\documentclass[aps,prb,reprint,noshowkeys,superscriptaddress]{revtex4-1} \usepackage{graphicx,dcolumn,bm,xcolor,microtype,multirow,amscd,amsmath,amssymb,amsfonts,physics,longtable,wrapfig,txfonts} \usepackage[version=4]{mhchem} %\usepackage{natbib} %\usepackage[extra]{tipa} %\bibliographystyle{achemso} %\AtBeginDocument{\nocite{achemso-control}} \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} \usepackage{txfonts} \usepackage[ colorlinks=true, citecolor=blue, breaklinks=true ]{hyperref} \urlstyle{same} \newcommand{\ie}{\textit{i.e.}} \newcommand{\eg}{\textit{e.g.}} \newcommand{\alert}[1]{\textcolor{red}{#1}} \definecolor{darkgreen}{HTML}{009900} \usepackage[normalem]{ulem} \newcommand{\titou}[1]{\textcolor{red}{#1}} \newcommand{\xavier}[1]{\textcolor{darkgreen}{#1}} \newcommand{\trashPFL}[1]{\textcolor{red}{\sout{#1}}} \newcommand{\trashXB}[1]{\textcolor{darkgreen}{\sout{#1}}} \newcommand{\PFL}[1]{\titou{(\underline{\bf PFL}: #1)}} \newcommand{\XB}[1]{\xavier{(\underline{\bf XB}: #1)}} \newcommand{\mc}{\multicolumn} \newcommand{\fnm}{\footnotemark} \newcommand{\fnt}{\footnotetext} \newcommand{\tabc}[1]{\multicolumn{1}{c}{#1}} \newcommand{\SI}{\textcolor{blue}{supporting information}} \newcommand{\QP}{\textsc{quantum package}} \newcommand{\T}[1]{#1^{\intercal}} % coordinates \newcommand{\br}[1]{\mathbf{r}_{#1}} \newcommand{\dbr}[1]{d\br{#1}} % methods \newcommand{\evGW}{ev$GW$} \newcommand{\qsGW}{qs$GW$} \newcommand{\GOWO}{$G_0W_0$} \newcommand{\Hxc}{\text{Hxc}} \newcommand{\xc}{\text{xc}} \newcommand{\Ha}{\text{H}} \newcommand{\co}{\text{x}} % \newcommand{\Norb}{N} \newcommand{\Nocc}{O} \newcommand{\Nvir}{V} \newcommand{\IS}{\lambda} % operators \newcommand{\hH}{\Hat{H}} % methods \newcommand{\RPA}{\text{RPA}} \newcommand{\BSE}{\text{BSE}} % energies \newcommand{\Enuc}{E^\text{nuc}} \newcommand{\Ec}{E_\text{c}} \newcommand{\EHF}{E^\text{HF}} \newcommand{\EBSE}{E^\text{BSE}} \newcommand{\EcRPA}{E_\text{c}^\text{RPA}} \newcommand{\EcRPAx}{E_\text{c}^\text{RPAx}} \newcommand{\EcBSE}{E_\text{c}^\text{BSE}} \newcommand{\IP}{\text{IP}} \newcommand{\EA}{\text{EA}} \newcommand{\Req}{R_\text{eq}} % orbital energies \newcommand{\e}[1]{\epsilon_{#1}} \newcommand{\eHF}[1]{\epsilon^\text{HF}_{#1}} \newcommand{\eKS}[1]{\epsilon^\text{KS}_{#1}} \newcommand{\eQP}[1]{\epsilon^\text{QP}_{#1}} \newcommand{\eGOWO}[1]{\epsilon^\text{\GOWO}_{#1}} \newcommand{\eGW}[1]{\epsilon^{GW}_{#1}} \newcommand{\eevGW}[1]{\epsilon^\text{\evGW}_{#1}} \newcommand{\eGnWn}[2]{\epsilon^\text{\GnWn{#2}}_{#1}} \newcommand{\Om}[2]{\Omega_{#1}^{#2}} % Matrix elements \newcommand{\A}[2]{A_{#1}^{#2}} \newcommand{\tA}[2]{\Tilde{A}_{#1}^{#2}} \newcommand{\B}[2]{B_{#1}^{#2}} \renewcommand{\S}[1]{S_{#1}} \newcommand{\ABSE}[2]{A_{#1}^{#2,\text{BSE}}} \newcommand{\BBSE}[2]{B_{#1}^{#2,\text{BSE}}} \newcommand{\ARPA}[2]{A_{#1}^{#2,\text{RPA}}} \newcommand{\BRPA}[2]{B_{#1}^{#2,\text{RPA}}} \newcommand{\ARPAx}[2]{A_{#1}^{#2,\text{RPAx}}} \newcommand{\BRPAx}[2]{B_{#1}^{#2,\text{RPAx}}} \newcommand{\G}[1]{G_{#1}} \newcommand{\LBSE}[1]{L_{#1}} \newcommand{\XiBSE}[1]{\Xi_{#1}} \newcommand{\Po}[1]{P_{#1}} \newcommand{\W}[2]{W_{#1}^{#2}} \newcommand{\Wc}[1]{W^\text{c}_{#1}} \newcommand{\vc}[1]{v_{#1}} \newcommand{\Sig}[1]{\Sigma_{#1}} \newcommand{\SigGW}[1]{\Sigma^{GW}_{#1}} \newcommand{\Z}[1]{Z_{#1}} \newcommand{\MO}[1]{\phi_{#1}} \newcommand{\ERI}[2]{(#1|#2)} \newcommand{\sERI}[2]{[#1|#2]} %% bold in Table \newcommand{\bb}[1]{\textbf{#1}} \newcommand{\rb}[1]{\textbf{\textcolor{red}{#1}}} \newcommand{\gb}[1]{\textbf{\textcolor{darkgreen}{#1}}} % excitation energies \newcommand{\OmRPA}[1]{\Omega_{#1}^{\text{RPA}}} \newcommand{\OmRPAx}[1]{\Omega_{#1}^{\text{RPAx}}} \newcommand{\OmBSE}[1]{\Omega_{#1}^{\text{BSE}}} \newcommand{\spinup}{\downarrow} \newcommand{\spindw}{\uparrow} \newcommand{\singlet}{\uparrow\downarrow} \newcommand{\triplet}{\uparrow\uparrow} % Matrices \newcommand{\bO}{\mathbf{0}} \newcommand{\bI}{\mathbf{1}} \newcommand{\bvc}{\mathbf{v}} \newcommand{\bSig}{\mathbf{\Sigma}} \newcommand{\bSigX}{\mathbf{\Sigma}^\text{x}} \newcommand{\bSigC}{\mathbf{\Sigma}^\text{c}} \newcommand{\bSigGW}{\mathbf{\Sigma}^{GW}} \newcommand{\be}{\mathbf{\epsilon}} \newcommand{\beGW}{\mathbf{\epsilon}^{GW}} \newcommand{\beGnWn}[1]{\mathbf{\epsilon}^\text{\GnWn{#1}}} \newcommand{\bde}{\mathbf{\Delta\epsilon}} \newcommand{\bdeHF}{\mathbf{\Delta\epsilon}^\text{HF}} \newcommand{\bdeGW}{\mathbf{\Delta\epsilon}^{GW}} \newcommand{\bOm}[1]{\mathbf{\Omega}^{#1}} \newcommand{\bA}[1]{\mathbf{A}^{#1}} \newcommand{\btA}[1]{\Tilde{\mathbf{A}}^{#1}} \newcommand{\bB}[1]{\mathbf{B}^{#1}} \newcommand{\bX}[2]{\mathbf{X}_{#1}^{#2}} \newcommand{\bY}[2]{\mathbf{Y}_{#1}^{#2}} \newcommand{\bZ}[2]{\mathbf{Z}_{#1}^{#2}} \newcommand{\bK}{\mathbf{K}} \newcommand{\bP}[1]{\mathbf{P}^{#1}} % units \newcommand{\IneV}[1]{#1 eV} \newcommand{\InAU}[1]{#1 a.u.} \newcommand{\InAA}[1]{#1 \AA} \newcommand{\kcal}{kcal/mol} \DeclareMathOperator*{\argmax}{argmax} \DeclareMathOperator*{\argmin}{argmin} \newcommand\vari{{\varepsilon}_i} \newcommand\vara{{\varepsilon}_a} \newcommand\varj{{\varepsilon}_j} \newcommand\varb{{\varepsilon}_b} \newcommand\varn{{\varepsilon}_n} \newcommand\varm{{\varepsilon}_m} \newcommand\Oms{{\Omega}_s} \newcommand\hOms{\frac{{\Omega}_s}{2}} \newcommand{\NEEL}{Universit\'e Grenoble Alpes, CNRS, Institut NEEL, F-38042 Grenoble, France} \newcommand{\LCPQ}{Laboratoire de Chimie et Physique Quantiques (UMR 5626), Universit\'e de Toulouse, CNRS, UPS, France} \begin{document} \title{Dynamical Correction to the Bethe-Salpeter Equation} \author{Pierre-Fran\c{c}ois \surname{Loos}} \email{loos@irsamc.ups-tlse.fr} \affiliation{\LCPQ} \author{Xavier \surname{Blase}} \email{xavier.blase@neel.cnrs.fr } \affiliation{\NEEL} \begin{abstract} This is the abstract %\\ %\bigskip %\begin{center} % \boxed{\includegraphics[width=0.5\linewidth]{TOC}} %\end{center} %\bigskip \end{abstract} \maketitle %%%%%%%%%%%%%%%%%%%%%%%% \section{Introduction} \label{sec:intro} %%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%% \section{Theory} \label{sec:theory} %%%%%%%%%%%%%%%%%%%%%%%% %================================ \subsection{Theory for physics} %================================= The Fourier components with respect to time $t_1$ of $iL_0(1, 4; 1', 3) = G(1, 3)G(4, 1')$ reads, dropping the (space/spin)-variables: \begin{align*} [iL_0]( \omega_1 ) = \frac{ 1 }{ 2\pi } \int d \omega \; G(\omega - \frac{\omega_1}{2} ) G( {\omega} + \frac{\omega_1}{2} ) e^{ i \omega \tau_{34} } e^{ i \omega_1 t^{34} } \end{align*} with $\tau_{34} = t_3 - t_4$ and $t^{34} = (t_3 + t_4)/2$. Plugging now the 1-body Green's function Lehman representation, e.g. $$ G(x_1,x_3 ; \omega) = \sum_n \frac{ \phi_n(x_1) \phi_n^*(x_3) } { \omega - \varepsilon_n + i \eta \text{sgn}(\varepsilon_n - \mu) } $$ and projecting on $\phi_a^*(x_1) \phi_i(x_{1'})$, one obtains the $\omega_1= \Oms$ component \begin{align*} \int dx_1 dx_{1'} \; & \phi_a^*(x_1) \phi_i(x_{1'}) L_0(x_1,3;x_{1'},4; \Oms) = e^{i \Oms t^{34} } \times \\ & \frac{ \phi_a^*(x_3) \phi_i(x_4) } { \Oms - ( \vara - \vari ) + i \eta } \Big( \theta( \tau ) e^{i ( \vari + \hOms) \tau } + \theta( - \tau ) e^{i (\vara - \hOms \tau } \Big) \end{align*} with $\tau = \tau_{34}$. We further obtain the spectral representation of $\langle N | T {\hat \psi}(3) {\hat \psi}^{\dagger}(4) | N,s \rangle$ expanding the field operators over a complete orbital basis creation/destruction operators: \begin{align*} \langle N | T {\hat \psi}(3) {\hat \psi}^{\dagger}(4) & | N,s \rangle = - \Big( e^{ -i \Omega_s t^{34} } \Big) \sum_{mn} \phi_m(x_3) \phi_n^*(x_4) \langle N | {\hat a}_n^{\dagger} {\hat a}_m | N,s \rangle \times \nonumber \\ \times & \Big( \theta( \tau ) e^{- i ( \varepsilon_m - \hOms ) \tau } + \theta( -\tau ) e^{ - i ( \varepsilon_n + \hOms) \tau } \Big) \end{align*} with $\tau = \tau_{34}$ and where the $ \lbrace \varepsilon_{n/m} \rbrace$ are proper addition/removal energies such that e.g. $$ e^{ i H \tau } {\hat a}_m^{\dagger} | N \rangle = e^{ i (E_0^N + \varepsilon_m ) \tau } {\hat a} _m^{\dagger} | N \rangle $$ Selecting (n,m)=(j,b) yields the largest components $A_{jb}^{s} = \langle N | {\hat a}_j^{\dagger} {\hat a}_b | N,s \rangle $, while (n,m)=(b,j) yields much weaker $B_{jb}^{s} = \langle N | {\hat a}_b^{\dagger} {\hat a}_j | N,s \rangle $ contributions. We used chemist notations with (i,j) indexing occupied orbitals and (a,b) virtual ones. Neglecting the $B_{jb}^{s}$ leads to the Tamm Dancoff