3
0
mirror of https://github.com/triqs/dft_tools synced 2024-12-02 10:38:31 +01:00

Updating import directives, minor correction to commit

This commit is contained in:
Nils Wentzell 2018-05-01 11:55:31 +02:00
parent 72c7f57110
commit 9d87d0be15
18 changed files with 51 additions and 51 deletions

View File

@ -1,10 +1,10 @@
import pytriqs.utility.mpi as mpi
from pytriqs.operators.util import *
from pytriqs.archive import HDFArchive
from pytriqs.applications.impurity_solvers.cthyb import *
from pytriqs.gf.local import *
from pytriqs.applications.dft.sumk_dft import *
from pytriqs.applications.dft.converters.wien2k_converter import *
from triqs_cthyb import *
from pytriqs.gf import *
from triqs_dft_tools.sumk_dft import *
from triqs_dft_tools.converters.wien2k_converter import *
dft_filename='Gd_fcc'
U = 9.6
@ -52,12 +52,12 @@ spin_names = ["up","down"]
orb_names = [i for i in range(n_orb)]
# Use GF structure determined by DFT blocks
gf_struct = SK.gf_struct_solver[0]
gf_struct = [(block, indices) for block, indices in SK.gf_struct_solver[0].iteritems()]
# Construct U matrix for density-density calculations
Umat, Upmat = U_matrix_kanamori(n_orb=n_orb, U_int=U, J_hund=J)
# Construct Hamiltonian and solver
h_int = h_int_density(spin_names, orb_names, map_operator_structure=SK.sumk_to_solver[0], U=Umat, Uprime=Upmat, H_dump="H.txt")
S = Solver(beta=beta, gf_struct=list(gf_struct))
S = Solver(beta=beta, gf_struct=gf_struct)
if previous_present:
chemical_potential = 0

View File

@ -1,4 +1,4 @@
.. module:: pytriqs.applications.dft
.. module:: triqs_dft_tools
.. _documentation:

View File

@ -23,11 +23,11 @@ Loading modules
First, we load the necessary modules::
from pytriqs.applications.dft.sumk_dft import *
from pytriqs.gf.local import *
from triqs_dft_tools.sumk_dft import *
from pytriqs.gf import *
from pytriqs.archive import HDFArchive
from pytriqs.operators.util import *
from pytriqs.applications.impurity_solvers.cthyb import *
from triqs_cthyb import *
The last two lines load the modules for the construction of the
:ref:`CTHYB solver <triqscthyb:welcome>`.
@ -80,7 +80,7 @@ each material individually. A guide on how to set the tail fit parameters is giv
The next step is to initialize the
:class:`solver class <pytriqs.applications.impurity_solvers.cthyb.Solver>`.
:class:`solver class <triqs_cthyb.Solver>`.
It consist of two parts:
#. Calculating the multi-band interaction matrix, and constructing the
@ -94,7 +94,7 @@ The first step is done using methods of the :ref:`TRIQS <triqslibs:welcome>` lib
spin_names = ["up","down"]
orb_names = [i for i in range(n_orb)]
# Use GF structure determined by DFT blocks:
gf_struct = SK.gf_struct_solver[0]
gf_struct = [(block, indices) for block, indices in SK.gf_struct_solver[0].iteritems()]
# Construct U matrix for density-density calculations:
Umat, Upmat = U_matrix_kanamori(n_orb=n_orb, U_int=U, J_hund=J)
@ -104,7 +104,7 @@ Kanamori definitions of :math:`U` and :math:`J`.
Next, we construct the Hamiltonian and the solver::
h_int = h_int_density(spin_names, orb_names, map_operator_structure=SK.sumk_to_solver[0], U=Umat, Uprime=Upmat)
S = Solver(beta=beta, gf_struct=list(gf_struct))
S = Solver(beta=beta, gf_struct=gf_struct)
As you see, we take only density-density interactions into
account. Other Hamiltonians with, e.g. with full rotational invariant interactions are:
@ -213,7 +213,7 @@ and perform only one DMFT iteration. The resulting self energy can be tail fitte
S.Sigma_iw[name].fit_tail(fit_n_moments = 4, fit_min_n = 60, fit_max_n = 140)
Plot the self energy and adjust the tail fit parameters such that you obtain a
proper fit. The :meth:`fit_tail function <pytriqs.gf.local.tools.tail_fit>` is part
proper fit. The :meth:`fit_tail function <pytriqs.gf.tools.tail_fit>` is part
of the :ref:`TRIQS <triqslibs:welcome>` library.
For a self energy which is going to zero for :math:`i\omega \rightarrow 0` our suggestion is

