static) screened Coulomb potential matrix elements at coupling strength $\IS$
\begin{equation}
\W{pq,rs}{\IS} = \iint \MO{p}(\br{}) \MO{q}(\br{}) \W{}{\IS}(\br{},\br{}') \MO{r}(\br{}') \MO{s}(\br{}') \dbr{} \dbr{}',
\end{equation}
the BSE matrix elements read
\begin{subequations}
\begin{align}
\label{eq:LR_BSE-A}
\ABSE{ia,jb}{\IS} & = \delta_{ij} \delta_{ab} (\eGW{a} - \eGW{i}) + \IS \qty[ 2 \ERI{ia}{jb} - \W{ij,ab}{\IS} ],
\label{eq:BSE-Adyn}
\A{ia,jb}{}(\omega) & = \delta_{ij} \delta_{ab} \eGW{ia} + 2 \ERI{ia}{jb} - \W{ij,ab}{}(\omega),
\\
\label{eq:LR_BSE-B}
\BBSE{ia,jb}{\IS} & = \IS \qty[ 2 \ERI{ia}{bj} - \W{ib,aj}{\IS} ],
\label{eq:BSE-Bdyn}
\B{ia,jb}{}(\omega) & = 2 \ERI{ia}{bj} - \W{ib,aj}{}(\omega),
\end{align}
\end{subequations}
where $\eGW{p}$ are the $GW$ quasiparticle energies.
In the standard BSE approach, $\W{}{\IS}$ is built within the direct RPA scheme, \ie,
\begin{subequations}
\label{eq:wrpa}
\begin{align}
\W{}{\IS}(\br{},\br{}')
& = \int \frac{\epsilon_{\IS}^{-1}(\br{},\br{}''; \omega=0)}{\abs*{\br{}' - \br{}''}} \dbr{}'' ,
\\
\epsilon_{\IS}(\br{},\br{}'; \omega)
& = \delta(\br{}-\br{}') - \IS \int \frac{\chi_{0}(\br{},\br{}''; \omega)}{\abs*{\br{}' - \br{}''}} \dbr{}'' ,
\end{align}
\end{subequations}
with $\epsilon_{\IS}$ the dielectric function at coupling constant $\IS$ and $\chi_{0}$ the non-interacting polarizability. In the occupied-to-virtual orbital product basis, the spectral representation of $\W{}{\IS}$ can be written as follows in the case of real spatial orbitals
where $\eGW{ia} = \eGW{a} - \eGW{i}$ are occupied-to-virtual differences of $GW$ quasiparticle energies,
\begin{equation}
\ERI{pq}{rs} = \iint \frac{\MO{p}(\br{}) \MO{q}(\br{}) \MO{r}(\br{}') \MO{s}(\br{}')}{\abs*{\br{} - \br{}'}} \dbr{} \dbr{}'
\end{equation}
are the bare two-electron integrals in the molecular orbital basis $\lbrace \MO{p}(\br{}) \rbrace_{1 \le p \le \Norb}$, and the dynamically-screened Coulomb potential reads
\begin{multline}
\label{eq:W}
\W{ij,ab}{\IS}(\omega) = \ERI{ij}{ab} + 2 \sum_m^{\Nocc \Nvir} \sERI{ij}{m}{\IS} \sERI{ab}{m}{\IS}
\W{ij,ab}{}(\omega) = \ERI{ij}{ab} + 2 \sum_m^{\Nocc \Nvir} \sERI{ij}{m} \sERI{ab}{m}
\\
\times \qty(\frac{1}{\omega - \OmRPA{m}{\IS} + i \eta} - \frac{1}{\omega + \OmRPA{m}{\IS} - i \eta}),
\times \qty(\frac{1}{\omega - \OmRPA{m}{} - \eGW{ib} + i \eta} + \frac{1}{\omega - \OmRPA{m}{} - \eGW{ja} + i \eta}),
\end{multline}
where the spectral weights at coupling strength $\IS$ read
where $\eta$ is a positive infinitesimal, and
\begin{equation}
\sERI{pq}{m}{\IS} = \sum_i^{\Nocc} \sum_a^{\Nvir} \ERI{pq}{ia} (\bX{\IS}_m + \bY{\IS}_m)_{ia}.