approximation (TDA). Obtaining similarly the spectral representation of $ \langle N | T {\hat \psi}(1) {\hat \psi}^{\dagger}(1') | N,s \rangle$ ($t_{1'} = t_1^{+}$) projected onto $\phi_a^*(x_1) \phi_i(x_{1'})$, one obtains after a few tedious manipulations (see Supplemental Information) the dynamical Bethe-Salpeter equation (DBSE) : \begin{align} ( \varepsilon_a - \varepsilon_i - \Omega_s ) A_{ia}^{s} &+ \sum_{jb} \Big( v_{ai,bj} - \widetilde{W}_{ij,ab}(\Oms) \Big) A_{jb}^{s} \\ &+ \sum_{bj} \Big( v_{ai,jb} - \widetilde{W}_{ib,aj}(\Oms) \Big) B_{jb}^{s} = 0 \end{align} with an effective dynamically screened Coulomb potential (see Pina eq. 24): \begin{align} \widetilde{W}_{ij,ab}(\Oms) &= { i \over 2 \pi} \int d\omega \; e^{-i \omega 0^+ } W_{ij,ab}(\omega) \times \\ \hskip 1cm &\times \left[ \frac{1}{ (\Oms - \omega) - ( \varb - \vari ) +i \eta } + \frac{1}{ (\Oms + \omega) - ( \vara - \varj ) + i\eta } \right] \nonumber \end{align} In the present study, we use the exact spectral representation of $W(\omega)$ at the RPA level: \begin{align*} W_{ij,ab}(\omega) &= (ij|ab) + 2 \sum_m^{OV} [ij|m] [ab|m] \times \\ & \times \Big( \frac{1}{ \omega-\Omega_m^{RPA} + i\eta } - \frac{1}{ \omega + \Omega_m^{RPA} - i\eta } \Big) \end{align*} so that \begin{align} \widetilde{W}_{ij,ab}( \Oms ) &= (ij|ab) + 2 \sum_m^{OV} [ij|m] [ab|m] \times \\ & \times \left[ \frac{ 1 }{ \Omega_{ib}^{s} - \Omega_m^{RPA} + i\eta } + \frac{ 1}{ \Omega_{ja}^{s} - \Omega_m^{RPA} + i\eta } \right] \nonumber \end{align} with e.g. $ \Omega_{ib}^{s} = \Oms - ( \varepsilon_b - \varepsilon_i) $. \textcolor{red}{Due to excitonic effects, the lowest BSE ${\Omega}_1$ excitation energy stands lower than the lowest $\Omega_m^{RPA}$ excitation energy, so that e.g. $( \Omega_{ib}^{s} - \Omega_m^{RPA} )$ is strictly negative and cannot diverge. Further, $\Omega_{ib}^{s}$ and $\Omega_{ja}^{s}$ are necessarily negative for in-gap low lying BSE excitations, such that $$ \left[ \frac{ 1 }{ \Omega_{ib}^{s} - \Omega_m^{RPA} + i\eta } + \frac{ 1}{ \Omega_{ja}^{s} - \Omega_m^{RPA} + i\eta } \right] < \Big( \frac{1}{ \omega-\Omega_m^{RPA} + i\eta } - \frac{1}{ \omega + \Omega_m^{RPA} - i\eta } \Big) < 0 $$ in the limit $(\omega \rightarrow 0)$ of the standard adiabatic BSE . WELL, do we know the sign of $[ij|m] [ab|m]$ ?? } %In order to compute the neutral (optical) excitations of the system and their associated oscillator strengths, the BSE expresses the two-body propagator \cite{Strinati_1988, Martin_2016} %\begin{multline} %\label{eq:BSE} % \LBSE{}(1,2,1',2') = \LBSE{0}(1,2,1',2') % \\ % + \int d3 d4 d5 d6 \LBSE{0}(1,4,1',3) \XiBSE{}(3,5,4,6) \LBSE{}(6,2,5,2') %\end{multline} %as the linear response of the one-body Green's function $\G{}$ with respect to a general non-local external potential %\begin{equation} % \XiBSE{}(3,5,4,6) = i \fdv{[\vc{\Ha}(3) \delta(3,4) + \Sig{\xc}(3,4)]}{\G{}(6,5)}, %\end{equation} %which takes into account the self-consistent variation of the Hartree potential %\begin{equation} % \vc{\Ha}(1) = - i \int d2 \vc{}(2) \G{}(2,2^+), %\end{equation} %(where $\vc{}$ is the bare Coulomb operator) and the exchange-correlation self-energy $\Sig{\xc}$. %In Eq.