1
0
mirror of https://gitlab.com/scemama/qp_plugins_scemama.git synced 2025-01-03 10:05:44 +01:00

Compare commits

..

7 Commits

Author SHA1 Message Date
Abdallah Ammar
46aadac71c Merge branch 'master' into 'master'
# Conflicts:
#   devel/svdwf/Evar_TruncSVD.irp.f
2021-07-31 09:07:58 +00:00
Abdallah Ammar
2fd2fcac5d svd save 2021-07-28 17:19:18 +02:00
Abdallah AMMAR
cb34b1abd6 evaluate the matrix < U_k V_k| H | U_l V_l> after SVD C = U sigma V 2021-04-14 00:45:47 +02:00
Abdallah Ammar
7e1d1bcc9f Merge branch 'master' of gitlab.com:AbdAmmar/qp_plugins_scemama
Conflicts:
	devel/svdwf/Evar_TruncSVD.irp.f
	devel/svdwf/NEED
2021-04-08 17:16:12 +02:00
Abdallah AMMAR
bf4bebacb5 Merge /home/ammar/qp2/plugins/qp_plugins_scemama 2021-04-08 16:49:30 +02:00
Abdallah Ammar
b012a115c7 saved 3 fichiers 2021-04-08 16:42:42 +02:00
Abdallah AMMAR
4724e9f6f0 random svd 2021-04-08 16:31:31 +02:00
30 changed files with 13094 additions and 123 deletions