\label{eq:sERI}
\sERI{pq}{m} = \sum_i^{\Nocc} \sum_a^{\Nvir} \ERI{pq}{ia} (\bX{m}{\RPA} + \bY{m}{\RPA})_{ia}
\end{equation}
In the case of complex orbitals, we refer the reader to Ref.~\onlinecite{Holzer_2019} for a correct use of complex conjugation in the spectral representation of $\W{}{}$.
Note that, in the case of {\GOWO}, the RPA neutral excitations in Eq.~\eqref{eq:W} are computed using the HF orbital energies.
In Eq.~\eqref{eq:W}, $\eta$ is a positive infinitesimal, and $\OmRPA{m}{\IS}$ are the direct (\ie, without exchange) RPA neutral excitation energies computed by solving the linear eigenvalue problem \eqref{eq:LR} with the following matrix elements
are the spectral weights.
In Eqs.~\eqref{eq:W} and \eqref{eq:sERI}, $\OmRPA{m}{}$ and $(\bX{m}{\RPA} + \bY{m}{\RPA})$ are direct (\ie, without exchange) RPA neutral excitations and their corresponding transition vectors computed by solving the (linear) static response problem
\begin{equation}
\label{eq:LR-stat}
\begin{pmatrix}
\bA{\RPA} & \bB{\RPA} \\
-\bB{\RPA} & -\bA{\RPA} \\
\end{pmatrix}
\cdot
\begin{pmatrix}
\bX{m}{\RPA} \\
\bY{m}{\RPA} \\
\end{pmatrix}
=
\OmRPA{m}
\begin{pmatrix}
\bX{m}{\RPA} \\
\bY{m}{\RPA} \\
\end{pmatrix},
\end{equation}
with
\begin{subequations}
\begin{align}
\label{eq:LR_RPA-A}
\ARPA{ia,jb}{\IS} & = \delta_{ij} \delta_{ab} (\eHF{a} - \eHF{i}) + 2 \IS \ERI{ia}{jb},
\A{ia,jb}{\RPA} & = \delta_{ij} \delta_{ab} (\e{a} - \e{i}) + 2 \ERI{ia}{jb},
\\
\label{eq:LR_RPA-B}
\BRPA{ia,jb}{\IS} & = 2 \IS \ERI{ia}{bj},
\B{ia,jb}{\RPA} & = 2 \ERI{ia}{bj},
\end{align}
\end{subequations}
where $\eHF{p}$ are the Hartree-Fock (HF) orbital energies.
where the $\e{p}$'s are taken as the Hartree-Fock (HF) orbital energies in the case of $G_0W_0$ or as the $GW$ quasiparticle energies in the case of self-consistent scheme such as ev$GW$.
The relationship between the BSE formalism and the well-known RPAx (\ie, RPA with exchange) approach can be obtained by switching off the screening so that $\W{}{\IS}$ reduces to the bare Coulomb potential $\vc{}$.
In this limit, the $GW$ quasiparticle energies reduce to the HF eigenvalues, and Eqs.~\eqref{eq:LR_BSE-A} and \eqref{eq:LR_BSE-B} to the RPAx equations:
Now, let us decompose, using basis perturbation theory, the eigenproblem \eqref{eq:LR-dyn} as a zeroth-order static part and a first-order dynamic part, such that
\begin{equation}
\label{eq:LR-dyn}
\begin{pmatrix}
\bA{}(\omega) & \bB{}(\omega) \\
-\bB{}(\omega) & -\bA{}(\omega) \\
\end{pmatrix}
=
\begin{pmatrix}
\bA{(0)} & \bB{(0)} \\
-\bB{(0)} & -\bA{(0)} \\
\end{pmatrix}
+
\begin{pmatrix}
\bA{(1)}(\omega) & \bB{(1)}(\omega) \\
-\bB{(1)}(\omega) & -\bA{(1)}(\omega) \\
\end{pmatrix}
\end{equation}
where
\begin{subequations}
\begin{align}
\label{eq:LR_RPAx-A}
\ARPAx{ia,jb}{\IS} & = \delta_{ij} \delta_{ab} (\eHF{a} - \eHF{i}) + \IS \qty[ 2 \ERI{ia}{jb} - \ERI{ij}{ab} ],
\label{eq:BSE-0}
\A{ia,jb}{(0)} & = \delta_{ij} \delta_{ab} \eGW{ia} + 2 \ERI{ia}{jb} - \W{ij,ab}{\text{stat}},
\\
\label{eq:LR_RPAx-B}
\BRPAx{ia,jb}{\IS} & = \IS \qty[ 2 \ERI{ia}{bj} - \ERI{ib}{aj} ].