~\eqref{eq:BSE}, $\LBSE{0}(1,2,1',2') = - i \G{}(1,2')\G{}(2,1')$, and $(1)=(\br{1},\sigma_1,t_1)$ is a composite index gathering space, spin and time variables. %In the $GW$ approximation, \cite{Hedin_1965,Aryasetiawan_1998,Onida_2002,Martin_2016,Reining_2017} we have %\begin{equation} % \SigGW{\xc}(1,2) = i \G{}(1,2) \W{}{}(1^+,2), %\end{equation} %where $\W{}{}$ is the screened Coulomb operator, and hence the BSE reduces to %\begin{equation} % \XiBSE{}(3,5,4,6) = \delta(3,4) \delta(5,6) \vc{}(3,6) - \delta(3,6) \delta(4,5) \W{}{}(3,4), %\end{equation} %where, as commonly done, we have neglected the term $\delta \W{}{}/\delta \G{}$ in the functional derivative of the self-energy. \cite{Hanke_1980,Strinati_1984,Strinati_1982} %Finally, the static approximation is enforced, \ie, $\W{}{}(1,2) = \W{}{}(\{\br{1}, \sigma_1, t_1\},\{\br{2}, \sigma_2, t_2\}) \delta(t_1-t_2)$, which corresponds to restricting $\W{}{}$ to its static limit, \ie, $\W{}{}(1,2) = \W{}{}(\{\br{1},\sigma_1\},\{\br{2},\sigma_2\}; \omega=0)$. %================================ \subsection{Theory for chemists} %================================= For a closed-shell system in a finite basis, to compute the BSE excitation energies, one must solve the following (non-linear) dynamical (\ie, frequency-dependent) response problem \begin{equation} \label{eq:LR-dyn} \begin{pmatrix} \bA{}(\omega) & \bB{}(\omega) \\ -\bB{}(\omega) & -\bA{}(\omega) \\ \end{pmatrix} \cdot \begin{pmatrix} \bX{m}{}(\omega) \\ \bY{m}{}(\omega) \\ \end{pmatrix} = \omega \begin{pmatrix} \bX{m}{}(\omega) \\ \bY{m}{}(\omega) \\ \end{pmatrix}, \end{equation} where the dynamical matrices $\bA{}(\omega)$, $\bB{}(\omega)$, $\bX{}{}(\omega)$, and $\bY{}{}(\omega)$ are all of size $\Nocc \Nvir \times \Nocc \Nvir$ where $\Nocc$ and $\Nvir$ are the number of occupied and virtual orbitals (\ie, $\Norb = \Nocc + \Nvir$ is the total number of spatial orbitals), respectively. In the following, the index $m$ labels the $\Nocc \Nvir$ single excitations, $i$ and $j$ are occupied orbitals, $a$ and $b$ are unoccupied orbitals, while $p$, $q$, $r$, and $s$ indicate arbitrary orbitals. The BSE matrix elements read \begin{subequations} \begin{align} \label{eq:BSE-Adyn} \A{ia,jb}{}(\omega) & = \delta_{ij} \delta_{ab} \eGW{ia} + 2 \ERI{ia}{jb} - \W{ij,ab}{}(\omega), \\ \label{eq:BSE-Bdyn} \B{ia,jb}{}(\omega) & = 2 \ERI{ia}{bj} - \W{ib,aj}{}(\omega), \end{align} \end{subequations} where $\eGW{ia} = \eGW{a} - \eGW{i}$ are occupied-to-virtual differences of $GW$ quasiparticle energies, \begin{equation} \ERI{pq}{rs} = \iint \frac{\MO{p}(\br{}) \MO{q}(\br{}) \MO{r}(\br{}') \MO{s}(\br{}')}{\abs*{\br{} - \br{}'}} \dbr{} \dbr{}' \end{equation} are the bare two-electron integrals in the molecular orbital basis $\lbrace \MO{p}(\br{}) \rbrace_{1 \le p \le \Norb}$, and the dynamically-screened Coulomb potential reads \begin{multline} \label{eq:W} \W{ij,ab}{}(\omega) = \ERI{ij}{ab} + 2 \sum_m^{\Nocc \Nvir} \sERI{ij}{m} \sERI{ab}{m} \\ \times \qty(\frac{1}{\omega - \OmRPA{m}{} - \eGW{ib} + i \eta} + \frac{1}{\omega - \OmRPA{m}{} - \eGW{ja} + i \eta}), \end{multline} where $\eta$ is a positive infinitesimal, and \begin{equation} \label{eq:sERI} \sERI{pq}{m} = \sum_i^{\Nocc} \sum_a^{\Nvir} \ERI{pq}{ia} (\bX{m}{\RPA} + \bY{m}{\RPA})_{ia} \end{equation} are the spectral weights. In Eqs.~\eqref{eq:W} and \eqref{eq:sERI}, $\OmRPA{m}{}$ and $(\bX{m}{\RPA} + \bY{m}{\RPA})$ are direct (\ie, without exchange) RPA neutral excitations and their corresponding transition vectors computed by solving the (linear) static response problem \begin{equation} \label{eq:LR-stat} \begin{pmatrix} \bA{\RPA} & \bB{\RPA} \\ -\bB{\RPA} & -\bA{\RPA} \\ \end{pmatrix} \cdot \begin{pmatrix} \bX{m}{\RPA} \\ \bY{m}{\RPA} \\ \end{pmatrix} = \OmRPA{m} \begin{pmatrix} \bX{m}{\RPA} \\ \bY{m}{\RPA} \\ \end{pmatrix}, \end{equation} with \begin{subequations} \begin{align} \label{eq:LR_RPA-A} \A{ia,jb}{\RPA} & = \delta_{ij} \delta_{ab} (\e{a} - \e{i}) + 2 \ERI{ia}{jb}, \\ \label{eq:LR_RPA-B} \B{ia,jb}{\RPA} & = 2 \ERI{ia}{bj}, \end{align} \end{subequations} where the $\e{p}$'s are taken as the Hartree-Fock (HF) orbital energies in the case of $G_0W_0$ or as the $GW$ quasiparticle energies in the case of self-consistent scheme such as ev$GW$. Now, let us decompose, using basis perturbation theory, the eigenproblem \eqref{eq:LR-dyn} as a zeroth-order static part and a first-order dynamic part, such that \begin{equation} \label{eq:LR-dyn} \begin{pmatrix} \bA{}(\omega) & \bB{}(\omega) \\ -\bB{}(\omega) & -\bA{}(\omega) \\ \end{pmatrix} = \begin{pmatrix} \bA{(0)} & \bB{(0)} \\ -\bB{(0)} & -\bA{(0)} \\ \end{pmatrix} + \begin{pmatrix} \bA{(1)}(\omega) & \bB{(1)}(\omega) \\ -\bB{(1)}(\omega) & -\bA{(1)}(\omega) \\ \end{pmatrix} \end{equation} where \begin{subequations} \begin{align} \label{eq:BSE-0} \A{ia,jb}{(0)} & = \delta_{ij} \delta_{ab} \eGW{ia} + 2 \ERI{ia}{jb} - \W{ij,ab}{\text{stat}}, \\ \label{eq:BSE-0} \B{ia,jb}{(0)} & = 2 \ERI{ia}{bj} - \W{ib,aj}{\text{stat}}, \end{align} \end{subequations} and \begin{subequations} \begin{align} \label{eq:BSE-1} \A{ia,jb}{(1)}(\omega) & = - \W{ij,ab}{}(\omega) + \W{ij,ab}{\text{stat}}, \\ \label{eq:BSE-1} \B{ia,jb}{(1)}(\omega) & = - \W{ib,aj}{}(\omega) + \W{ib,aj}{\text{stat}}, \end{align} \end{subequations} The