View File

@ -9,158 +9,443 @@ program Evar_TruncSVD
call run()
! !!!
end
! !!!
subroutine run
! !!!
implicit none
include 'constants.include.F'
double precision, allocatable :: A(:,:), U(:,:), V(:,:), D(:)
integer :: r, i, j, k, l, m, n, iter, iter_max
double precision, allocatable :: Z(:,:), P(:,:), Yt(:,:), UYt(:,:), r1(:,:)
! !!!
m = n_det_alpha_unique
n = n_det_beta_unique
r = n
integer :: m, n, i_state
double precision :: error_thr, error_RRRSVD, norm_psi, norm_SVD, err_verif, err_tmp
integer :: i, j, k, l, It, PowerIt
integer :: It_max, PowerIt_max, nb_oversamp
integer :: r_init, delta_r, low_rank
double precision, allocatable :: B_old(:,:), Q_old(:,:)
double precision, allocatable :: UB(:,:), D(:), Vt(:,:), U(:,:)
double precision, allocatable :: P(:,:), r1(:,:)
double precision, allocatable :: Q_new(:,:), Q_tmp(:,:), Q_mult(:,:)
double precision, allocatable :: B_new(:,:), B_tmp(:,:)
double precision, allocatable :: URSVD(:,:), DRSVD(:), VtRSVD(:,:)
double precision, allocatable :: Uverif(:,:), Dverif(:), Vtverif(:,:), Averif(:,:)
double precision, allocatable :: Uezfio(:,:,:), Dezfio(:,:), Vezfio(:,:,:)
double precision :: tmp
! !!!
i_state = 1
m = n_det_alpha_unique
n = n_det_beta_unique
! !!!
!open(111, file = 'data_to_python.txt', action = 'WRITE' )
! do k = 1, N_det
! write(111, '(I8, 5X, I8, 5X, E15.7)' ) psi_bilinear_matrix_rows(k), psi_bilinear_matrix_columns(k), psi_bilinear_matrix_values(k,i_state)
! end do
!close(111)
! !!!
! !!!
print *, 'matrix:', m,'x',n
print *, 'N det:', N_det
print *, 'rank = ', r
iter_max = 20
! !!!
allocate( Z(m,r) , P(n,r) ) ! Z(m,r) = A(m,n) @ P(n,r)
Z(:,:) = 0.d0
r_init = 78
delta_r = 5
! !!!
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! first we apply a RSVD for a pre-fixed rank (r)
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
!$OMP PARALLEL DEFAULT(SHARED) PRIVATE(i,j,k,l,r1)
allocate(r1(N_det,2))
PowerIt_max = 10
nb_oversamp = 10
! !!!
It_max = 10
error_thr = 1.d-3 !! don't touche it but rather increase r_init
! !!!
! !!! ~ !!! ~ !!! ~ !!! ~ !!! ~ !!! ~ !!! ~ !!! ~ !!! !
! !!! ~ Rank Revealing Randomized SVD ~ !!! !
! !!! ~ !!! ~ !!! ~ !!! ~ !!! ~ !!! ~ !!! ~ !!! ~ !!! !
! !!!
norm_psi = 0.d0
do k = 1, N_det
norm_psi = norm_psi + psi_bilinear_matrix_values(k,i_state) * psi_bilinear_matrix_values(k,i_state)
enddo
! !!!
! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !
! !!! build initial QB decomposition !!! !
! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !
! !!!
allocate( Q_old(m, r_init) )
!$OMP PARALLEL DEFAULT(SHARED) PRIVATE(i,k,l,r1)
allocate( r1(N_det,2) )
!$OMP DO
do l=1,r
call random_number(r1)
r1(:,1) = dsqrt(-2.d0*dlog(r1(:,1)))
r1(:,1) = r1(:,1) * dcos(dtwo_pi*r1(:,2))
do k=1,N_det
i = psi_bilinear_matrix_rows(k)
j = psi_bilinear_matrix_columns(k)
Z(i,l) = Z(i,l) + psi_bilinear_matrix_values(k,1) * r1(k,1)
enddo
do l = 1, r_init
Q_old(:,l) = 0.d0
call random_number(r1)
r1(:,1) = dsqrt(-2.d0*dlog(r1(:,1)))
r1(:,1) = r1(:,1) * dcos(dtwo_pi*r1(:,2))
do k = 1, N_det
i = psi_bilinear_matrix_rows(k)
Q_old(i,l) = Q_old(i,l) + psi_bilinear_matrix_values(k,i_state) * r1(k,1)
enddo
enddo
!$OMP END DO
deallocate(r1)
!$OMP END PARALLEL
! !!!
! Power iterations
! power scheme
! !!!
do iter=1,iter_max
! !!!
print *, 'Power iteration ', iter, '/', 20
! !!!
! P(n,r) = At(n,m) @ Z(m,r)
! !!!
!$OMP PARALLEL DEFAULT(SHARED) PRIVATE(i,j,k,l)
!$OMP DO
do l=1,r
P(:,l) = 0.d0
do k=1,N_det
i = psi_bilinear_matrix_rows(k)
j = psi_bilinear_matrix_columns(k)
P(j,l) = P(j,l) + psi_bilinear_matrix_values(k,1) * Z(i,l)
allocate( P(n, r_init) )
do PowerIt = 1, PowerIt_max
! !!!
call my_ortho_qr(Q_old, size(Q_old,1), m, r_init)
! !!!
!$OMP PARALLEL DEFAULT(SHARED) PRIVATE(i,j,k,l)
!$OMP DO
do l = 1, r_init
P(:,l) = 0.d0
do k = 1, N_det
i = psi_bilinear_matrix_rows(k)
j = psi_bilinear_matrix_columns(k)
P(j,l) = P(j,l) + psi_bilinear_matrix_values(k,i_state) * Q_old(i,l)
enddo
enddo
enddo
!$OMP END DO
! !!!
! Z(m,r) = A(m,n) @ P(n,r)
! !!!
!$OMP BARRIER
!$OMP DO
do l=1,r
Z(:,l) = 0.d0
do k=1,N_det
i = psi_bilinear_matrix_rows(k)
j = psi_bilinear_matrix_columns(k)
Z(i,l) = Z(i,l) + psi_bilinear_matrix_values(k,1) * P(j,l)
!$OMP END DO
!$OMP END PARALLEL
! !!!
call my_ortho_qr(P, size(P,1), n, r_init)
! !!!
!$OMP PARALLEL DEFAULT(SHARED) PRIVATE(i,j,k,l)
!$OMP DO
do l = 1, r_init
Q_old(:,l) = 0.d0
do k = 1 , N_det
i = psi_bilinear_matrix_rows(k)
j = psi_bilinear_matrix_columns(k)
Q_old(i,l) = Q_old(i,l) + psi_bilinear_matrix_values(k,i_state) * P(j,l)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
! !!!
! Compute QR: at return: Q is Z(m,r)
! !!!
call ortho_qr(Z,size(Z,1),m,r)
! !!!
!$OMP END DO
!$OMP END PARALLEL
! !!!
enddo
deallocate( P )
! !!!
! Y(r,n) = Zt(r,m) @ A(m,n) or Yt(n,r) = At(n,m) @ Z(m,r)
call my_ortho_qr(Q_old, size(Q_old,1), m, r_init)
! !!!
allocate(Yt(n,r))
allocate( B_old(r_init,n) )
!$OMP PARALLEL DEFAULT(SHARED) PRIVATE(i,j,k,l)
!$OMP DO
do l=1,r
do k=1,n
Yt(k,l) = 0.d0
do l = 1, r_init
B_old(l,:) = 0.d0
do k = 1, N_det
i = psi_bilinear_matrix_rows(k)
j = psi_bilinear_matrix_columns(k)
B_old(l,j) = B_old(l,j) + Q_old(i,l) * psi_bilinear_matrix_values(k,i_state)
enddo
do k=1,N_det
i = psi_bilinear_matrix_rows(k)
j = psi_bilinear_matrix_columns(k)
Yt(j,l) = Yt(j,l) + Z(i,l) * psi_bilinear_matrix_values(k,1)
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
norm_SVD = 0.d0
do j = 1, n
do l = 1, r_init
norm_SVD = norm_SVD + B_old(l,j) * B_old(l,j)
enddo
enddo
error_RRRSVD = dabs( norm_psi - norm_SVD ) / norm_psi
It = 1
low_rank = r_init
print *, It, low_rank, error_RRRSVD
! !!!
! Y = UY @ D @ Vt or Yt = V @ Dt @ UYt
! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !
! !!! incrementally build up QB decomposition !!! !
! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !
! !!!
allocate(D(r),V(n,r), UYt(r,r))
! !!!
call svd(Yt,size(Yt,1),V,size(V,1),D,UYt,size(UYt,1),n,r)
deallocate(Yt)
! !!!
! U(m,r) = Z(m,r) @ UY(r,r) or U = Z @ (UYt).T
! !!!
allocate(U(m,r))
call dgemm('N','T',m,r,r,1.d0,Z,size(Z,1),UYt,size(UYt,1),0.d0,U,size(U,1))
deallocate(UYt,Z)
! !!!
!do i=1,r
! print *, i, real(D(i)), real(D(i)**2), real(sum(D(1:i)**2))
! if (D(i) < 1.d-15) then
! k = i
! exit
! endif
!enddo
!print *, 'threshold: ', 2.858 * D(k/2)
! !!!
! Build the new determinant: U @ D @ Vt
! !!!
!!$OMP PARALLEL DEFAULT(SHARED) PRIVATE(i,j,k,l)
!!$OMP DO
!!
!print *, 'ok 1'
!N_det = m * n
!print *, 'ok 11'
!TOUCH N_det
!psi_bilinear_matrix_values(:,1) = 0.d0
!TOUCH psi_bilinear_matrix_values
! print *, size(psi_bilinear_matrix_values,1), size(D), size(U,1), size(U,2), size(V,1), size(V,2)
print*, PSI_energy(1) + nuclear_repulsion
psi_bilinear_matrix(:,:,:) = 0.d0
do r = 1, n
call generate_all_alpha_beta_det_products
do i = 1, N_det_beta_unique
do j = 1, N_det_alpha_unique
psi_bilinear_matrix(j,i,1) = 0.d0
do l = 1, r
psi_bilinear_matrix(j,i,1) = psi_bilinear_matrix(j,i,1) + D(l) * U(j,l) * V(i,l)
enddo
do while( ( error_RRRSVD.gt.error_thr ).and.( It.lt.It_max ).and.( low_rank.lt.(min(m,n)-delta_r) ) )
! !!!
allocate( Q_new(m,delta_r) )
allocate( r1(N_det, 2) )
do l = 1, delta_r
Q_new(:,l) = 0.d0
call random_number(r1)
r1(:,1) = dsqrt(-2.d0*dlog(r1(:,1)))
r1(:,1) = r1(:,1) * dcos(dtwo_pi*r1(:,2))
do k = 1, N_det
i = psi_bilinear_matrix_rows(k)
Q_new(i,l) = Q_new(i,l) + psi_bilinear_matrix_values(k,i_state) * r1(k,1)
enddo
enddo
TOUCH psi_bilinear_matrix
call update_wf_of_psi_bilinear_matrix(.False.)
print*, r, PSI_energy(1) + nuclear_repulsion, s2_values(1) !CI_energy(1)