View File

@ -27,7 +27,7 @@ Initialisation
All tools described below are collected in an extension of the :class:`SumkDFT <dft.sumk_dft.SumkDFT>` class and are
loaded by importing the module :class:`SumkDFTTools <dft.sumk_dft_tools.SumkDFTTools>`::
from pytriqs.applications.dft.sumk_dft_tools import *
from triqs_dft_tools.sumk_dft_tools import *
The initialisation of the class is equivalent to that of the :class:`SumkDFT <dft.sumk_dft.SumkDFT>`
class::
@ -37,7 +37,7 @@ class::
Note that all routines available in :class:`SumkDFT <dft.sumk_dft.SumkDFT>` are also available here.
If required, we have to load and initialise the real frequency self energy. Most conveniently,
you have your self energy already stored as a real frequency :class:`BlockGf <pytriqs.gf.local.BlockGf>` object
you have your self energy already stored as a real frequency :class:`BlockGf <pytriqs.gf.BlockGf>` object
in a hdf5 file::
ar = HDFArchive('case.h5', 'a')
@ -45,10 +45,10 @@ in a hdf5 file::
You may also have your self energy stored in text files. For this case the :ref:`TRIQS <triqslibs:welcome>` library offers
the function :meth:`read_gf_from_txt`, which is able to load the data from text files of one Greens function block
into a real frequency :class:`ReFreqGf <pytriqs.gf.local.ReFreqGf>` object. Loading each block separately and
building up a :class:´BlockGf <pytriqs.gf.local.BlockGf>´ is done with::
into a real frequency :class:`ReFreqGf <pytriqs.gf.ReFreqGf>` object. Loading each block separately and
building up a :class:´BlockGf <pytriqs.gf.BlockGf>´ is done with::
from pytriqs.gf.local.tools import *
from pytriqs.gf.tools import *
# get block names
n_list = [n for n,nl in SK.gf_struct_solver[0].iteritems()]
# load sigma for each block - in this example sigma is composed of 1x1 blocks

View File

@ -107,7 +107,7 @@ Now we convert these files into an hdf5 file that can be used for the
DMFT calculations. For this purpose we
use the python module :class:`Wien2kConverter <dft.converters.wien2k_converter.Wien2kConverter>`. It is initialized as::
from pytriqs.applications.dft.converters.wien2k_converter import *
from triqs_dft_tools.converters.wien2k_converter import *
Converter = Wien2kConverter(filename = case)
The only necessary parameter to this construction is the parameter `filename`.
@ -337,7 +337,7 @@ matrix of the imaginary part, and then move on to the next :math:`\mathbf{k}`-po
The converter itself is used as::
from pytriqs.applications.dft.converters.hk_converter import *
from triqs_dft_tools.converters.hk_converter import *
Converter = HkConverter(filename = hkinputfile)
Converter.convert_dft_input()
@ -371,7 +371,7 @@ as a placeholder for the actual prefix chosen by the user when creating the
input for :program:`wannier90`.
Once these two files are available, one can use the converter as follows::
from pytriqs.applications.dft.converters import Wannier90Converter
from triqs_dft_tools.converters import Wannier90Converter
Converter = Wannier90Converter(seedname='seedname')
Converter.convert_dft_input()