static version of the screened Coulomb potential reads \begin{equation} \label{eq:Wstat} \W{ij,ab}{\text{stat}} = \ERI{ij}{ab} - 4 \sum_m^{\Nocc \Nvir} \frac{\sERI{ij}{m} \sERI{ab}{m}}{\OmRPA{m}{} - i \eta}. \end{equation} The $m$th BSE excitation energy and its corresponding eigenvector can then decomposed as \begin{subequations} \begin{gather} \Om{m}{} = \Om{m}{(0)} + \Om{m}{(1)} + \ldots \\ \begin{pmatrix} \bX{m}{} \\ \bY{m}{} \\ \end{pmatrix} = \begin{pmatrix} \bX{m}{(0)} \\ \bY{m}{(0)} \\ \end{pmatrix} + \begin{pmatrix} \bX{m}{(1)} \\ \bY{m}{(1)} \\ \end{pmatrix} + \ldots \end{gather} \end{subequations} Solving the zeroth-order static problem yields \begin{equation} \begin{pmatrix} \bA{(0)} & \bB{(0)} \\ -\bB{(0)} & -\bA{(0)} \\ \end{pmatrix} \cdot \begin{pmatrix} \bX{m}{(0)} \\ \bY{m}{(0)} \\ \end{pmatrix} = \Om{m}{(0)} \begin{pmatrix} \bX{m}{(0)} \\ \bY{m}{(0)} \\ \end{pmatrix}, \end{equation} Thanks to first-order perturbation theory, the first-order correction to the $m$th excitation energy is \begin{equation} \Om{m}{(1)} = \T{\begin{pmatrix} \bX{m}{(0)} \\ \bY{m}{(0)} \\ \end{pmatrix}} \cdot \begin{pmatrix} \bA{(1)}(\Om{m}{(0)}) & \bB{(1)}(\Om{m}{(0)}) \\ -\bB{(1)}(\Om{m}{(0)}) & -\bA{(1)}(\Om{m}{(0)}) \\ \end{pmatrix} \cdot \begin{pmatrix} \bX{m}{(0)} \\ \bY{m}{(0)} \\ \end{pmatrix}. \end{equation} From a practical point of view, if one enforces the Tamm-Dancoff approximation (TDA), we obtain the very simple expression \begin{equation} \Om{m}{(1)} = \T{(\bX{m}{(0)})} \cdot \bA{(1)}(\Om{m}{(0)}) \cdot \bX{m}{(0)}. \end{equation} This correction can be renormalized by computing, at basically no extra cost, the renormalization factor \begin{equation} Z_{m} = \qty[ \T{(\bX{m}{(0)})} \cdot \left. \pdv{\bA{(1)}(\omega)}{\omega} \right|_{\omega = \Om{m}{(0)}} \cdot \bX{m}{(0)} ]^{-1}. \end{equation} which finally yields \begin{equation} \Om{m}{} \approx \Om{m}{(0)} + Z_{m} \Om{m}{(1)}. \end{equation} This is our final expression. %%% FIG 1 %%% %\begin{figure} % \includegraphics[width=\linewidth]{} %\caption{ %\label{fig:} %} %\end{figure} %%% %%% %%% %%%%%%%%%%%%%%%%%%%%%%%% \section{Conclusion} \label{sec:conclusion} %%%%%%%%%%%%%%%%%%%%%%%% This is the conclusion %%%%%%%%%%%%%%%%%%%%%%%% \acknowledgements{ %%%%%%%%%%%%%%%%%%%%%%%% This work was performed using HPC resources from GENCI-TGCC (Grant No.~2019-A0060801738) and CALMIP (Toulouse) under allocation 2020-18005. Funding from the \textit{``Centre National de la Recherche Scientifique''} is acknowledged. This work has also been supported through the EUR grant NanoX ANR-17-EURE-0009 in the framework of the \textit{``Programme des Investissements d'Avenir''.}} %%%%%%%%%%%%%%%%%%%%%%%% \section*{Supporting Information} %%%%%%%%%%%%%%%%%%%%%%%% See {\SI} for plenty of stuff \bibliography{BSEdyn} \end{document}