call save_wavefunction()
deallocate(r1)
! !!!
! orthogonalization with Q_old: Q_new = Q_new - Q_old @ Q_old.T @ Q_new
! !!!
!allocate( Q_mult(m,m) )
!call dgemm( 'N', 'T', m, m, low_rank, +1.d0, Q_old, size(Q_old,1), Q_old, size(Q_old,1), 0.d0, Q_mult, size(Q_mult,1) )
!!do i = 1, m
!! do j = 1, m
!! Q_mult(j,i) = 0.d0
!! do l = 1, low_rank
!! Q_mult(j,i) = Q_mult(j,i) + Q_old(i,l) * Q_old(j,l)
!! enddo
!! enddo
!!enddo
!!call dgemm( 'N', 'N', m, delta_r, m, -1.d0, Q_mult, size(Q_mult,1), Q_new, size(Q_new,1), 1.d0, Q_new, size(Q_new,1) )
!do l = 1, delta_r
! do i = 1, m
! tmp = 0.d0
! do j = 1, m
! tmp = tmp + Q_mult(i,j) * Q_new(j,l)
! enddo
! Q_new(i,l) = Q_new(i,l) - tmp
! enddo
!enddo
!deallocate( Q_mult )
! !!!
! power scheme
! !!!
allocate( P(n, delta_r) )
do PowerIt = 1, PowerIt_max
! !!!
call my_ortho_qr(Q_new, size(Q_new,1), m, delta_r)
! !!!
do l = 1, delta_r
P(:,l) = 0.d0
do k = 1, N_det
i = psi_bilinear_matrix_rows(k)
j = psi_bilinear_matrix_columns(k)
P(j,l) = P(j,l) + psi_bilinear_matrix_values(k,i_state) * Q_new(i,l)
enddo
enddo
! !!!
call my_ortho_qr(P, size(P,1), n, delta_r)
! !!!
do l = 1, delta_r
Q_new(:,l) = 0.d0
do k = 1, N_det
i = psi_bilinear_matrix_rows(k)
j = psi_bilinear_matrix_columns(k)
Q_new(i,l) = Q_new(i,l) + psi_bilinear_matrix_values(k,i_state) * P(j,l)
enddo
enddo
! !!!
enddo
deallocate( P )
! !!!
! orthogonalization with Q_old: Q_new = Q_new - Q_old @ Q_old.T @ Q_new
! !!!
allocate( Q_mult(m,m) )
call dgemm( 'N', 'T', m, m, low_rank, +1.d0, Q_old, size(Q_old,1), Q_old, size(Q_old,1), 0.d0, Q_mult, size(Q_mult,1) )
!do i = 1, m
! do j = 1, m
! Q_mult(j,i) = 0.d0
! do l = 1, low_rank
! Q_mult(j,i) = Q_mult(j,i) + Q_old(i,l) * Q_old(j,l)
! enddo
! enddo
!enddo
!call dgemm( 'N', 'N', m, delta_r, m, -1.d0, Q_mult, size(Q_mult,1), Q_new, size(Q_new,1), 1.d0, Q_new, size(Q_new,1) )
do l = 1, delta_r
do i = 1, m
tmp = 0.d0
do j = 1, m
tmp = tmp + Q_mult(i,j) * Q_new(j,l)
enddo
Q_new(i,l) = Q_new(i,l) - tmp
enddo
enddo
deallocate( Q_mult )
! !!!
call my_ortho_qr(Q_new, size(Q_new,1), m, delta_r)
! !!!
allocate( B_new(delta_r,n) )
do l = 1 , delta_r
B_new(l,:) = 0.d0
do k = 1 , N_det
i = psi_bilinear_matrix_rows(k)
j = psi_bilinear_matrix_columns(k)
B_new(l,j) = B_new(l,j) + Q_new(i,l) * psi_bilinear_matrix_values(k,i_state)
enddo
enddo
! !!!
do j = 1, n
do l = 1, delta_r
norm_SVD = norm_SVD + B_new(l,j) * B_new(l,j)
enddo
enddo
! !!!
error_RRRSVD = dabs( norm_psi - norm_SVD ) / norm_psi
It = It + 1
low_rank = low_rank + delta_r
! !!!
! build up approximate basis:
! Q_old = np.append(Q_new, Q_old, axis=1)
! B = np.append(B_new, B, axis=0)
! !!!
allocate( Q_tmp(m,low_rank) , B_tmp(low_rank,n) )
! !!!
!do l = 1, delta_r
! do i = 1, m
! Q_tmp(i,l) = Q_new(i,l)
! enddo
!enddo
!do l = 1 , low_rank-delta_r
! do i = 1, m
! Q_tmp(i,l+delta_r) = Q_old(i,l)
! enddo
!enddo
!do i = 1, n
! do l = 1 , delta_r
! B_tmp(l,i) = B_new(l,i)
! enddo
!enddo
!do i = 1, n
! do l = 1 , low_rank-delta_r
! B_tmp(l+delta_r,i) = B_old(l,i)
! enddo
!enddo
! !!!
do i = 1, m
do l = 1, low_rank-delta_r
Q_tmp(i,l) = Q_old(i,l)
enddo
do l = 1, delta_r
Q_tmp(i,l+low_rank-delta_r) = Q_new(i,l)
enddo
enddo
do i = 1, n
do l = 1 , low_rank-delta_r
B_tmp(l,i) = B_old(l,i)
enddo
do l = 1 , delta_r
B_tmp(l+low_rank-delta_r,i) = B_new(l,i)
enddo
enddo
! !!!
deallocate( Q_old, B_old, Q_new, B_new )
allocate( Q_old(m,low_rank) , B_old(low_rank,n) )
! !!!
do l = 1, low_rank
do i = 1, m
Q_old(i,l) = Q_tmp(i,l)
enddo
enddo
do l = 1, n
do i = 1, low_rank
B_old(i,l) = B_tmp(i,l)
enddo
enddo
deallocate( Q_tmp , B_tmp )
! !!!
print *, It, low_rank, error_RRRSVD
! !!!
enddo
deallocate(U,D,V)
! !!!
! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !
! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !
! !!!
allocate( UB(low_rank,low_rank), D(low_rank), Vt(low_rank,n) )
call svd_s(B_old, size(B_old,1), UB, size(UB,1), D, Vt, size(Vt,1), low_rank, n)
deallocate(B_old)
print*, 'ok 1'
! !!!
allocate( U(m,low_rank) )
call dgemm('N', 'N', m, low_rank, low_rank, 1.d0, Q_old, size(Q_old,1), UB, size(UB,1), 0.d0, U, size(U,1))
deallocate( Q_old,UB )
print*, 'ok 2'
! !!!
! !!! ~ !!! ~ !!! ~ !!! ~ !!! ~ !!! ~ !!! ~ !!! ~ !!! !
! !!! ~ !!! ~ !!! ~ !!! ~ !!! ~ !!! ~ !!! ~ !!! ~ !!! !
! !!!
allocate( URSVD(m,low_rank), DRSVD(low_rank), VtRSVD(low_rank,n) )
call RSVD( i_state, low_rank, PowerIt_max, nb_oversamp, URSVD, DRSVD, VtRSVD )
print*, 'ok 3'
! !!!
! !!! ~ !!! ~ !!! ~ !!! ~ !!! ~ !!! ~ !!! ~ !!! ~ !!! !
! !!! ~ !!! ~ !!! ~ !!! ~ !!! ~ !!! ~ !!! ~ !!! ~ !!! !
! !!!
allocate( Averif(m,n), Uverif(m,m), Dverif(min(m,n)), Vtverif(n,n) )
do i = 1, n
Averif(:,i) = 1d-16
enddo
do k = 1, N_det
i = psi_bilinear_matrix_rows(k)
j = psi_bilinear_matrix_columns(k)
Averif(i,j) = psi_bilinear_matrix_values(k,i_state)
enddo
call svd_s( Averif, size(Averif,1), Uverif, size(Uverif,1), Dverif, Vtverif, size(Vtverif,1), m, n)
print*, 'ok 4'
! !!!
err_verif = 0.d0
do j = 1, n
do i = 1, m
err_tmp = 0.d0
do l = 1, low_rank
err_tmp = err_tmp + Dverif(l) * Uverif(i,l) * Vtverif(l,j)
enddo
err_verif = err_verif + ( Averif(i,j) - err_tmp )**2.d0
enddo
enddo
print*, 'err verif (%) = ', 100.d0 * dsqrt(err_verif/norm_psi)
! !!!
! !!! ~ !!! ~ !!! ~ !!! ~ !!! ~ !!! ~ !!! ~ !!! ~ !!! !
! !!! ~ !!! ~ !!! ~ !!! ~ !!! ~ !!! ~ !!! ~ !!! ~ !!! !
! !!!
open(111, file = 'singular_values.txt', action = 'WRITE' )
do i = 1, low_rank
write(111, '(I8, 5X, E15.7, 2(5X, E15.7, E15.7) )' ) i, Dverif(i), D(i), 100.d0*dabs(D(i)-Dverif(i))/Dverif(i), DRSVD(i), 100.d0*dabs(DRSVD(i)-Dverif(i))/Dverif(i)
end do
close(111)
! !!!
!deallocate( Averif, Uverif, Dverif, Vtverif )
! !!!
low_rank = 10
! !!!
err_verif = 0.d0
do j = 1, n
do i = 1, m
err_tmp = 0.d0
do l = 1, low_rank
err_tmp = err_tmp + Dverif(l) * Uverif(i,l) * Vtverif(l,j)
enddo
err_verif = err_verif + ( Averif(i,j) - err_tmp )**2.d0
enddo
enddo
print*, 'err verif (%) = ', 100.d0 * dsqrt(err_verif/norm_psi)
! !!!
print*, 'low_rank =', low_rank
allocate(Uezfio(m,low_rank,1), Dezfio(low_rank,1), Vezfio(n,low_rank,1))
do l = 1, low_rank
Dezfio(l,1) = Dverif(l)
do j = 1, m
Uezfio(j,l,1) = Uverif(j,l)
enddo
do j = 1, n
Vezfio(j,l,1) = Vtverif(l,j)
enddo
enddo
deallocate( U, D, Vt )
! !!!
call ezfio_set_spindeterminants_n_det(N_det)
call ezfio_set_spindeterminants_n_states(N_states)
call ezfio_set_spindeterminants_n_det_alpha(n_det_alpha_unique)
call ezfio_set_spindeterminants_n_det_beta(n_det_beta_unique)
call ezfio_set_spindeterminants_psi_coef_matrix_rows(psi_bilinear_matrix_rows)
call ezfio_set_spindeterminants_psi_coef_matrix_columns(psi_bilinear_matrix_columns)
call ezfio_set_spindeterminants_psi_coef_matrix_values(psi_bilinear_matrix_values)
! !!!
call ezfio_set_spindeterminants_n_svd_coefs(low_rank)
call ezfio_set_spindeterminants_psi_svd_alpha(Uezfio)
call ezfio_set_spindeterminants_psi_svd_beta(Vezfio )
call ezfio_set_spindeterminants_psi_svd_coefs(Dezfio)
deallocate(Uezfio, Dezfio, Vezfio)
! !!!
!print*, PSI_energy(1) + nuclear_repulsion
!psi_bilinear_matrix(:,:,:) = 0.d0
!do low_rank = n, n
! call generate_all_alpha_beta_det_products
! do i = 1, N_det_beta_unique
! do j = 1, N_det_alpha_unique
! psi_bilinear_matrix(j,i,1) = 0.d0
! do l = 1, r
! psi_bilinear_matrix(j,i,1) = psi_bilinear_matrix(j,i,1) + D(l) * U(j,l) * V(i,l)
! enddo
! enddo
! enddo
! TOUCH psi_bilinear_matrix
! call update_wf_of_psi_bilinear_matrix(.False.)
! print*, low_rank, PSI_energy(1) + nuclear_repulsion !CI_energy(1)
!enddo
!deallocate(U,D,V)
! !!!
end

