The conductivity, the Seebeck coefficient and the electronic contribution to the thermal conductivity in direction :math:`\alpha\beta` are defined as [#transp1]_[#transp2]_:
Here :math:`N_{sp}` is the spin factor and :math:`f(\omega)` is the Fermi function. The transport distribution :math:`\Gamma_{\alpha\beta}\left(\omega_1,\omega_2\right)` is defined as
where :math:`V` is the unit cell volume. In multi-band systems the velocities :math:`v_{k}` and the spectral function :math:`A(k,\omega)` are matrices in the band indices :math:`i` and :math:`j`.
The frequency depended optical conductivity is given by
Besides the self energy the Wien2k files read by the transport converter (:meth:`convert_transport_input <dft.converters.wien2k.Wien2kConverter.convert_transport_input>`) are:
*:file:`.struct`: The lattice constants specified in the struct file are used to calculate the unit cell volume.
*:file:`.outputs`: In this file the k-point symmetries are given.
*:file:`.oubwin`: Contains the indices of the bands within the projected subspace (written by :program:`dmftproj`) for each k-point.
*:file:`.pmat`: This file is the output of the Wien2k optics package and contains the velocity (momentum) matrix elements between all bands in the desired energy
window for each k-point. How to use the optics package is described below.
*:file:`.h5`: The hdf5 archive has to be present and should contain the dft_input subgroup. Otherwise :meth:`convert_dft_input <dft.converters.wien2k.Wien2kConverter.convert_dft_input>` needs to be called before :meth:`convert_transport_input <dft.converters.wien2k.Wien2kConverter.convert_transport_input>`.
The basics steps to calculate the matrix elements of the momentum operator with the Wien2k optics package are:
1) Perform a standard Wien2k calculation for your material.
2) Run `x kgen` to generate a dense k-mesh.
3) Run `x lapw1`.
4) For metals change TETRA to 101.0 in :file:`case.in2`.
5) Run `x lapw2 -fermi`.
6) Run `x optic`.
Additionally the input file :file:`case.inop` is required. A detail description on how to setup this file can be found in the Wien2k user guide [#userguide]_ on page 166.
The optics energy window should be chosen according to the window used for :program:`dmftproj`. Note that the current version of the transport code uses only the smaller
of those two windows. However, keep in mind that the optics energy window has to be specified in absolute values and NOT relative to the Fermi energy!
You can read off the Fermi energy from the :file:`case.scf2` file. Please do not set the optional parameter NBvalMAX in :file:`case.inop`.
Furthermore it is necessary to set line 6 to "ON" and put a "1" in the following line to enable the printing of the matrix elements to :file:`case.pmat`.
The Elk transport converter (:meth:`convert_transport_input <dft.converters.elk.ElkConverter.convert_transport_input>`) reads in the following files:
*`LATTICE.OUT`: Real and reciprocal lattice structure and cell volumes.
*`SYMCRYS.OUT`: Crystal symmetries.
*`PMAT.OUT`: Fortran binary containing the velocity matrix elements.
*:file:`.h5`: The hdf5 archive has to be present and should contain the dft_input subgroup. Otherwise :meth:`convert_dft_input <dft.converters.elk.ElkConverter.convert_dft_input>` needs to be called before :meth:`convert_transport_input <dft.converters.elk.ElkConverter.convert_transport_input>`. It is recommended to call :meth:`convert_dft_input <dft.converters.elk.ElkConverter.convert_dft_input>` before :meth:`convert_transport_input <dft.converters.elk.ElkConverter.convert_transport_input>`.
Except for `PMAT.OUT`, the other files are standard outputs from Elk's groundstate calculation and are used in :meth:`convert_dft_input <dft.converters.elk.ElkConverter.convert_dft_input>`. The `PMAT.OUT` file on the otherhand is generated by Elk by running **task 120**, see [#userguide2]_. Note that unlike in the Wien2k transport converter, the Elk transport converter uses the correlated band window stored in the `dft_misc_input` (which originates from running :meth:`convert_dft_input <dft.converters.elk.ElkConverter.convert_dft_input>`).
These Elk files are then read and the relevant information is stored in the hdf5 archive by using the following::
reads the required data of the Elk output and stores it in the `dft_transp_input` subgroup of your hdf file.
Using the transport code
------------------------
Once we have converted the transport data from the DFT codes (see above), we also need to read and set the self energy, the chemical potential and the double counting::
For complete description of the input parameters see the :meth:`transport_distribution reference <dft.sumk_dft_tools.SumkDFTTools.transport_distribution>`.
Finally the optical conductivity :math:`\sigma(\Omega)`, the Seebeck coefficient :math:`S` and the thermal conductivity :math:`\kappa^{\text{el}}` can be obtained with::
Here we present an example calculation of the DFT optical conductivity of SrVO3 comparing the results from the Elk and Wien2k inputs. The DFT codes used 4495 k-points in the
irreducible Brillouin zone with Wannier projectors generated within a correlated energy window of [-8, 7.5] eV. We assume that the required DFT files have been read and saved by the TRIQS
The optic_cond variable can be loaded by using :meth:`SK.load` and then plotted to generate the following figure.
..image:: transport_plots/opt_comp.png
:width:700
:align:center
Note that the differences between the conductivities arise from the differences in the velocities generated in the DFT codes. The DMFT optical conductivity can easily be calculated by adjusting
the above example script by setting `with_Sigma` to **True**. In this case however, the SK object will need the DMFT self-energy on the real frequency axis.
..[#transp1]`V. S. Oudovenko, G. Palsson, K. Haule, G. Kotliar, S. Y. Savrasov, Phys. Rev. B 73, 035120 (2006) <http://link.aps.org/doi/10.1103/PhysRevB.73.0351>`_
..[#transp2]`J. M. Tomczak, K. Haule, T. Miyake, A. Georges, G. Kotliar, Phys. Rev. B 82, 085104 (2010) <https://link.aps.org/doi/10.1103/PhysRevB.82.085104>`_
..[#userguide]`P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, J. Luitz, ISBN 3-9501031-1-2 <http://www.wien2k.at/reg_user/textbooks/usersguide.pdf>`_
..[#userguide2]`J. K. Dewhurst, S. Sharma, L. Nordstrom, F. Cricchio, O. Granas, and E. K. U. Gross, The Elk Code Manual <https://elk.sourceforge.io/elk.pdf>`_