Computes the Electron Pair Localization Function
You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
Anthony Scemama 4f15626893 Fix README: 3 years ago
doc Improvements 13 years ago
rpm added eplf_input.py 14 years ago
scripts Updated for 2020 3 years ago
src Minor bugs 11 years ago
test Accelerated gaussian product 14 years ago
EZFIO.2.0.2.tar.gz Updated for 2020 3 years ago
LICENSE Preparation for SourceForge 14 years ago
Makefile Updated for 2020 3 years ago
README.org Fix README: 3 years ago
configure Updated for 2020 3 years ago
configure.ac Updated for 2020 3 years ago
eplf.config Updated for 2020 3 years ago
make.config.in Updated for 2020 3 years ago
version One-electron density matrix OK + Bug corrected for phase factors 12 years ago

README.org

EPLF

Computes the Electron Pair Localization Function.

Dependencies

resultsFile and IRPF90 can both be installed with pip.

python3 -m pip install resultsFile
python3 -m pip install irpf90

./configure should detect suitable defaults for your system. You can update the make.config file if you want. It is important to give the Fortran compiler the option to accept infinitely long lines (with gfortran, the option is -ffree-line-length-none). The configure script will also create a file $HOME/.eplfrc that you will need to source before running the program.

Using EPLF

GAMESS or Gaussian can be used to produce the wave function. With Gaussian, the following keywords are required:

# GFPRINT pop=Full 6d 10f

Go into the test directory and execute the following commands to make a test run with an Gaussian output file.

  1. Run the to_ezfio.py script to convert the output file into an EZFIO directory containing all the data required for the computation:

    to_ezfio.py c2h.out

    The c2h.out.ezfio directory is produced.

  2. Edit the parameters by running eplf_edit.py

    eplf_edit.py c2h.out.ezfio

    The editor defined with the $EDITOR environment variable will open and let you change the parameters. To compute the density and the EPLF, just add an X character between the brackets next to eplf and density:

    ( ) density ->   (X) density
    ( ) eplf    ->   (X) eplf
    
  3. Run the program to compute the data and save it in the EZFIO directory

    eplf c2h.out.ezfio

    If the program is compiled with MPI, run

    mpirun eplf c2h.out.ezfio
  4. Now you can convert the data into cube files as:

    to_cube.py c2h.out.ezfio density
    to_cube.py c2h.out.ezfio eplf

    The parameters of the grid can be changed by first clearing the data, and the updating the grid parameters. This can be done with eplf_edit.py by un-commenting the lines clear(all) and edit(grid_parameters).

References

Scemama, A., Chaquin, P., Caffarel, M. (2004). "Electron pair localization function: A practical tool to visualize electron localization in molecules from quantum Monte Carlo data". J. Chem. Phys. 121 (4), 17251735. doi:10.1063/1.1765098

Scemama, A., Caffarel, M., Chaudret, R., & Piquemal, J.-P. (2011), "Electron Pair Localization Function (EPLF) for Density Functional Theory and ab Initio Wave Function-Based Methods: A New Tool for Chemical Interpretation". J. Chem. Theory Comput. 7 (3), 618624. doi:10.1021/ct1005938