View File

@ -0,0 +1,97 @@
program FSVD_trunc
implicit none
BEGIN_DOC
! study precision variation with truncated SVD
END_DOC
read_wf = .True.
TOUCH read_wf
! !!!
call run()
! !!!
end
subroutine run
implicit none
integer :: mm, nn, i_state, low_rank, lrank_min, lrank_max
integer :: i, j, k, l
double precision :: norm_psi, err_verif, err_tmp
double precision, allocatable :: U_FSVD(:,:), D_FSVD(:), Vt_FSVD(:,:), A_FSVD(:,:)
double precision, allocatable :: Uezfio(:,:,:), Dezfio(:,:), Vezfio(:,:,:)
i_state = 1
mm = n_det_alpha_unique
nn = n_det_beta_unique
print *, ' matrix dimensions:', mm,'x',nn
print *, ' N det:', N_det
allocate( A_FSVD(mm,nn), U_FSVD(mm,mm), D_FSVD(min(mm,nn)), Vt_FSVD(nn,nn) )
norm_psi = 0.d0
A_FSVD(:,:) = 0.d0
do k = 1, N_det
i = psi_bilinear_matrix_rows(k)
j = psi_bilinear_matrix_columns(k)
A_FSVD(i,j) = psi_bilinear_matrix_values(k,i_state)
norm_psi += psi_bilinear_matrix_values(k,i_state) * psi_bilinear_matrix_values(k,i_state)
enddo
call svd_s( A_FSVD, size(A_FSVD,1), U_FSVD, size(U_FSVD,1), D_FSVD, Vt_FSVD, size(Vt_FSVD,1), mm, nn)
print *, ' --- Full SVD: ok --- '
!lrank_min = 100
!lrank_max = nn
!do low_rank = lrank_min, lrank_max, 1
! err_verif = 0.d0
! do j = 1, nn
! do i = 1, mm
! err_tmp = 0.d0
! do l = 1, low_rank
! err_tmp = err_tmp + D_FSVD(l) * U_FSVD(i,l) * Vt_FSVD(l,j)
! enddo
! err_verif = err_verif + (A_FSVD(i,j)-err_tmp) * (A_FSVD(i,j)-err_tmp)
! enddo
! enddo
! print*, ' low rank = ', low_rank
! print*, ' err verif (%) = ', 100.d0 * dsqrt(err_verif/norm_psi)
!enddo
! ------------------------------------------------------------------------------------------------
! set to EZFIO for a fixed low rank
low_rank = min(mm,nn)
allocate( Uezfio(mm,low_rank,1), Dezfio(low_rank,1), Vezfio(nn,low_rank,1))
do l = 1, low_rank
Dezfio(l,1) = D_FSVD(l)
do j = 1, mm
Uezfio(j,l,1) = U_FSVD(j,l)
enddo
do j = 1, nn
Vezfio(j,l,1) = Vt_FSVD(l,j)
enddo
enddo
!call ezfio_set_spindeterminants_n_det(N_det)
!call ezfio_set_spindeterminants_n_states(N_states)
!call ezfio_set_spindeterminants_n_det_alpha(n_det_alpha_unique)
!call ezfio_set_spindeterminants_n_det_beta(n_det_beta_unique)
!call ezfio_set_spindeterminants_psi_coef_matrix_rows(psi_bilinear_matrix_rows)
!call ezfio_set_spindeterminants_psi_coef_matrix_columns(psi_bilinear_matrix_columns)
!call ezfio_set_spindeterminants_psi_coef_matrix_values(psi_bilinear_matrix_values)
call ezfio_set_spindeterminants_n_svd_coefs(low_rank)
call ezfio_set_spindeterminants_psi_svd_alpha(Uezfio)
call ezfio_set_spindeterminants_psi_svd_beta(Vezfio )
call ezfio_set_spindeterminants_psi_svd_coefs(Dezfio)
! ------------------------------------------------------------------------------------------------
deallocate( Uezfio, Dezfio, Vezfio )
deallocate( U_FSVD, D_FSVD, Vt_FSVD )
end

10
devel/svdwf/QR.py Normal file
View File

@ -0,0 +1,10 @@
# !!!
import numpy as np
# !!!
def QR_fact(X):
Q, R = np.linalg.qr(X, mode="reduced")
D = np.diag( np.sign( np.diag(R) ) )
Qunique = np.dot(Q,D)
#Runique = np.dot(D,R)
return(Qunique)
# !!!

View File

@ -0,0 +1,68 @@
# !!!
import numpy as np
from QR import QR_fact
from RSVD import powit_RSVD
# !!!
def R3SVD_AMMAR(A, t, delta_t, npow, nb_oversamp, err_thr, maxit, tol):
# !!!
# build initial QB decomposition
# !!!
n = A.shape[1]
G = np.random.randn(n, t)
normA = np.linalg.norm(A, ord='fro')**2
i_it = 0
rank = 0
Y = np.dot(A,G)
# The power scheme
for j in range(npow):
Q = QR_fact(Y)
Q = QR_fact( np.dot(A.T,Q) )
Y = np.dot(A,Q)
# orthogonalization process
Q_old = QR_fact(Y)
B = np.dot(Q_old.T,A)
normB = np.linalg.norm(B, ord='fro')**2
# error percentage
errpr = abs( normA - normB ) / normA
rank += t
i_it += 1
print("iteration = {}, rank = {}, error = {}".format(i_it, rank, errpr))
# !!!
# incrementally build up QB decomposition
# !!!
while ( (errpr>err_thr) and (i_it<maxit) and (rank<=min(A.shape)-delta_t) ): #
G = np.random.randn(n, delta_t)
Y = np.dot(A,G)
#Y = Y - np.dot(Q_old, np.dot(Q_old.T,Y) ) # orthogonalization with Q
# power scheme
for j in range(npow):
Q = QR_fact(Y)
Q = QR_fact( np.dot(A.T,Q) )
Y = np.dot(A,Q)
Y = Y - np.dot(Q_old, np.dot(Q_old.T,Y) ) # orthogonalization with Q
Q_new = QR_fact(Y)
B_new = np.dot(Q_new.T,A)
# build up approximate basis
Q_old = np.append(Q_new, Q_old, axis=1)
#B = np.append(B_new, B, axis=0)
normB += np.linalg.norm(B_new, ord='fro')**2
errpr = abs( normA - normB ) / normA
rank += delta_t
i_it += 1
print("iteration = {}, rank = {}, error = {}".format(i_it, rank, errpr))
# !!!
#UL, SL, VLT = np.linalg.svd(B, full_matrices=0)
#UL = np.dot(Q_old,UL)
# !!!
print("iteration = {}, rank = {}, error = {}".format(i_it, rank, errpr))
UL, SL, VLT = powit_RSVD(A, rank, npow, nb_oversamp)
#return UL, SL, VLT
# !!!
rank = SL.shape[0]
new_r = rank
for i in range(rank):
if( SL[i] <= tol ):
new_r = i
break
return UL[:,:(new_r)], SL[:(new_r)], VLT[:(new_r),:]
# !!!

58
devel/svdwf/R3SVD_LiYu.py Normal file
View File

@ -0,0 +1,58 @@
# !!!
import numpy as np
from QR import QR_fact
# !!!
def R3SVD_LiYu(A, t, delta_t, npow, err_thr, maxit):
# !!!
# build initial QB decomposition
# !!!
n = A.shape[1]
G = np.random.randn(n, t) # n x t Gaussian random matrix
normA = np.linalg.norm(A, ord='fro')**2
i_it = 0
rank = 0
Y = np.dot(A,G)
# The power scheme
for j in range(npow):
Q = QR_fact(Y)
Q = QR_fact( np.dot(A.T,Q) )
Y = np.dot(A,Q)
# orthogonalization process
Q_old = QR_fact(Y)
B = np.dot(Q_old.T,A)
normB = np.linalg.norm(B, ord='fro')**2
# error percentage
errpr = abs( normA - normB ) / normA
rank += t
i_it += 1
print("iteration = {}, rank = {}, error = {}".format(i_it, rank, errpr))
# !!!
# incrementally build up QB decomposition
# !!!
while ( (errpr>err_thr) and (i_it<maxit) and (rank<=min(A.shape)-delta_t) ): #
G = np.random.randn(n, delta_t) # n x delta_t Gaussian random matrix
Y = np.dot(A,G)
Y = Y - np.dot(Q_old, np.dot(Q_old.T,Y) ) # orthogonalization with Q
# power scheme
for j in range(npow):
Q = QR_fact(Y)
Q = QR_fact( np.dot(A.T,Q) )
Y = np.dot(A,Q)
Y = Y - np.dot(Q_old, np.dot(Q_old.T,Y) ) # orthogonalization with Q
Q_new = QR_fact(Y)
B_new = np.dot(Q_new.T,A)
# build up approximate basis
Q_old = np.append(Q_new, Q_old, axis=1)
B = np.append(B_new, B, axis=0)
rank += delta_t
i_it += 1
normB += np.linalg.norm(B_new, ord='fro')**2
errpr = abs( normA - normB ) / normA
print("iteration = {}, rank = {}, error = {}".format(i_it, rank, errpr))
# !!!
print("iteration = {}, rank = {}, error = {}".format(i_it, rank, errpr))
UL, SL, VLT = np.linalg.svd(B, full_matrices=0)
UL = np.dot(Q_old,UL)
# !!!
return UL, SL, VLT
# !!!

114
devel/svdwf/RSVD.irp.f Normal file
View File

@ -0,0 +1,114 @@
! !!!
subroutine RSVD( i_state, low_rank, PowerIt_max, nb_oversamp, URSVD, DRSVD, VtRSVD )
! !!!
BEGIN_DOC
! standard RSVD for a prefixed rank
END_DOC
! !!!
implicit none
include 'constants.include.F'
! !!!
integer, intent(in) :: i_state, low_rank, PowerIt_max, nb_oversamp
double precision, intent(out) :: URSVD(n_det_alpha_unique,low_rank), DRSVD(low_rank), VtRSVD(low_rank,n_det_beta_unique)
! !!!
integer :: i, j, k, l, PowerIt, m, n
double precision, allocatable :: r1(:,:), Q(:,:), P(:,:), B(:,:)
double precision, allocatable :: UB(:,:), D(:), Vt(:,:), U(:,:)
! !!!
m = n_det_alpha_unique
n = n_det_beta_unique
! !!!
! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !
! !!!
allocate( Q(m, low_rank+nb_oversamp) )
!$OMP PARALLEL DEFAULT(SHARED) PRIVATE(i,k,l,r1)
allocate( r1(N_det,2) )
!$OMP DO
do l = 1, low_rank+nb_oversamp
Q(:,l) = 0.d0
call random_number(r1)
r1(:,1) = dsqrt(-2.d0*dlog(r1(:,1)))
r1(:,1) = r1(:,1) * dcos(dtwo_pi*r1(:,2))
do k = 1, N_det
i = psi_bilinear_matrix_rows(k)
Q(i,l) = Q(i,l) + psi_bilinear_matrix_values(k,i_state) * r1(k,1)
enddo
enddo
!$OMP END DO
deallocate(r1)
!$OMP END PARALLEL
! !!!
call ortho_qr(Q, size(Q,1), m, low_rank+nb_oversamp)
! !!!
! power scheme
! !!!
allocate( P(n, low_rank+nb_oversamp) )
do PowerIt = 1, PowerIt_max
! !!!
!$OMP PARALLEL DEFAULT(SHARED) PRIVATE(i,j,k,l)
!$OMP DO
do l = 1, low_rank+nb_oversamp
P(:,l) = 0.d0
do k = 1, N_det
i = psi_bilinear_matrix_rows(k)
j = psi_bilinear_matrix_columns(k)
P(j,l) = P(j,l) + psi_bilinear_matrix_values(k,i_state) * Q(i,l)
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
! !!!
call ortho_qr(P, size(P,1), n, low_rank+nb_oversamp)
! !!!
!$OMP PARALLEL DEFAULT(SHARED) PRIVATE(i,j,k,l)
!$OMP DO
do l = 1, low_rank+nb_oversamp
Q(:,l) = 0.d0
do k = 1 , N_det
i = psi_bilinear_matrix_rows(k)
j = psi_bilinear_matrix_columns(k)
Q(i,l) = Q(i,l) + psi_bilinear_matrix_values(k,i_state) * P(j,l)
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
! !!!
call ortho_qr(Q, size(Q,1), m, low_rank+nb_oversamp)
! !!!
enddo
deallocate(P)
! !!!
allocate( B(low_rank+nb_oversamp,n) )
!$OMP PARALLEL DEFAULT(SHARED) PRIVATE(i,j,k,l)
!$OMP DO
do l = 1, low_rank+nb_oversamp
B(l,:) = 0.d0
do k = 1, N_det
i = psi_bilinear_matrix_rows(k)
j = psi_bilinear_matrix_columns(k)
B(l,j) = B(l,j) + psi_bilinear_matrix_values(k,i_state) * Q(i,l)
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
! !!!
allocate( UB(low_rank+nb_oversamp,low_rank+nb_oversamp), D(low_rank+nb_oversamp), Vt(low_rank+nb_oversamp,n) )
call svd_s( B, size(B,1), UB, size(UB,1), D, Vt, size(Vt,1), low_rank+nb_oversamp, n)
deallocate(B)
allocate( U(m,low_rank+nb_oversamp) )
call dgemm('N', 'N', m, low_rank+nb_oversamp, low_rank+nb_oversamp, 1.d0, Q, size(Q,1), UB, size(UB,1), 0.d0, U, size(U,1))
deallocate( Q,UB )
! !!!
do l = 1, low_rank
DRSVD(l) = D(l)
do i = 1, m
URSVD(i,l) = U(i,l)
enddo
do i = 1, n
VtRSVD(l,i) = Vt(l,i)
enddo
enddo
! !!!
return
! !!!
end