\label{eq:BSE-0}
\B{ia,jb}{(0)} & = 2 \ERI{ia}{bj} - \W{ib,aj}{\text{stat}},
\end{align}
\end{subequations}
and
\begin{subequations}
\begin{align}
\label{eq:BSE-1}
\A{ia,jb}{(1)}(\omega) & = - \W{ij,ab}{}(\omega) + \W{ij,ab}{\text{stat}},
\\
\label{eq:BSE-1}
\B{ia,jb}{(1)}(\omega) & = - \W{ib,aj}{}(\omega) + \W{ib,aj}{\text{stat}},
\end{align}
\end{subequations}
The static version of the screened Coulomb potential reads
\begin{equation}
\label{eq:Wstat}
\W{ij,ab}{\text{stat}} = \ERI{ij}{ab} - 4 \sum_m^{\Nocc \Nvir} \frac{\sERI{ij}{m} \sERI{ab}{m}}{\OmRPA{m}{} - i \eta}.
\end{equation}
The $m$th BSE excitation energy and its corresponding eigenvector can then decomposed as
\begin{subequations}
\begin{gather}
\Om{m}{} = \Om{m}{(0)} + \Om{m}{(1)} + \ldots
\\
\begin{pmatrix}
\bX{m}{} \\
\bY{m}{} \\
\end{pmatrix}
=
\begin{pmatrix}
\bX{m}{(0)} \\
\bY{m}{(0)} \\
\end{pmatrix}
+
\begin{pmatrix}
\bX{m}{(1)} \\
\bY{m}{(1)} \\
\end{pmatrix}
+ \ldots
\end{gather}
\end{subequations}
Solving the zeroth-order static problem yields
\begin{equation}
\begin{pmatrix}
\bA{(0)} & \bB{(0)} \\
-\bB{(0)} & -\bA{(0)} \\
\end{pmatrix}
\cdot
\begin{pmatrix}
\bX{m}{(0)} \\
\bY{m}{(0)} \\
\end{pmatrix}
=
\Om{m}{(0)}
\begin{pmatrix}
\bX{m}{(0)} \\
\bY{m}{(0)} \\
\end{pmatrix},
\end{equation}
Thanks to first-order perturbation theory, the first-order correction to the $m$th excitation energy is
\begin{equation}
\Om{m}{(1)} =
\T{\begin{pmatrix}
\bX{m}{(0)} \\
\bY{m}{(0)} \\
\end{pmatrix}}
\cdot
\begin{pmatrix}
\bA{(1)}(\Om{m}{(0)}) & \bB{(1)}(\Om{m}{(0)}) \\
-\bB{(1)}(\Om{m}{(0)}) & -\bA{(1)}(\Om{m}{(0)}) \\
\end{pmatrix}
\cdot
\begin{pmatrix}
\bX{m}{(0)} \\
\bY{m}{(0)} \\
\end{pmatrix}.
\end{equation}
From a practical point of view, if one enforces the Tamm-Dancoff approximation (TDA), we obtain the very simple expression
\begin{equation}
\Om{m}{(1)} = \T{(\bX{m}{(0)})} \cdot \bA{(1)}(\Om{m}{(0)}) \cdot \bX{m}{(0)}.
\end{equation}
This correction can be renormalized by computing, at basically no extra cost, the renormalization factor
\begin{equation}
Z_{m} = \qty[ \T{(\bX{m}{(0)})} \cdot \left. \pdv{\bA{(1)}(\omega)}{\omega} \right|_{\omega = \Om{m}{(0)}} \cdot \bX{m}{(0)} ]^{-1}.
\end{equation}
which finally yields
\begin{equation}
\Om{m}{} \approx \Om{m}{(0)} + Z_{m} \Om{m}{(1)}.
\end{equation}
This is our final expression.
%%% FIG 1 %%%
%\begin{figure}