10
0
mirror of https://gitlab.com/scemama/eplf synced 2024-11-19 04:22:38 +01:00
eplf/src/overlap.irp.f
2009-12-21 23:39:00 +01:00

253 lines
5.8 KiB
Fortran

BEGIN_PROVIDER [ double precision, ao_overlap_matrix, (ao_num,ao_num) ]
implicit none
BEGIN_DOC
! Overlap matrix between the Atomic Orbitals
END_DOC
integer :: i, j
double precision :: ao_overlap
do j=1,ao_num
do i=j,ao_num
ao_overlap_matrix(i,j) = ao_overlap(i,j)
enddo
enddo
do j=1,ao_num
do i=1,j-1
ao_overlap_matrix(i,j) = ao_overlap(j,i)
enddo
enddo
END_PROVIDER
double precision function primitive_overlap_oneD_numeric(a,xa,i,b,xb,j)
implicit none
include 'constants.F'
real, intent(in) :: a,b ! Exponents
real, intent(in) :: xa,xb ! Centers
integer, intent(in) :: i,j ! Powers of xa and xb
integer,parameter :: Npoints=10000
real :: x, xmin, xmax, dx
ASSERT (a>0.)
ASSERT (b>0.)
ASSERT (i>=0)
ASSERT (j>=0)
xmin = min(xa,xb) - 10.
xmax = max(xa,xb) + 10.
dx = (xmax-xmin)/real(Npoints)
real :: dtemp
dtemp = 0.
x = xmin
integer :: k
do k=1,Npoints
dtemp = dtemp + &
(x-xa)**i * (x-xb)**j * exp(-(a*(x-xa)**2+b*(x-xb)**2))
x = x+dx
enddo
primitive_overlap_oneD_numeric = dtemp*dx
end function
double precision function ao_overlap_numeric(i,j)
implicit none
integer, intent(in) :: i, j
integer :: p,q,k
double precision :: integral(ao_prim_num_max,ao_prim_num_max)
double precision :: primitive_overlap_oneD_numeric
ASSERT(i>0)
ASSERT(j>0)
ASSERT(i<=ao_num)
ASSERT(j<=ao_num)
do q=1,ao_prim_num(j)
do p=1,ao_prim_num(i)
integral(p,q) = &
primitive_overlap_oneD_numeric ( &
ao_expo(p,i), &
nucl_coord(ao_nucl(i),1), &
ao_power(i,1), &
ao_expo(q,j), &
nucl_coord(ao_nucl(j),1), &
ao_power(j,1) ) * &
primitive_overlap_oneD_numeric ( &
ao_expo(p,i), &
nucl_coord(ao_nucl(i),2), &
ao_power(i,2), &
ao_expo(q,j), &
nucl_coord(ao_nucl(j),2), &
ao_power(j,2) ) * &
primitive_overlap_oneD_numeric ( &
ao_expo(p,i), &
nucl_coord(ao_nucl(i),3), &
ao_power(i,3), &
ao_expo(q,j), &
nucl_coord(ao_nucl(j),3), &
ao_power(j,3) )
enddo
enddo
do q=1,ao_prim_num(j)
do p=1,ao_prim_num(i)
integral(p,q) = integral(p,q)*ao_coef(p,i)*ao_coef(q,j)
enddo
enddo
ao_overlap_numeric = 0.
do q=1,ao_prim_num(j)
do p=1,ao_prim_num(i)
ao_overlap_numeric = ao_overlap_numeric + integral(p,q)
enddo
enddo
end function
subroutine gaussian_product(a,xa,b,xb,k,p,xp)
implicit none
! e^{-a (x-x_A)^2} e^{-b (x-x_B)^2} = K_{ab}^x e^{-p (x-x_P)^2}
real, intent(in) :: a,b ! Exponents
real, intent(in) :: xa,xb ! Centers
real, intent(out) :: p ! New exponent
real, intent(out) :: xp ! New center
double precision, intent(out) :: k ! Constant
double precision:: p_inv
ASSERT (a>0.)