20
devel/svdwf/RSVD.py Normal file
View File

@ -0,0 +1,20 @@
# !!!
import numpy as np
from QR import QR_fact
# !!!
def powit_RSVD(X, new_r, nb_powit, nb_oversamp):
# !!!
G = np.random.randn(X.shape[1], new_r+nb_oversamp)
Q = QR_fact( np.dot(X,G) )
# !!!
for _ in range(nb_powit):
Q = QR_fact( np.dot(X.T,Q) )
Q = QR_fact( np.dot(X,Q) )
# !!!
Y = np.dot(Q.T,X)
# !!!
U, S, VT = np.linalg.svd(Y, full_matrices=0)
U = np.dot(Q,U)
return U[:,:(new_r)], S[:(new_r)], VT[:(new_r),:]
# !!!
# !!!

View File

@ -0,0 +1,677 @@
program buildpsi_SVDit
implicit none
BEGIN_DOC
! perturbative approach to build psi_postsvd
END_DOC
read_wf = .True.
TOUCH read_wf
PROVIDE N_int
call run()
end
subroutine run
USE OMP_LIB
implicit none
integer(bit_kind) :: det1(N_int,2), det2(N_int,2)
integer :: degree, i_state
double precision :: h12
integer :: i, j, k, l, ii, jj
double precision :: norm_psi
double precision, allocatable :: Uref(:,:), Dref(:), Vtref(:,:), Aref(:,:), Vref(:,:)
double precision :: err0, err_tmp, e_tmp
double precision :: E0, E0pt2, ept2, E0_old, tol_energy
double precision :: ctmp, htmp
double precision, allocatable :: H0(:,:), Hdiag(:), Hkl(:,:)
double precision, allocatable :: coeff_psi_selected(:), coeff_psi_toselect(:)
integer :: n_FSVD, n_selected, n_toselect, it_svd, it_svd_max
integer, allocatable :: numalpha_selected(:), numbeta_selected(:)
integer, allocatable :: numalpha_toselect(:), numbeta_toselect(:)
integer, allocatable :: numalpha_tmp(:), numbeta_tmp(:)
integer(kind=8) :: W_tbeg, W_tend, W_tbeg_it, W_tend_it, W_ir
real(kind=8) :: W_tot_time, W_tot_time_it
real(kind=8) :: CPU_tbeg, CPU_tend, CPU_tbeg_it, CPU_tend_it
real(kind=8) :: CPU_tot_time, CPU_tot_time_it
real(kind=8) :: speedup, speedup_it
integer :: nb_taches
!$OMP PARALLEL
nb_taches = OMP_GET_NUM_THREADS()
!$OMP END PARALLEL
call CPU_TIME(CPU_tbeg)
call SYSTEM_CLOCK(COUNT=W_tbeg, COUNT_RATE=W_ir)
i_state = 1
det1(:,1) = psi_det_alpha_unique(:,1)
det2(:,1) = psi_det_alpha_unique(:,1)
call get_excitation_degree_spin(det1(1,1),det2(1,1),degree,N_int)
det1(:,2) = psi_det_beta_unique(:,1)
det2(:,2) = psi_det_beta_unique(:,1)
call get_excitation_degree(det1,det2,degree,N_int)
call i_H_j(det1, det2, N_int, h12)
! ---------------------------------------------------------------------------------------
! construct the initial CISD matrix
print *, ' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~'
print *, ' CISD matrix:', n_det_alpha_unique,'x',n_det_beta_unique
print *, ' N det :', N_det
print *, ' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~'
norm_psi = 0.d0
do k = 1, N_det
norm_psi = norm_psi + psi_bilinear_matrix_values(k,i_state) &
* psi_bilinear_matrix_values(k,i_state)
enddo
print *, ' initial norm = ', norm_psi
allocate( Aref(n_det_alpha_unique,n_det_beta_unique) )
Aref(:,:) = 0.d0
do k = 1, N_det
i = psi_bilinear_matrix_rows(k)
j = psi_bilinear_matrix_columns(k)
Aref(i,j) = psi_bilinear_matrix_values(k,i_state)
enddo
! ---------------------------------------------------------------------------------------
! ---------------------------------------------------------------------------------------
! perform a Full SVD
allocate( Uref(n_det_alpha_unique,n_det_beta_unique) )
allocate( Dref(n_det_beta_unique) )
allocate( Vref(n_det_beta_unique,n_det_beta_unique) )
allocate( Vtref(n_det_beta_unique,n_det_beta_unique) )
call svd_s(Aref, size(Aref,1), Uref, size(Uref,1), Dref, Vtref, size(Vtref,1) &
, n_det_alpha_unique, n_det_beta_unique)
print *, ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~ '
print *, ' --- First SVD: ok --- '
print *, ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~ '
do l = 1, n_det_beta_unique
do i = 1, n_det_beta_unique
Vref(i,l) = Vtref(l,i)
enddo
enddo
deallocate( Vtref )
! ---------------------------------------------------------------------------------------
! ---------------------------------------------------------------------------------------
! numerote vectors
! Full rank
n_FSVD = n_det_beta_unique*n_det_beta_unique
print*, ' Full psi space rank = ', n_FSVD
! Truncated rank
n_selected = 20
print*, ' initial psi space rank = ', n_selected
allocate( numalpha_selected(n_selected) , numbeta_selected(n_selected) )
do i = 1, n_selected
numalpha_selected(i) = i
numbeta_selected (i) = i
enddo
! check SVD error
err0 = 0.d0
do j = 1, n_det_beta_unique
do i = 1, n_det_alpha_unique
err_tmp = 0.d0
do l = 1, n_selected
ii = numalpha_selected(l)
jj = numbeta_selected (l)
err_tmp = err_tmp + Dref(l) * Uref(i,ii) * Vref(j,jj)
enddo
err_tmp = Aref(i,j) - err_tmp
err0 += err_tmp * err_tmp
enddo
enddo
print *, ' SVD err (%) = ', 100.d0 * dsqrt(err0/norm_psi)
deallocate( Aref )
! perturbative space rank
l = 3
k = 0
if( l.eq.1 ) then
n_toselect = 2*n_selected * ( n_det_beta_unique - n_selected )
allocate( numalpha_toselect(n_toselect) , numbeta_toselect(n_toselect) )
! nondiagonal blocs
do i = 1, n_selected
do j = n_selected+1, n_det_beta_unique
k = k + 1
numalpha_toselect(k) = i
numbeta_toselect (k) = j
enddo
enddo
do j = 1, n_selected
do i = n_selected+1, n_det_beta_unique
k = k + 1
numalpha_toselect(k) = i
numbeta_toselect (k) = j
enddo
enddo
elseif( l.eq.2 ) then
n_toselect = n_FSVD - n_selected*n_selected
allocate( numalpha_toselect(n_toselect) , numbeta_toselect(n_toselect) )
! nondiagonal blocs
do i = 1, n_selected
do j = n_selected+1, n_det_beta_unique
k = k + 1
numalpha_toselect(k) = i
numbeta_toselect (k) = j
enddo
enddo
do j = 1, n_selected
do i = n_selected+1, n_det_beta_unique
k = k + 1
numalpha_toselect(k) = i
numbeta_toselect (k) = j
enddo
enddo
! diagonal bloc
do i = n_selected+1, n_det_beta_unique
do j = n_selected+1, n_det_beta_unique
k = k + 1
numalpha_toselect(k) = i
numbeta_toselect (k) = j
enddo
enddo
elseif( l.eq.3 ) then
n_toselect = n_FSVD - n_selected
allocate( numalpha_toselect(n_toselect) , numbeta_toselect(n_toselect) )
do i = 1, n_det_beta_unique
do j = 1, n_det_beta_unique
if( (i.eq.j).and.(i.le.n_selected)) then
cycle
else
k = k + 1
numalpha_toselect(k) = i
numbeta_toselect (k) = j
endif
enddo
enddo
elseif( l.eq.4 ) then
n_toselect = n_FSVD - n_selected - (n_det_beta_unique-n_selected)**2
allocate( numalpha_toselect(n_toselect) , numbeta_toselect(n_toselect) )
! nondiagonal blocs
do i = 1, n_selected
do j = i+1, n_det_beta_unique
k = k + 1
numalpha_toselect(k) = i
numbeta_toselect (k) = j
enddo
enddo
do j = 1, n_selected
do i = j+1, n_det_beta_unique
k = k + 1
numalpha_toselect(k) = i
numbeta_toselect (k) = j
enddo
enddo
endif
if( k.ne.n_toselect ) then
print*, ' error in numeroting '
stop
endif
print*, ' perturbative psi space rank = ', n_toselect
! ---------------------------------------------------------------------------------------
!________________________________________________________________________________________________________
!
! loop over SVD iterations
!________________________________________________________________________________________________________
E0_old = 0.d0
tol_energy = 1.d0
it_svd = 0
it_svd_max = 100
do while( ( it_svd .lt. it_svd_max) .and. ( tol_energy .gt. 1d-8 ) )
call CPU_TIME(CPU_tbeg_it)
call SYSTEM_CLOCK(COUNT=W_tbeg_it, COUNT_RATE=W_ir)
it_svd = it_svd + 1
print*, '+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +'
print*, ' '
print*, ' iteration', it_svd
! ---------------------------------------------------------------------------------------
! calculate the energy
allocate( coeff_psi_selected(n_selected) )
! normalise | psi0 >
norm_psi = 0.d0
do i = 1, n_selected
norm_psi += Dref(i) * Dref(i)
enddo
norm_psi = 1.d0 / dsqrt(norm_psi)
do i = 1, n_selected
coeff_psi_selected(i) = Dref(i) * norm_psi
enddo
! H0(i,j) = < u_i v_j | H | u_i v_j >
print *, ''
print *, ''
print *, ''
print *, '-- Compute H --'
allocate( H0(n_selected,n_selected) )
call const_psiHpsi(n_selected, Uref, Vref, numalpha_selected, numbeta_selected, H0)
! avant SVD
! E0 = < psi_0 | H | psi_0 > / < psi_0 | psi_0 >
E0 = 0.d0
do i = 1, n_selected
ii = numalpha_selected(i)
htmp = 0.d0
do j = 1, n_selected
jj = numalpha_selected(j)
htmp = htmp + coeff_psi_selected(j) * H0(jj,ii)
enddo
E0 = E0 + htmp * coeff_psi_selected(i)
enddo
E0 = E0 + nuclear_repulsion
print *,' E0 (avant SVD) =', E0
deallocate( H0 )
! ---------------------------------------------------------------------------------------
! ---------------------------------------------------------------------------------------
! nondiagonal elements
print *, ' --- Perturbation --- '
allocate( Hdiag(n_toselect), Hkl(n_selected,n_toselect) )
call const_Hdiag_Hkl(n_selected, n_toselect, Uref, Vref &
, numalpha_selected, numbeta_selected, numalpha_toselect, numbeta_toselect, Hdiag, Hkl)
! evaluate the coefficients for all the vectors
allocate( coeff_psi_toselect(n_toselect) )
ept2 = 0.d0
do ii = 1, n_toselect
ctmp = 0.d0
do l = 1, n_selected
ctmp += coeff_psi_selected(l) * Hkl(l,ii)
enddo
coeff_psi_toselect(ii) = ctmp / ( E0 - (Hdiag(ii)+nuclear_repulsion) )
ept2 += ctmp * ctmp / ( E0 - (Hdiag(ii)+nuclear_repulsion) )
enddo
E0pt2 = E0 + ept2
deallocate( Hdiag, Hkl)
print *, ' perturb energy = ', E0pt2, ept2
print*, ' delta E0 = ', E0pt2 - E0_old
tol_energy = 100.d0 * dabs(E0pt2-E0_old)/dabs(E0pt2)
E0_old = E0pt2
! normalize the new psi and perform a new SVD
norm_psi = 0.d0
do l = 1, n_toselect