View File

@ -22,7 +22,7 @@ The first thing is the :class:`SumkDFT <dft.sumk_dft.SumkDFT>` class.
It contains all basic routines that are necessary to perform a summation in k-space
to get the local quantities used in DMFT. It is initialized by::
from pytriqs.applications.dft.sumk_dft import *
from triqs_dft_tools.sumk_dft import *
SK = SumkDFT(hdf_file = filename + '.h5')

View File

@ -1,5 +1,5 @@
from pytriqs.applications.dft.sumk_dft import *
from pytriqs.applications.dft.converters.wien2k_converter import *
from triqs_dft_tools.sumk_dft import *
from triqs_dft_tools.converters.wien2k_converter import *
from pytriqs.applications.impurity_solvers.hubbard_I.hubbard_solver import Solver
import os

View File

@ -1,5 +1,5 @@
from pytriqs.applications.dft.sumk_dft_tools import *
from pytriqs.applications.dft.converters.wien2k_converter import *
from triqs_dft_tools.sumk_dft_tools import *
from triqs_dft_tools.converters.wien2k_converter import *
from pytriqs.applications.impurity_solvers.hubbard_I.hubbard_solver import Solver
# Creates the data directory, cd into it:

View File

@ -1,9 +1,9 @@
import pytriqs.utility.mpi as mpi
from pytriqs.operators.util import *
from pytriqs.archive import HDFArchive
from pytriqs.applications.impurity_solvers.cthyb import *
from pytriqs.gf.local import *
from pytriqs.applications.dft.sumk_dft import *
from triqs_cthyb import *
from pytriqs.gf import *
from triqs_dft_tools.sumk_dft import *
dft_filename='SrVO3'
U = 4.0
@ -30,7 +30,7 @@ p["fit_min_n"] = 30
p["fit_max_n"] = 60
# If conversion step was not done, we could do it here. Uncomment the lines it you want to do this.
#from pytriqs.applications.dft.converters.wien2k_converter import *
#from triqs_dft_tools.converters.wien2k_converter import *
#Converter = Wien2kConverter(filename=dft_filename, repacking=True)
#Converter.convert_dft_input()
#mpi.barrier()
@ -58,14 +58,14 @@ spin_names = ["up","down"]
orb_names = [i for i in range(n_orb)]
# Use GF structure determined by DFT blocks
gf_struct = SK.gf_struct_solver[0]
gf_struct = [(block, indices) for block, indices in SK.gf_struct_solver[0].iteritems()]
# Construct U matrix for density-density calculations
Umat, Upmat = U_matrix_kanamori(n_orb=n_orb, U_int=U, J_hund=J)
# Construct density-density Hamiltonian and solver
h_int = h_int_density(spin_names, orb_names, map_operator_structure=SK.sumk_to_solver[0], U=Umat, Uprime=Upmat, H_dump="H.txt")
S = Solver(beta=beta, gf_struct=list(gf_struct))
S = Solver(beta=beta, gf_struct=gf_struct)
if previous_present:
chemical_potential = 0

View File

@ -1,10 +1,10 @@
import pytriqs.utility.mpi as mpi
from pytriqs.operators.util import *
from pytriqs.archive import HDFArchive
from pytriqs.applications.impurity_solvers.cthyb import *
from pytriqs.gf.local import *
from pytriqs.applications.dft.sumk_dft import *
from pytriqs.applications.dft.converters.wien2k_converter import *
from triqs_cthyb import *
from pytriqs.gf import *
from triqs_dft_tools.sumk_dft import *
from triqs_dft_tools.converters.wien2k_converter import *
dft_filename='SrVO3'
U = 9.6
@ -31,7 +31,7 @@ p["fit_min_n"] = 30
p["fit_max_n"] = 60
# If conversion step was not done, we could do it here. Uncomment the lines it you want to do this.
#from pytriqs.applications.dft.converters.wien2k_converter import *
#from triqs_dft_tools.converters.wien2k_converter import *
#Converter = Wien2kConverter(filename=dft_filename, repacking=True)
#Converter.convert_dft_input()
#mpi.barrier()
@ -59,14 +59,14 @@ spin_names = ["up","down"]
orb_names = [i for i in range(n_orb)]
# Use GF structure determined by DFT blocks
gf_struct = SK.gf_struct_solver[0]
gf_struct = [(block, indices) for block, indices in SK.gf_struct_solver[0].iteritems()]
# Construct Slater U matrix
Umat = U_matrix(n_orb=n_orb, U_int=U, J_hund=J, basis='cubic',)
# Construct Hamiltonian and solver
h_int = h_int_slater(spin_names, orb_names, map_operator_structure=SK.sumk_to_solver[0], U_matrix=Umat)
S = Solver(beta=beta, gf_struct=list(gf_struct))
S = Solver(beta=beta, gf_struct=gf_struct)
if previous_present:
chemical_potential = 0

