mirror of
https://gitlab.com/scemama/eplf
synced 2024-09-12 06:28:33 +02:00
Accelerated gaussian product
This commit is contained in:
parent
d105bd8b6e
commit
4a6ce8c3d8
@ -19,6 +19,7 @@ else:
|
||||
firstArg = sys.argv[1]
|
||||
|
||||
file = getFile(firstArg)
|
||||
file.convert_to_cartesian()
|
||||
print firstArg, 'recognized as', str(file).split('.')[-1].split()[0]
|
||||
|
||||
from ezfio import ezfio
|
||||
@ -52,7 +53,6 @@ def write_ezfioFile(res,filename):
|
||||
|
||||
# AO Basis
|
||||
import string
|
||||
is_cartesian = True
|
||||
at = []
|
||||
num_prim = []
|
||||
magnetic_number = []
|
||||
@ -62,29 +62,18 @@ def write_ezfioFile(res,filename):
|
||||
power_z = []
|
||||
coefficient = []
|
||||
exponent = []
|
||||
for b in res.basis:
|
||||
if '+' in b.sym or '-' in b.sym:
|
||||
is_cartesian = False
|
||||
names = ["s","p","d","f","g","h","i","j"]
|
||||
for b in res.basis:
|
||||
c = b.center
|
||||
for i,atom in enumerate(res.geometry):
|
||||
if atom.coord == c:
|
||||
at.append(i+1)
|
||||
num_prim.append(len(b.prim))
|
||||
if is_cartesian:
|
||||
s = b.sym
|
||||
power_x.append( string.count(s,"x") )
|
||||
power_y.append( string.count(s,"y") )
|
||||
power_z.append( string.count(s,"z") )
|
||||
else:
|
||||
magnetic_number.append(names.index(b.sym[0]))
|
||||
angular_number.append(int(b.sym[1:]))
|
||||
s = b.sym
|
||||
power_x.append( string.count(s,"x") )
|
||||
power_y.append( string.count(s,"y") )
|
||||
power_z.append( string.count(s,"z") )
|
||||
coefficient.append( b.coef )
|
||||
exponent.append( [ p.expo for p in b.prim ] )
|
||||
if not is_cartesian:
|
||||
print 'Only cartesian basis functions work...'
|
||||
sys.exit(0)
|
||||
ezfio.ao_basis_ao_num = len(res.basis)
|
||||
ezfio.ao_basis_ao_nucl = at
|
||||
ezfio.ao_basis_ao_prim_num = num_prim
|
||||
|
@ -80,13 +80,13 @@ END_PROVIDER
|
||||
|
||||
do j=1,elec_beta_num
|
||||
do i=1,elec_beta_num
|
||||
eplf_up_up = eplf_up_up + 2.d0*mo_value_p(i)* ( &
|
||||
eplf_up_up += 2.d0*mo_value_p(i)* ( &
|
||||
mo_value_p(i)*mo_eplf_integral_matrix(j,j) - &
|
||||
mo_value_p(j)*mo_eplf_integral_matrix(i,j) )
|
||||
enddo
|
||||
|
||||
do i=elec_beta_num+1,elec_alpha_num
|
||||
eplf_up_up = eplf_up_up + mo_value_p(i)* ( &
|
||||
eplf_up_up += mo_value_p(i)* ( &
|
||||
mo_value_p(i)*mo_eplf_integral_matrix(j,j) - &
|
||||
mo_value_p(j)*mo_eplf_integral_matrix(i,j) )
|
||||
enddo
|
||||
@ -94,7 +94,7 @@ END_PROVIDER
|
||||
|
||||
do j=elec_beta_num+1,elec_alpha_num
|
||||
do i=1,elec_alpha_num
|
||||
eplf_up_up = eplf_up_up + mo_value_p(i)* ( &
|
||||
eplf_up_up += mo_value_p(i)* ( &
|
||||
mo_value_p(i)*mo_eplf_integral_matrix(j,j) - &
|
||||
mo_value_p(j)*mo_eplf_integral_matrix(i,j) )
|
||||
enddo
|
||||
@ -102,7 +102,7 @@ END_PROVIDER
|
||||
|
||||
do j=1,elec_beta_num
|
||||
do i=1,elec_alpha_num
|
||||
eplf_up_dn = eplf_up_dn + mo_value_p(i)**2 * &
|
||||
eplf_up_dn += mo_value_p(i)**2 * &
|
||||
mo_eplf_integral_matrix(j,j)
|
||||
enddo
|