norm_psi = norm_psi + coeff_psi_toselect(l)*coeff_psi_toselect(l)
enddo
norm_psi = norm_psi + 1.d0
norm_psi = 1.d0 / dsqrt(norm_psi)
do i = 1, n_toselect
coeff_psi_toselect(i) = coeff_psi_toselect(i) * norm_psi
enddo
do i = 1, n_selected
coeff_psi_selected(i) = coeff_psi_selected(i) * norm_psi
enddo
print *, ' --- SVD --- '
call perform_newSVD(n_selected, n_toselect, numalpha_selected, numbeta_selected &
, numalpha_toselect, numbeta_toselect, coeff_psi_selected, coeff_psi_toselect &
, Uref, Vref, Dref )
! ---------------------------------------------------------------------------------------
deallocate( coeff_psi_toselect )
deallocate( coeff_psi_selected )
write(55,'(i5,4x,4(f22.15,2x))') it_svd, E0, E0pt2
call CPU_TIME(CPU_tend_it)
call SYSTEM_CLOCK(COUNT=W_tend_it, COUNT_RATE=W_ir)
CPU_tot_time_it = CPU_tend_it - CPU_tbeg_it
W_tot_time_it = real(W_tend_it-W_tbeg_it, kind=8) / real(W_ir, kind=8)
speedup_it = CPU_tot_time_it / W_tot_time_it
print '(//, 3X, "elapsed time = ", 1PE10.3, " min.", /, &
& 3X, "CPU time = ", 1PE10.3, " min.", /, &
& 3X, "speed up = ", 1PE10.3,//)', W_tot_time_it/60.d0, CPU_tot_time_it/60.d0, speedup_it
!print*, '+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +'
!print*, ' '
end do
!________________________________________________________________________________________________________
!________________________________________________________________________________________________________
deallocate( Uref, Vref, Dref )
call CPU_TIME(CPU_tend)
call SYSTEM_CLOCK(COUNT=W_tend, COUNT_RATE=W_ir)
CPU_tot_time = CPU_tend - CPU_tbeg
W_tot_time = real(W_tend - W_tbeg, kind=8) / real(W_ir, kind=8)
speedup = CPU_tot_time / W_tot_time
print *,' ___________________________________________________________________'
print '(//,3X,"Execution avec ",i2," threads")',nb_taches
print *,' ___________________________________________________________________'
print '(//, 3X, "elapsed time = ", 1PE10.3, " min.", /, &
& 3X, "CPU time = ", 1PE10.3, " min.", /, &
& 3X, "speed up = ", 1PE10.3 ,//)', W_tot_time/60.d0, CPU_tot_time/60.d0, speedup
end
subroutine const_psiHpsi(n_selected, Uref, Vref, numalpha_selected, numbeta_selected, H0)
USE OMP_LIB
implicit none
integer, intent(in) :: n_selected
integer, intent(in) :: numalpha_selected(n_selected), numbeta_selected(n_selected)
double precision, intent(in) :: Uref(n_det_alpha_unique,n_det_beta_unique)
double precision, intent(in) :: Vref(n_det_beta_unique ,n_det_beta_unique)
double precision, intent(out) :: H0(n_selected,n_selected)
integer(bit_kind) :: det1(N_int,2)
integer(bit_kind) :: det2(N_int,2)
integer :: degree
integer :: i, j, k, l
integer :: ii0, jj0, ii, jj, n, m, np, mp
double precision :: h12, x
H0(:,:) = 0.d0
do i = 1, n_det_alpha_unique
det1(:,1) = psi_det_alpha_unique(:,i)
do k = 1, n_det_alpha_unique
det2(:,1) = psi_det_alpha_unique(:,k)
call get_excitation_degree_spin(det1(1,1),det2(1,1),degree,N_int)
if (degree .gt. 2) then
cycle
endif
do j = 1, n_det_beta_unique
det1(:,2) = psi_det_beta_unique(:,j)
do l = 1, n_det_beta_unique
det2(:,2) = psi_det_beta_unique(:,l)
call get_excitation_degree(det1,det2,degree,N_int)
if (degree .gt. 2) then
cycle
endif
! !!!
call i_H_j(det1, det2, N_int, h12)
! !!!
! ~~~ H0 ~~~
do n = 1, n_selected
ii0 = numalpha_selected(n)
jj0 = numbeta_selected (n)
x = Uref(k,ii0) * Vref(l,jj0) * h12
do m = 1, n_selected
ii = numalpha_selected(m)
jj = numbeta_selected (m)
H0(m,n) += Uref(i,ii) * Vref(j,jj) * x
enddo
enddo
! ~~~ ~~~~~~ ~~~
enddo
enddo
enddo
enddo
end subroutine const_psiHpsi
subroutine const_Hdiag_Hkl(n_selected, n_toselect, Uref, Vref &
, numalpha_selected, numbeta_selected, numalpha_toselect, numbeta_toselect, Hdiag, Hkl)
USE OMP_LIB
implicit none
integer, intent(in) :: n_selected,n_toselect
integer, intent(in) :: numalpha_selected(n_selected), numbeta_selected(n_selected)
integer, intent(in) :: numalpha_toselect(n_toselect), numbeta_toselect(n_toselect)
double precision, intent(in) :: Uref(n_det_alpha_unique,n_det_beta_unique)
double precision, intent(in) :: Vref(n_det_beta_unique ,n_det_beta_unique)
double precision, intent(out) :: Hdiag(n_toselect), Hkl(n_selected,n_toselect)
integer(bit_kind) :: det1(N_int,2)
integer(bit_kind) :: det2(N_int,2)
integer :: degree
integer :: i, j, k, l
integer :: ii0, jj0, ii, jj, n, m, np, mp
double precision :: h12, y
double precision, allocatable :: Hdiag_tmp(:), Hkl_tmp(:,:)
Hdiag(:) = 0.d0
Hkl(:,:) = 0.d0
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(n,ii0,jj0,y,m,ii,jj,i,j,k,l,h12,det1,det2,Hdiag_tmp,Hkl_tmp,degree) &
!$OMP SHARED(n_det_alpha_unique,n_det_beta_unique,psi_det_alpha_unique,psi_det_beta_unique, &
!$OMP N_int,n_selected,n_toselect,Uref,Vref,numalpha_toselect,numbeta_toselect, &
!$OMP numalpha_selected, numbeta_selected,Hkl,Hdiag )
allocate( Hdiag_tmp(n_toselect), Hkl_tmp(n_selected,n_toselect) )
Hdiag_tmp(:) = 0.d0
Hkl_tmp(:,:) = 0.d0
!$OMP DO COLLAPSE(2) SCHEDULE(DYNAMIC,8)
do i = 1, n_det_alpha_unique
do k = 1, n_det_alpha_unique
det1(:,1) = psi_det_alpha_unique(:,i)
det2(:,1) = psi_det_alpha_unique(:,k)
! !!!
! ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
call get_excitation_degree_spin(det1(1,1),det2(1,1),degree,N_int)
if (degree .gt. 2) then
cycle
endif
! ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
! !!!
do j = 1, n_det_beta_unique
det1(:,2) = psi_det_beta_unique(:,j)
do l = 1, n_det_beta_unique
det2(:,2) = psi_det_beta_unique(:,l)
! !!!
! ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
call get_excitation_degree(det1,det2,degree,N_int)
if (degree .gt. 2) then
cycle
endif
! ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
! !!!
call i_H_j(det1, det2, N_int, h12)
! ~ ~ ~ H ~ ~ ~
do n = 1, n_toselect
ii0 = numalpha_toselect(n)
jj0 = numbeta_toselect (n)
y = Uref(k,ii0) * Vref(l,jj0) * h12
! Hdiag
Hdiag_tmp(n) += Uref(i,ii0) * Vref(j,jj0) * y
do m = 1, n_selected
ii = numalpha_selected(m)
jj = numbeta_selected (m)
! Hkl
Hkl_tmp(m,n) += Uref(i,ii) * Vref(j,jj) * y
enddo
enddo
! ~ ~ ~ ! ! ! ~ ~ ~
enddo
enddo
! !!!
enddo
enddo
!$OMP END DO
!$OMP CRITICAL
do n = 1, n_toselect
Hdiag(n) += Hdiag_tmp(n)
do m = 1, n_selected
Hkl(m,n) += Hkl_tmp(m,n)
enddo
enddo
!$OMP END CRITICAL
deallocate( Hdiag_tmp,Hkl_tmp )
!$OMP END PARALLEL
end subroutine const_Hdiag_Hkl
subroutine perform_newSVD(n_selected, n_toselect, numalpha_selected, numbeta_selected &
, numalpha_toselect, numbeta_toselect, coeff_psi_selected, coeff_psi_toselect &
, Uref, Vref, Dref )
USE OMP_LIB
implicit none
integer, intent(in) :: n_selected, n_toselect
integer, intent(in) :: numalpha_selected(n_selected), numbeta_selected(n_selected)
integer, intent(in) :: numalpha_toselect(n_toselect), numbeta_toselect(n_toselect)
double precision, intent(in) :: coeff_psi_selected(n_selected), coeff_psi_toselect(n_toselect)
double precision, intent(inout) :: Uref(n_det_alpha_unique,n_det_beta_unique)
double precision, intent(inout) :: Vref(n_det_beta_unique ,n_det_beta_unique)
double precision, intent(inout) :: Dref(n_det_beta_unique)
integer :: mm, nn, i, j, ii0, ii, l, jj
double precision :: err0, err_norm, err_tmp
double precision, allocatable :: S_mat(:,:), SxVt(:,:)
double precision, allocatable :: U_svd(:,:), V_svd(:,:)
double precision, allocatable :: U_newsvd(:,:), V_newsvd(:,:), Vt_newsvd(:,:), D_newsvd(:), A_newsvd(:,:)
mm = n_det_alpha_unique
nn = n_det_beta_unique
allocate( U_svd(n_det_alpha_unique,n_det_beta_unique) )
allocate( V_svd(n_det_beta_unique ,n_det_beta_unique) )
allocate( S_mat(n_det_beta_unique ,n_det_beta_unique) )
U_svd(:,:) = Uref(:,:)
V_svd(:,:) = Vref(:,:)
S_mat(:,:) = 0.d0
do l = 1, n_selected
ii = numalpha_selected(l)
jj = numbeta_selected (l)
S_mat(ii,jj) = coeff_psi_selected(l)
enddo
do l = 1, n_toselect
ii = numalpha_toselect(l)
jj = numbeta_toselect (l)
S_mat(ii,jj) = coeff_psi_toselect(l)
enddo
! construct the new matrix: U_svd x S_mat x transpose(V_svd)
! (NaxNb) (NbxNb) transpose(NbxNb)
! first compute S_mat x transpose(V_svd)
allocate( SxVt(nn,nn) )
call dgemm( 'N', 'T', nn, nn, nn, 1.d0 &
, S_mat , size(S_mat,1) &
, V_svd , size(V_svd,1) &
, 0.d0, SxVt, size(SxVt ,1) )
! then compute U_svd x SxVt
allocate( A_newsvd(mm,nn) )
call dgemm( 'N', 'N', mm, nn, nn, 1.d0 &
, U_svd , size(U_svd ,1) &
, SxVt , size(SxVt ,1) &
, 0.d0, A_newsvd, size(A_newsvd,1) )
deallocate( SxVt )
! perform new SVD
allocate( U_newsvd(mm,nn), Vt_newsvd(nn,nn), D_newsvd(nn) )
call svd_s( A_newsvd, size(A_newsvd,1), U_newsvd, size(U_newsvd,1), D_newsvd &
, Vt_newsvd, size(Vt_newsvd,1), mm, nn)
print *, ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ '
print *, ' +++ new SVD is performed +++ '
allocate( V_newsvd(nn,nn) )
do l = 1, nn
do j = 1, nn
V_newsvd(j,l) = Vt_newsvd(l,j)
enddo
enddo
! check SVD error
err0 = 0.d0
err_norm = 0.d0
do j = 1, nn
do i = 1, mm
err_tmp = 0.d0
do l = 1, mm
err_tmp = err_tmp + D_newsvd(l) * U_newsvd(i,l) * V_newsvd(j,l)
enddo
err_tmp = A_newsvd(i,j) - err_tmp
err0 += err_tmp * err_tmp
err_norm += A_newsvd(i,j) * A_newsvd(i,j)
enddo
enddo
print *, ' SVD err (%) = ', 100.d0 * dsqrt(err0/err_norm)
print *, ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ '
do l = 1, nn
Dref(l) = D_newsvd(l)
Uref(:,l) = U_newsvd(:,l)
Vref(:,l) = V_newsvd(:,l)
enddo
deallocate( U_newsvd, V_newsvd, Vt_newsvd, D_newsvd, A_newsvd )
return
end subroutine perform_newSVD