View File

@ -76,8 +76,8 @@ Using the transport code
First we have to read the Wien2k files and store the relevant information in the hdf5 archive::
from pytriqs.applications.dft.converters.wien2k_converter import *
from pytriqs.applications.dft.sumk_dft_tools import *
from triqs_dft_tools.converters.wien2k_converter import *
from triqs_dft_tools.sumk_dft_tools import *
Converter = Wien2kConverter(filename='case', repacking=True)
Converter.convert_transport_input()

View File

@ -1,6 +1,6 @@
.. index:: DFTTools
.. module:: pytriqs.applications.dft
.. module:: triqs_dft_tools
.. _dft:

View File

@ -21,7 +21,7 @@
################################################################################
from types import *
#from pytriqs.applications.dft.U_matrix import *
#from triqs_dft_tools.U_matrix import *
from U_matrix import *
from pytriqs.gf import *
#from hubbard_I import gf_hi_fullu, sigma_atomic_fullu

View File

@ -1,6 +1,6 @@
#from pytriqs.applications.dft.sumk_dft import *
#from triqs_dft_tools.sumk_dft import *
from sumk_dft import *
#from pytriqs.applications.dft.converters.wien2k_converter import *
#from triqs_dft_tools.converters.wien2k_converter import *
from converters.vasp_converter import *
#from pytriqs.applications.impurity_solvers.hubbard_I.hubbard_solver import Solver
from hf_solver import Solver

View File

@ -502,7 +502,7 @@ class Wien2kConverter(ConverterTools):
- symmetries from :file:`case.outputs`,
if those Wien2k files are present and stores the data in the hdf5 archive.
This function is automatically called by :meth:`convert_dft_input <pytriqs.applications.dft.converters.wien2k_converter.Wien2kConverter.convert_dft_input>`.
This function is automatically called by :meth:`convert_dft_input <triqs_dft_tools.converters.wien2k_converter.Wien2kConverter.convert_dft_input>`.
"""

View File

@ -1,5 +1,5 @@
from pytriqs.applications.dft.sumk_dft import *
from pytriqs.applications.dft.converters import Wien2kConverter
from triqs_dft_tools.sumk_dft import *
from triqs_dft_tools.converters import Wien2kConverter
from pytriqs.gf import *
from pytriqs.archive import *
import pytriqs.utility.mpi as mpi

View File

@ -1,4 +1,4 @@
#!/bin/bash
@CMAKE_INSTALL_PREFIX@/bin/pytriqs -m pytriqs.applications.dft.converters.plovasp.converter $@
@CMAKE_INSTALL_PREFIX@/bin/pytriqs -m triqs_dft_tools.converters.plovasp.converter $@

View File

@ -83,5 +83,5 @@ stdbuf -o 0 $MPIRUN_CMD -np $NPROC "$VASP_DIR" &
PYTRIQS=@CMAKE_INSTALL_PREFIX@/bin/pytriqs
$MPIRUN_CMD -np $NPROC $PYTRIQS -m pytriqs.applications.dft.converters.plovasp.sc_dmft $(jobs -p) $NITER $DMFT_SCRIPT 'plo.cfg' || kill %1
$MPIRUN_CMD -np $NPROC $PYTRIQS -m triqs_dft_tools.converters.plovasp.sc_dmft $(jobs -p) $NITER $DMFT_SCRIPT 'plo.cfg' || kill %1