||||
enddo
|
||||
@ -162,7 +162,7 @@ double precision function ao_eplf_integral_primitive_oneD_numeric(a,xa,i,b,xb,j,
|
||||
x = xmin
|
||||
integer :: k
|
||||
do k=1,Npoints
|
||||
dtemp = dtemp + &
|
||||
dtemp += &
|
||||
(x-xa)**i * (x-xb)**j * exp(-(a*(x-xa)**2+b*(x-xb)**2+gmma*(x-xr)**2))
|
||||
x = x+dx
|
||||
enddo
|
||||
@ -294,6 +294,7 @@ double precision function ao_eplf_integral_primitive_oneD(a,xa,i,b,xb,j,gmma,xr)
|
||||
! Gaussian product
|
||||
call gaussian_product(a,xa,b,xb,c1,p1,xp1)
|
||||
call gaussian_product(p1,xp1,gmma,xr,c,p,xp)
|
||||
|
||||
inv_p = 1.d0/p
|
||||
S00 = dsqrt(pi*inv_p)*c*c1
|
||||
xpa = xp-xa
|
||||
@ -314,21 +315,21 @@ recursive double precision function ObaraS(i,j,xpa,xpb,inv_p,S00) result(res)
|
||||
else ! (j>0)
|
||||
res = xpb*ObaraS(0,j-1,xpa,xpb,inv_p,S00)
|
||||
if (j>1) then
|
||||
res = res + 0.5d0*dble(j-1)*inv_p*ObaraS(0,j-2,xpa,xpb,inv_p,S00)
|
||||
res += 0.5d0*dble(j-1)*inv_p*ObaraS(0,j-2,xpa,xpb,inv_p,S00)
|
||||
endif
|
||||
endif ! (i==0).and.(j>0)
|
||||
else ! (i>0)
|
||||
if (j==0) then
|
||||
res = xpa*ObaraS(i-1,0,xpa,xpb,inv_p,S00)
|
||||
if (i>1) then
|
||||
res = res + 0.5d0*dble(i-1)*inv_p*ObaraS(i-2,0,xpa,xpb,inv_p,S00)
|
||||
res += 0.5d0*dble(i-1)*inv_p*ObaraS(i-2,0,xpa,xpb,inv_p,S00)
|
||||
endif
|
||||
else ! (i>0).and.(j>0)
|
||||
res = xpa * ObaraS(i-1,j,xpa,xpb,inv_p,S00)
|
||||
if (i>1) then
|
||||
res = res + 0.5d0*dble(i-1)*inv_p*ObaraS(i-2,j,xpa,xpb,inv_p,S00)
|
||||
res += 0.5d0*dble(i-1)*inv_p*ObaraS(i-2,j,xpa,xpb,inv_p,S00)
|
||||
endif
|
||||
res = res + 0.5d0*dble(j)*inv_p*ObaraS(i-1,j-1,xpa,xpb,inv_p,S00)
|
||||
res += 0.5d0*dble(j)*inv_p*ObaraS(i-1,j-1,xpa,xpb,inv_p,S00)
|
||||
endif ! (i>0).and.(j>0)
|
||||
endif ! (i>0)
|
||||
|
||||
@ -378,7 +379,7 @@ double precision function ao_eplf_integral(i,j,gmma,center)
|
||||
ao_power(j,3), &
|
||||
gmma, &
|
||||
center(3))
|
||||
ao_eplf_integral = ao_eplf_integral + integral*ao_coef(i,p)*ao_coef(j,q)
|
||||
ao_eplf_integral += integral*ao_coef(i,p)*ao_coef(j,q)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
@ -394,7 +395,7 @@ double precision function mo_eplf_integral(i,j)
|
||||
do k=1,ao_num
|
||||
if (mo_coef(k,i) /= 0.) then
|
||||
do l=1,ao_num
|
||||
mo_eplf_integral = mo_eplf_integral + &
|
||||
mo_eplf_integral += &
|
||||
mo_coef(k,i)*mo_coef(l,j)*ao_eplf_integral_matrix(k,l)
|
||||
enddo
|
||||
endif
|
||||
|
@ -122,13 +122,15 @@ subroutine gaussian_product(a,xa,b,xb,k,p,xp)
|
||||
ASSERT (a>0.)
|
||||
ASSERT (b>0.)
|
||||
|
||||
double precision :: t, xab, ab
|
||||
|
||||
p_inv = 1.d0/(a+b)
|
||||
p = a+b
|
||||
xp = (a*xa+b*xb)
|
||||
|
||||
p_inv = 1.d0/p
|
||||
|
||||
xp = xp*p_inv
|
||||
k = dexp(-a*b*p_inv*(xa-xb)**2)
|
||||
ab = a*b
|
||||
t = (a*xa+b*xb)
|
||||
xab = xa-xb
|
||||
xp = t*p_inv
|
||||
k = dexp(-ab*p_inv*xab**2)
|
||||
|
||||
end subroutine
|
||||
|
||||
|
1738
test/c2h.out
1738
test/c2h.out
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user