View File

@ -0,0 +1,614 @@
import sys, os
QMCCHEM_PATH=os.environ["QMCCHEM_PATH"]
sys.path.insert(0,QMCCHEM_PATH+"/EZFIO/Python/")
from ezfio import ezfio
from datetime import datetime
import time
import numpy as np
import subprocess
from scipy.linalg import eig, eigh
# ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ !
def get_energy():
buffer = subprocess.check_output( ['qmcchem', 'result', '-e', 'e_loc', filename]
, encoding='UTF-8' )
if buffer.strip() != "":
buffer = buffer.splitlines()[-1]
_, energy, error = [float(x) for x in buffer.split()]
return energy, error
else:
return None, None
# ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ !
# ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ !
def run_qmc():
return subprocess.check_output(['qmcchem', 'run', filename])
def stop_qmc():
subprocess.check_output(['qmcchem', 'stop', filename])
def set_vmc_params():
#subprocess.check_output(['qmcchem', 'edit', '-c', '-j', 'Simple',
# '-m', 'VMC',
# '-l', str(20),
# '--time-step=0.3',
# '--stop-time=36000',
# '--norm=1.e-5',
# '-w', '10',
# filename])
subprocess.check_output(['qmcchem', 'edit', '-c'
, '-j', 'None'
, '-l', str(block_time)
, '-t', str(total_time)
, filename])
# ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ !
# ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ !
def get_Aref():
Aref = np.zeros( (n_alpha, n_beta) )
for k in range(n_det):
i = A_rows[k] - 1
j = A_cols[k] - 1
Aref[i,j] = A_vals[0][k]
return( Aref )
# ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ !
# ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ !
def check_svd_error( A, U, S, V ):
# || A - U x S x transpose(V) ||
# to normalize
norm_A = np.linalg.norm(A, ord='fro')
# vector S ==> matrix S
_, na = U.shape
_, nb = V.shape
S_mat = np.zeros( (na,nb) )
for i in range( min(na,nb) ):
S_mat[i,i] = S[i]
#A_SVD = np.linalg.multi_dot([ U, np.diag(S), Vt ])
A_SVD = np.linalg.multi_dot([ U, S_mat, V.T ])
err_SVD = 100. * np.linalg.norm( A - A_SVD, ord="fro") / norm_A
print(' error between A_SVD and Aref = {} %\n'.format(err_SVD) )
# ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ !
# ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ !
def FSVD_save_EZFIO():
U_toEZFIO = np.zeros( ( 1, U_FSVD.shape[1], U_FSVD.shape[0] ) )
V_toEZFIO = np.zeros( ( 1, V_FSVD.shape[1], V_FSVD.shape[0] ) )
U_toEZFIO[0,:,:] = U_FSVD.T
V_toEZFIO[0,:,:] = V_FSVD.T
ezfio.set_spindeterminants_psi_svd_alpha_unique( U_toEZFIO )
ezfio.set_spindeterminants_psi_svd_beta_unique ( V_toEZFIO )
ezfio.set_spindeterminants_psi_svd_coefs_unique( S_FSVD )
print(' Full SVD unique vectors & coeff are saved to EZFIO ')
# ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ !
# ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ !
def numerote_selected_vectors():
numalpha_selected = []
numbeta_selected = []
for i in range(n_TSVD):
for j in range(n_TSVD):
numalpha_selected.append(j+1)
numbeta_selected.append(i+1)
if( (len(numalpha_selected)!=n_selected) or (len(numbeta_selected)!=n_selected) ) :
print(' error in numerating selectod vectors')
print(' {} != {} != {}'.format(n_selected,len(numalpha_selected),len(numbeta_selected)) )
else:
ezfio.set_spindeterminants_psi_svd_alpha_numselected(numalpha_selected)
ezfio.set_spindeterminants_psi_svd_beta_numselected (numbeta_selected)
print(' selected vectors are numeroted in EZFIO')
return( numalpha_selected,numbeta_selected )
# ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ !
# ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ !
def numerote_toselect_vectors( choix ):
numalpha_toselect = []
numbeta_toselect = []
if( choix == 3 ):
# nondiagonal blocs
for i in range(n_TSVD):
for j in range(n_TSVD,n_beta):
numalpha_toselect.append(i+1)
numbeta_toselect.append(j+1)
for i in range(n_TSVD,n_alpha):
for j in range(n_TSVD):
numalpha_toselect.append(i+1)
numbeta_toselect.append(j+1)
# diagonal bloc
for i in range(n_TSVD,n_alpha):
for j in range(n_TSVD,n_beta):
numalpha_toselect.append(i+1)
numbeta_toselect.append(j+1)
elif( choix == 2 ):
# nondiagonal blocs
for i in range(n_TSVD):
for j in range(n_TSVD,n_beta):
numalpha_toselect.append(i+1)
numbeta_toselect.append(j+1)
for i in range(n_TSVD,n_alpha):
for j in range(n_TSVD):
numalpha_toselect.append(i+1)
numbeta_toselect.append(j+1)
else:
print(' choix = 2 ou 3' )
exit()
if( (len(numalpha_toselect)!=n_toselect) or (len(numbeta_toselect)!=n_toselect) ) :
print(' error in numerating vectors to select')
print(' {} != {} != {}'.format(n_toselect,len(numalpha_toselect),len(numbeta_toselect)) )
else:
ezfio.set_spindeterminants_psi_svd_alpha_numtoselect(numalpha_toselect)
ezfio.set_spindeterminants_psi_svd_beta_numtoselect (numbeta_toselect)
print(' vectors to select are numeroted in EZFIO')
return( numalpha_toselect,numbeta_toselect )
# ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ !
# ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ !
def normalize_S_TSVD():
global S_TSVD
norm_S_TSVD = np.linalg.norm(S_TSVD, ord='fro')
S_TSVD = S_TSVD / norm_S_TSVD
return()
# ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ !
# ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ !
def get_h_selected_matrix():
h_selected_matrix = np.zeros( (n_selected,n_selected) )
h_selected_stater = np.zeros( (n_selected,n_selected) )
beg_h_selected_matrix = results.find('h_selected_matrix : [ ') + len('h_selected_matrix : [ ')
end_h_selected_matrix = len(results)
h_selected_matrix_buf = results[beg_h_selected_matrix:end_h_selected_matrix]
h_selected_matrix_buf = h_selected_matrix_buf.split( '\n' )
for i in range(1,n_selected+1):
ii0 = (i-1) * n_selected
for j in range(1,n_selected+1):
iline = ii0 + j
line = h_selected_matrix_buf[iline].split()
indc = int ( line[0] )
if( indc != iline ):
print('Error in get_h_selected_matrix')
exit()
else:
h_selected_matrix[i-1][j-1] = float( line[2] )
h_selected_stater[i-1][j-1] = float( line[4] )
return(h_selected_matrix,h_selected_stater)
# ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ !
# ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ !
def get_o_selected_matrix():
o_selected_matrix = np.zeros( (n_selected,n_selected) )
o_selected_stater = np.zeros( (n_selected,n_selected) )
beg_o_selected_matrix = results.find('overlop_selected_matrix : [ ') + len('overlop_selected_matrix : [ ')
end_o_selected_matrix = len(results)
o_selected_matrix_buf = results[beg_o_selected_matrix:end_o_selected_matrix]
o_selected_matrix_buf = o_selected_matrix_buf.split( '\n' )
for i in range(1,n_selected+1):
ii0 = (i-1) * n_selected
for j in range(1,n_selected+1):
iline = ii0 + j
line = o_selected_matrix_buf[iline].split()
indc = int ( line[0] )
if( indc != iline ):
print('Error in get_o_selected_matrix')
exit()
else:
o_selected_matrix[i-1][j-1] = float( line[2] )
o_selected_stater[i-1][j-1] = float( line[4] )
return(o_selected_matrix,o_selected_stater)
# ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ !
# ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ !
def get_Epostsvd():
# symmetrise and diagonalise
aa = h_selected_matrix
aa = 0.5*( aa + aa.T )
bb = o_selected_matrix
eigvals_postsvd, vr = eig(aa, bb, left=False, right=True, overwrite_a=True, overwrite_b=True,
check_finite=True, homogeneous_eigvals=False)
d_postsvd = np.diagflat(S_TSVD)
d_postsvd = d_postsvd.reshape( (1,n_selected*n_selected) )
recouvre_postsvd = np.abs(d_postsvd @ vr)
ind_gspostsvd = np.argmax(recouvre_postsvd)
E_postsvd = eigvals_postsvd[ind_gspostsvd]
return( E_postsvd, vr[:,ind_gspostsvd] )
# ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ !
# ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ !
def Hqmc_svd_diag():
# read CI_SVD matrices
Ci_h_matrix_svd = get_Ci_h_matrix_svd()
Ci_overlap_matrix_svd = get_Ci_overlap_matrix_svd()
# symmetrise
aa = Ci_h_matrix_svd
aa = 0.5*( aa + aa.T )
bb = Ci_overlap_matrix_svd
# diagonalise
eigvals_svd, vr = eig( aa, bb, left=False, right=True
, overwrite_a=True, overwrite_b=True
, check_finite=True, homogeneous_eigvals=False)
recouvre_svd = np.abs( np.dot( S_FSVD, vr) )
ind_gssvd = np.argmax(recouvre_svd)
E_svd = eigvals_svd[ind_gssvd] + nuc_energy
return( E_svd, vr[:,ind_gssvd] )
# ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ !
# ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ !
def SVD_postsvd():
# reshape sigma_postsvd
sigma_postsvd_mat = np.zeros( (n_selected,n_selected) )
for i in range(n_TSVD):
ii = i*n_TSVD
for j in range(n_TSVD):
jj = i*n_TSVD + j
sigma_postsvd_mat[i][j] = sigma_postsvd[jj]
# construct the new matrix Y & perform a new SVD
Y = np.dot( U_TSVD , np.dot(sigma_postsvd_mat , Vt_TSVD) )
U, S, Vt = np.linalg.svd(Y, full_matrices=True)
return(U, S, Vt)
# ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ !
# ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ !
def get_hij_fm():
hij_fm = np.zeros( (n_toselect) )
hij_fm_stater = np.zeros( (n_toselect) )
beg_hij = results.find('hij_fm : [ ') + len('hij_fm : [ ')
end_hij = len(results)
hij_buf = results[beg_hij:end_hij]
hij_buf = hij_buf.split( '\n' )
for iline in range(1,n_toselect+1):
line = hij_buf[iline].split()
indc = int( line[0] )
if( indc != iline ):
print('Error in get_hij_fm')
exit()
else:
hij_fm [iline-1] = float( line[2] )
hij_fm_stater[iline-1] = float( line[4] )
return(hij_fm, hij_fm_stater)
# ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ !
# ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ !
def get_hij_sm():
hij_sm = np.zeros( (n_toselect) )
hij_sm_stater = np.zeros( (n_toselect) )
beg_hij = results.find('hij_sm : [ ') + len('hij_sm : [ ')
end_hij = len(results)
hij_buf = results[beg_hij:end_hij]
hij_buf = hij_buf.split( '\n' )
for iline in range(1,n_toselect+1):
line = hij_buf[iline].split()
indc = int( line[0] )
if( indc != iline ):
print('Error in get_hij_sm')
exit()
else:
hij_sm [iline-1] = float( line[2] )
hij_sm_stater[iline-1] = float( line[4] )
return(hij_sm, hij_sm_stater)
# ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ !
# ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ !
def get_xij_diag():
xij_diag = np.zeros( (n_toselect) )
xij_diag_stater = np.zeros( (n_toselect) )
beg_xij = results.find('xij_diag : [ ') + len('xij_diag : [ ')
end_xij = len(results)
xij_buf = results[beg_xij:end_xij]
xij_buf = xij_buf.split( '\n' )
for iline in range(1,n_toselect+1):
line = xij_buf[iline].split()
indc = int( line[0] )
if( indc != iline ):
print('Error in get_xij_diag')
exit()
else:
xij_diag [iline-1] = float( line[2] )
xij_diag_stater[iline-1] = float( line[4] )
return(xij_diag, xij_diag_stater)
# ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ !
if __name__ == '__main__':
t0 = time.time()
print("Today's date:", datetime.now() )
# EZFIO file
filename = "/home/aammar/qp2/src/svdwf/2h2_work/2h2_cisd"
ezfio.set_file(filename)
print("filename = {}".format(filename))
# parameters
energ_nuc = 1.711353545183182 # for 2h2
# get spindeterminant data from EZFIO
n_alpha = ezfio.get_spindeterminants_n_det_alpha()
n_beta = ezfio.get_spindeterminants_n_det_beta()
A_rows = np.array(ezfio.get_spindeterminants_psi_coef_matrix_rows() )
A_cols = np.array(ezfio.get_spindeterminants_psi_coef_matrix_columns())
A_vals = np.array(ezfio.get_spindeterminants_psi_coef_matrix_values() )
n_det = A_rows.shape[0]
print('~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~')
print(' matrix: {} x {}'.format(n_alpha,n_beta))
print(' n_det = {}'.format(n_det))
print('~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~')
# construct intial dense matrix
Aref = get_Aref()
# perform initial Full SVD
print('')
print(' ----- Performing Full SVD ----- ')
U_FSVD, S_FSVD, Vt_FSVD = np.linalg.svd(Aref, full_matrices=True)
V_FSVD = Vt_FSVD.T
# check Full SVD error
check_svd_error( Aref, U_FSVD, S_FSVD, V_FSVD )
# save SVD vectors & coefficients in EZFIO
ezfio.set_spindeterminants_n_svd_coefs_unique(min(n_alpha,n_beta))
FSVD_save_EZFIO()
# truncated SVD
n_TSVD = 15
ezfio.set_spindeterminants_n_svd_coefs(n_TSVD)
U_TSVD = U_FSVD[:,:n_TSVD]
V_TSVD = V_FSVD[:,:n_TSVD]
S_TSVD = S_FSVD[:n_TSVD]
# check truncataed SVD error
check_svd_error( Aref, U_TSVD, S_TSVD, V_TSVD )
# numerote selected vectors & save to EZFIO
n_selected = n_TSVD * n_TSVD
print(' n_selected = {}'.format(n_selected))
ezfio.set_spindeterminants_n_svd_selected(n_selected)
numalpha_selected,numbeta_selected = numerote_selected_vectors()
# numerote vectors to select & save to EZFIO
n_toselect = n_alpha * n_beta - n_selected
print(' n_toselect = {}'.format(n_toselect))
ezfio.set_spindeterminants_n_svd_toselect(n_toselect)
numalpha_toselect,numbeta_toselect = numerote_toselect_vectors(choix=3)
#_________________________________________________________________________________________
#
# loop over SVD iterations
#_________________________________________________________________________________________
it_svd = 0
it_svd_max = 1
while( it_svd < it_svd_max ):
it_svd = it_svd + 1
# normalize sigular values in the truncated space
#normalize_S_TSVD()
# run QMC to get H_postsvd
block_time = 300 # in sec
total_time = 1800 # in sec
set_vmc_params()
ezfio.set_properties_hij_fm(False)
ezfio.set_properties_hij_sm(False)
ezfio.set_properties_xij_diag(False)
ezfio.set_properties_h_selected_matrix(True)
ezfio.set_properties_overlop_selected_matrix(True)
run_qmc()
# read QMC=CHEM results
t_read = time.time()
print(' getting QMCCHEM results from {}'.format(EZFIO_file) )
results = subprocess.check_output(['qmcchem', 'result', EZFIO_file, '>> results.dat'], encoding='UTF-8')
print(' getting results after {} minutes \n'.format( (time.time()-t_read)/60. ))
# < E_loc >
Eloc, ErrEloc = get_energy()
print(' Eloc = {} +/- {}'.format(Eloc, ErrEloc))
# get H and overlop from QMC=CHEM
h_selected_matrix, h_selected_stater = get_h_selected_matrix()
o_selected_matrix, o_selected_stater = get_o_selected_matrix()
# ground state from H S = E S
E_postsvd, sigma_postsvd = get_Epostsvd()
print(' post svd energy = {}'.format(E_postsvd+energ_nuc) )
# perform new SVD: U x sigma_postsvd x Vt --> U' x S' x Vt'
U_FSVD, S_FSVD, Vt_FSVD = SVD_postsvd()
V_FSVD = Vt_FSVD.T
# save in EZFIO
FSVD_save_EZFIO()
# run QMC to get hij, e and xij_diag from QMC=CHEM
block_time = 300 # in sec
total_time = 1800 # in sec
set_vmc_params()
ezfio.set_properties_h_selected_matrix(False)
ezfio.set_properties_overlop_selected_matrix(False)
ezfio.set_properties_hij_fm(True)
ezfio.set_properties_hij_sm(True)
ezfio.set_properties_xij_diag(True)
run_qmc()
# read QMC=CHEM results
t_read = time.time()
print(' getting QMCCHEM results from {}'.format(EZFIO_file) )
results = subprocess.check_output(['qmcchem', 'result', EZFIO_file, '>> results.dat'], encoding='UTF-8')
print(' getting results after {} minutes \n'.format( (time.time()-t_read)/60. ))
# < E_loc >
Eloc, ErrEloc = get_energy()
print(' Eloc = {} +/- {}'.format(Eloc, ErrEloc))
# hij = < psi_svd J | H | J l l' > / < psi_svd J | psi_svd J >
# = < H (J l l')/(psi_svd J) > ( first method: fm )
# = < E_loc (l l') / psi_svd > ( second method: sm )
hij_fm, hif_fm_stater = get_hij_fm()
hij_sm, hif_sm_stater = get_hij_sm()
# get xij_diag
xij_diag, xij_diag_stater = get_xij_diag()
# first method
dij_fm = np.zeros( (n_toselect) )
dij_fm_stater = np.zeros( (n_toselect) )
for i in range(n_toselect):
dij_fm[i] = hij_fm[i] / ( Eloc - xij_diag[i] )
# statistic error
a = ( hij_fm_stater[i]*hij_fm_stater[i] ) / ( hij_fm[i]*hij_fm[i] )
b = ( ErrEloc*ErrEloc + xij_diag_stater[i]*xij_diag_stater[i] ) / ( (Eloc-xij_diag[i])*(Eloc-xij_diag[i]) )
dij_fm_stater[i] = abs(dij_fm[i]) * np.sqrt( a + b )
cc = np.concatenate((dij_fm,dij_fm_stater),axis=1)
np.savetxt('dij_fm.txt',cc)
# second method
dij_sm = np.zeros( (n_toselect) )
dij_sm_stater = np.zeros( (n_toselect) )
for i in range(n_toselect):
dij_sm[i] = hij_sm[i] / ( Eloc - xij_diag[i] )
# statistic error
a = ( hij_fm_stater[i]*hij_fm_stater[i] ) / ( hij_sm[i]*hij_sm[i] )
b = ( ErrEloc*ErrEloc + xij_diag_stater[i]*xij_diag_stater[i] ) / ( (Eloc-xij_diag[i])*(Eloc-xij_diag[i]) )
dij_sm_stater[i] = abs(dij_sm[i]) * np.sqrt( a + b )
cc = np.concatenate((dij_sm,dij_sm_stater),axis=1)
np.savetxt('dij_sm.txt',cc)
# TODO
# choose fm or sm & perform a new SVD
#_________________________________________________________________________________________
print("end after {:.3f} minutes".format((time.time()-t0)/60.) )