ASSERT (b>0.)
double precision :: t, xab, ab
p_inv = 1.d0/(a+b)
p = a+b
ab = a*b
t = (a*xa+b*xb)
xab = xa-xb
xp = t*p_inv
k = dexp(-ab*p_inv*xab**2)
end subroutine
double precision function primitive_overlap_oneD(a,xa,i,b,xb,j)
implicit none
include 'constants.F'
real, intent(in) :: a,b ! Exponents
real, intent(in) :: xa,xb ! Centers
integer, intent(in) :: i,j ! Powers of xa and xb
integer :: ii, jj, kk, ll
real :: xp
real :: p
double precision :: S(0:i+1,0:j)
double precision :: inv_p, di(max(i,j)), dj(j)
ASSERT (a>0.)
ASSERT (b>0.)
ASSERT (i>=0)
ASSERT (j>=0)
! Gaussian product
p = a+b
xp = (a*xa+b*xb)
inv_p = 1.d0/p
xp = xp*inv_p
S(0,0) = dexp(-a*b*inv_p*(xa-xb)**2)* dsqrt(pi*inv_p)
! Obara-Saika recursion
if (i>0) then
S(1,0) = (xp-xa) * S(0,0)
endif
if (j>0) then
S(0,1) = (xp-xb) * S(0,0)
endif
do ii=1,max(i,j)
di(ii) = 0.5d0*inv_p*dble(ii)
enddo
if (i>1) then
do ii=1,i-1
S(ii+1,0) = (xp-xa) * S(ii,0) + di(ii)*S(ii-1,0)
enddo
endif
if (j>1) then
do jj=1,j-1
S(0,jj+1) = (xp-xb) * S(0,jj) + di(jj)*S(0,jj-1)
enddo
endif
do jj=1,j
S(1,jj) = (xp-xa) * S(0,jj) + di(jj) * S(0,jj-1)
do ii=2,i
S(ii,jj) = (xp-xa) * S(ii-1,jj) + di(ii-1) * S(ii-2,jj) + di(jj) * S(ii-1,jj-1)
enddo
enddo
primitive_overlap_oneD = S(i,j)
end function
double precision function ao_overlap(i,j)
implicit none
integer, intent(in) :: i, j
integer :: p,q,k
double precision :: integral(ao_prim_num_max,ao_prim_num_max)
double precision :: primitive_overlap_oneD
ASSERT(i>0)
ASSERT(j>0)
ASSERT(i<=ao_num)
ASSERT(j<=ao_num)
do q=1,ao_prim_num(j)
do p=1,ao_prim_num(i)
integral(p,q) = &
primitive_overlap_oneD ( &
ao_expo(p,i), &
nucl_coord(ao_nucl(i),1), &
ao_power(i,1), &
ao_expo(q,j), &
nucl_coord(ao_nucl(j),1), &
ao_power(j,1) ) * &
primitive_overlap_oneD ( &
ao_expo(p,i), &
nucl_coord(ao_nucl(i),2), &
ao_power(i,2), &
ao_expo(q,j), &
nucl_coord(ao_nucl(j),2), &
ao_power(j,2) ) * &
primitive_overlap_oneD ( &
ao_expo(p,i), &
nucl_coord(ao_nucl(i),3), &
ao_power(i,3), &
ao_expo(q,j), &
nucl_coord(ao_nucl(j),3), &
ao_power(j,3) )
enddo
enddo
do q=1,ao_prim_num(j)
do p=1,ao_prim_num(i)
integral(p,q) = integral(p,q)*ao_coef(p,i)*ao_coef(q,j)
enddo
enddo
ao_overlap = 0.
do q=1,ao_prim_num(j)
do p=1,ao_prim_num(i)
ao_overlap = ao_overlap + integral(p,q)
enddo
enddo
end function