View File

@ -0,0 +1,612 @@
program buildpsi_diagSVDit_Anthony_v0
implicit none
BEGIN_DOC
! perturbative approach to build psi_postsvd
END_DOC
read_wf = .True.
TOUCH read_wf
PROVIDE N_int
call run()
end
subroutine run
USE OMP_LIB
implicit none
integer(bit_kind) :: det1(N_int,2), det2(N_int,2)
integer :: degree, i_state
double precision :: h12
integer :: i, j, k, l, ii, jj, na, nb
double precision :: norm_psi, inv_sqrt_norm_psi
double precision, allocatable :: Uref(:,:), Dref(:), Vtref(:,:), Aref(:,:), Vref(:,:)
double precision :: E0_av, E0_ap, E0pt2
double precision :: err0, err_tmp, e_tmp, E0, overlop, E0_old, tol_energy
double precision :: ctmp, htmp, Ept2
double precision :: E0_postsvd, overlop_postsvd
double precision :: norm_coeff_psi, inv_sqrt_norm_coeff_psi
double precision :: overlopU, overlopU_mat, overlopV, overlopV_mat, overlop_psi
double precision, allocatable :: Hdiag(:), Hkl(:,:), H0(:,:), H(:,:,:,:)
double precision, allocatable :: psi_postsvd(:,:), coeff_psi_perturb(:)
integer :: n_FSVD, n_selected, n_toselect, n_tmp, it_svd, it_svd_max
integer :: n_selected2
integer, allocatable :: numalpha_selected(:), numbeta_selected(:)
integer, allocatable :: numalpha_toselect(:), numbeta_toselect(:)
integer, allocatable :: numalpha_tmp(:), numbeta_tmp(:)
integer(kind=8) :: W_tbeg, W_tend, W_tbeg_it, W_tend_it, W_ir
real(kind=8) :: W_tot_time, W_tot_time_it
real(kind=8) :: CPU_tbeg, CPU_tend, CPU_tbeg_it, CPU_tend_it
real(kind=8) :: CPU_tot_time, CPU_tot_time_it
real(kind=8) :: speedup, speedup_it
integer :: nb_taches
!$OMP PARALLEL
nb_taches = OMP_GET_NUM_THREADS()
!$OMP END PARALLEL
call CPU_TIME(CPU_tbeg)
call SYSTEM_CLOCK(COUNT=W_tbeg, COUNT_RATE=W_ir)
det1(:,1) = psi_det_alpha_unique(:,1)
det2(:,1) = psi_det_alpha_unique(:,1)
call get_excitation_degree_spin(det1(1,1),det2(1,1),degree,N_int)
det1(:,2) = psi_det_beta_unique(:,1)
det2(:,2) = psi_det_beta_unique(:,1)
call get_excitation_degree(det1,det2,degree,N_int)
call i_H_j(det1, det2, N_int, h12)
i_state = 1
! ---------------------------------------------------------------------------------------
! construct the initial CISD matrix
print *, ' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~'
print *, ' CISD matrix:', n_det_alpha_unique,'x',n_det_beta_unique
print *, ' N det :', N_det
print *, ' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~'
norm_psi = 0.d0
do k = 1, N_det
norm_psi = norm_psi + psi_bilinear_matrix_values(k,i_state) &
* psi_bilinear_matrix_values(k,i_state)
enddo
print *, ' initial norm = ', norm_psi
allocate( Aref(n_det_alpha_unique,n_det_beta_unique) )
Aref(:,:) = 0.d0
do k = 1, N_det
i = psi_bilinear_matrix_rows(k)
j = psi_bilinear_matrix_columns(k)
Aref(i,j) = psi_bilinear_matrix_values(k,i_state)
enddo
! ---------------------------------------------------------------------------------------
! ---------------------------------------------------------------------------------------
! perform a Full SVD
allocate( Uref(n_det_alpha_unique,n_det_beta_unique) )
allocate( Dref(n_det_beta_unique) )
allocate( Vref(n_det_beta_unique,n_det_beta_unique) )
allocate( Vtref(n_det_beta_unique,n_det_beta_unique) )
call svd_s(Aref, size(Aref,1), Uref, size(Uref,1), Dref, Vtref, size(Vtref,1) &
, n_det_alpha_unique, n_det_beta_unique)
print *, ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~ '
print *, ' --- First SVD: ok --- '
print *, ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~ '
do l = 1, n_det_beta_unique
do i = 1, n_det_beta_unique
Vref(i,l) = Vtref(l,i)
enddo
enddo
deallocate( Vtref )
! ---------------------------------------------------------------------------------------
! ---------------------------------------------------------------------------------------
! numerote vectors
! Truncated rank
n_selected = 20
print*, ' initial psi space rank = ', n_selected
! check SVD error
err0 = 0.d0
do j = 1, n_det_beta_unique
do i = 1, n_det_alpha_unique
err_tmp = 0.d0
do l = 1, n_selected
err_tmp = err_tmp + Dref(l) * Uref(i,l) * Vref(j,l)
enddo
err_tmp = Aref(i,j) - err_tmp
err0 += err_tmp * err_tmp
enddo
enddo
print *, ' SVD err (%) = ', 100.d0 * dsqrt(err0/norm_psi)
deallocate( Aref )
! ---------------------------------------------------------------------------------------
!________________________________________________________________________________________________________
!
! loop over SVD iterations
!________________________________________________________________________________________________________
E0_old = 0.d0
tol_energy = 1.d0
it_svd = 0
it_svd_max = 100
allocate( H(n_det_beta_unique,n_det_beta_unique,n_det_beta_unique,n_det_beta_unique) )
allocate( psi_postsvd(n_det_beta_unique,n_det_beta_unique) )
do while( ( it_svd .lt. it_svd_max) .and. ( tol_energy .gt. 1d-8 ) )
call CPU_TIME(CPU_tbeg_it)
call SYSTEM_CLOCK(COUNT=W_tbeg_it, COUNT_RATE=W_ir)
it_svd = it_svd + 1
print*, '+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +'
print*, ' '
print*, ' iteration', it_svd
double precision :: norm
norm = 0.d0
do j = 1, n_selected
norm = norm + Dref(j)*Dref(j)
enddo
Dref = Dref / dsqrt(norm)
print *, ''
print *, ''
print *, ''
print *, '-- Compute H --'
call const_H_uv(Uref, Vref, H)
! H0(i,j) = < u_i v_j | H | u_i v_j >
! E0 = < psi_0 | H | psi_0 >
E0 = 0.d0
do j = 1, n_selected
do i = 1, n_selected
E0 = E0 + Dref(i) * H(i,i,j,j) * Dref(j)
enddo
enddo
E0_av = E0 + nuclear_repulsion
print *,' E0 (avant SVD) =', E0_av
double precision, allocatable :: eigval0(:)
double precision, allocatable :: eigvec0(:,:,:)
double precision, allocatable :: H_tmp(:,:,:,:)
allocate( H_tmp(n_selected,n_selected,n_selected,n_selected) )
do l=1,n_selected
do k=1,n_selected
do j=1,n_selected
do i=1,n_selected
H_tmp(i,j,k,l) = H(i,j,k,l)
enddo
enddo
enddo
enddo
allocate( eigval0(n_selected**2),eigvec0(n_selected,n_selected,n_selected**2))
eigvec0 = 0.d0
print *, ' --- Diag post-SVD --- '
call lapack_diag(eigval0, eigvec0, H_tmp, n_selected**2, n_selected**2)
E0_postsvd = eigval0(1)+nuclear_repulsion
print*, ' postsvd energy = ', E0_postsvd
deallocate(H_tmp, eigval0)
print *, ' --- SVD --- '
Dref = 0.d0
call perform_newpostSVD(n_selected, eigvec0(1,1,1), Uref, Vref, Dref)
deallocate(eigvec0)
print *, ' --- Compute H --- '
call const_H_uv(Uref, Vref, H)
! H0(i,j) = < u_i v_j | H | u_i v_j >
! E0 = < psi_0 | H | psi_0 >
E0 = 0.d0
norm = 0.d0
do j = 1, n_det_beta_unique
do i = 1, n_det_beta_unique
E0 = E0 + Dref(i) * H(i,i,j,j) * Dref(j)
enddo
norm = norm + Dref(j)*Dref(j)
enddo
E0_ap = E0 + nuclear_repulsion
print *,' E0 (apres SVD) =', E0_ap
!print *,' norm =', norm
print *, ' --- Perturbation --- '
psi_postsvd = 0.d0
do i=1,n_selected
psi_postsvd(i,i) = Dref(i)
enddo
!do j=1,n_selected
! do i=n_selected+1,n_det_beta_unique
! print *, i,j, H(i,j,i,j)
! enddo
!enddo
!do j=n_selected+1,n_det_beta_unique
! do i=1,n_selected
! print *, i,j, H(i,j,i,j)
! enddo
!enddo
!do j=n_selected+1,n_det_beta_unique
! do i=n_selected+1,n_det_beta_unique
! print *, i,j, H(i,j,i,j)
! enddo
!enddo
Ept2 = 0.d0
do j=1,n_selected
do i=n_selected+1,n_det_beta_unique
ctmp = 0.d0
do l=1,n_selected
do k=1,n_selected
ctmp = ctmp + H(k,l,i,j) * psi_postsvd(k,l)
enddo
enddo
psi_postsvd(i,j) = ctmp / (E0_ap - (H(i,j,i,j)+nuclear_repulsion) )
Ept2 += ctmp*ctmp / (E0_ap - (H(i,j,i,j)+nuclear_repulsion) )
enddo
enddo
do j=n_selected+1,n_det_beta_unique
do i=1,n_selected
ctmp = 0.d0
do l=1,n_selected
do k=1,n_selected
ctmp = ctmp + H(k,l,i,j) * psi_postsvd(k,l)
enddo
enddo
psi_postsvd(i,j) = ctmp / (E0_ap - (H(i,j,i,j)+nuclear_repulsion) )
Ept2 += ctmp*ctmp / (E0_ap - (H(i,j,i,j)+nuclear_repulsion) )
enddo
enddo
do j=n_selected+1,n_det_beta_unique
do i=n_selected+1,n_det_beta_unique
ctmp = 0.d0
do l=1,n_selected
do k=1,n_selected
ctmp = ctmp + H(k,l,i,j) * psi_postsvd(k,l)
enddo
enddo
psi_postsvd(i,j) = ctmp / (E0_ap - (H(i,j,i,j)+nuclear_repulsion) )
Ept2 += ctmp*ctmp / (E0_ap - (H(i,j,i,j)+nuclear_repulsion) )
enddo
enddo
E0pt2 = E0_ap + Ept2
print *, ' perturb energy = ', E0pt2, Ept2
tol_energy = 100.d0 * dabs(E0pt2-E0_old) / dabs(E0pt2)
E0_old = E0pt2
print *, ' --- SVD --- '
call perform_newpostSVD(n_det_beta_unique, psi_postsvd, Uref, Vref, Dref)
write(22,'(i5,4x,4(f22.15,2x))') it_svd, E0_av, E0_postsvd, E0_ap, E0pt2
call CPU_TIME(CPU_tend_it)
call SYSTEM_CLOCK(COUNT=W_tend_it, COUNT_RATE=W_ir)
CPU_tot_time_it = CPU_tend_it - CPU_tbeg_it
W_tot_time_it = real(W_tend_it-W_tbeg_it, kind=8) / real(W_ir, kind=8)
speedup_it = CPU_tot_time_it / W_tot_time_it
print '(//, 3X, "elapsed time = ", 1PE10.3, " min.", /, &
& 3X, "CPU time = ", 1PE10.3, " min.", /, &
& 3X, "speed up = ", 1PE10.3,//)', W_tot_time_it/60.d0, CPU_tot_time_it/60.d0, speedup_it
end do
!________________________________________________________________________________________________________
!________________________________________________________________________________________________________
deallocate( H, psi_postsvd )
deallocate( Uref, Vref, Dref )
call CPU_TIME(CPU_tend)
call SYSTEM_CLOCK(COUNT=W_tend, COUNT_RATE=W_ir)
CPU_tot_time = CPU_tend - CPU_tbeg
W_tot_time = real(W_tend - W_tbeg, kind=8) / real(W_ir, kind=8)
speedup = CPU_tot_time / W_tot_time
print *,' ___________________________________________________________________'
print '(//,3X,"Execution avec ",i2," threads")',nb_taches
print '(//, 3X, "elapsed time = ", 1PE10.3, " min.", /, &
& 3X, "CPU time = ", 1PE10.3, " min.", /, &
& 3X, "speed up = ", 1PE10.3 ,// )', W_tot_time/60.d0, CPU_tot_time/60.d0, speedup
print *,' ___________________________________________________________________'
end
subroutine perform_newpostSVD(n_selected, psi_postsvd, Uref, Vref, Dref)
USE OMP_LIB
integer, intent(in) :: n_selected
double precision, intent(in) :: psi_postsvd(n_selected,n_selected)
double precision, intent(inout) :: Uref(n_det_alpha_unique,n_det_beta_unique)
double precision, intent(inout) :: Vref(n_det_beta_unique ,n_det_beta_unique)
double precision, intent(inout) :: Dref(n_det_beta_unique)
integer :: mm, nn, i, j, ii0, ii, l, jj, na, nb
double precision :: err0, err_norm, err_tmp, norm_tmp
double precision :: overlopU_mat, overlopV_mat, overlopU, overlopV
double precision, allocatable :: S_mat(:,:), SxVt(:,:)
double precision, allocatable :: U_svd(:,:), V_svd(:,:)
double precision, allocatable :: U_newsvd(:,:), V_newsvd(:,:), Vt_newsvd(:,:), D_newsvd(:), A_newsvd(:,:)
mm = n_det_alpha_unique
nn = n_det_beta_unique
allocate( U_svd(mm,n_selected) , V_svd(nn,n_selected) , S_mat(n_selected,n_selected) )
U_svd(:,:) = Uref(:,1:n_selected)
V_svd(:,:) = Vref(:,1:n_selected)
S_mat(:,:) = 0.d0
do j = 1, n_selected
do i = 1, n_selected
S_mat(i,j) = psi_postsvd(i,j)
enddo
enddo
! first compute S_mat x transpose(V_svd)
allocate( SxVt(n_selected,nn) )
call dgemm( 'N', 'T', n_selected, nn, n_selected, 1.d0 &
, S_mat , size(S_mat,1) &
, V_svd , size(V_svd,1) &
, 0.d0, SxVt, size(SxVt ,1) )
! then compute U_svd x SxVt
allocate( A_newsvd(mm,nn) )
call dgemm( 'N', 'N', mm, nn, n_selected, 1.d0 &
, U_svd , size(U_svd ,1) &
, SxVt , size(SxVt ,1) &
, 0.d0, A_newsvd, size(A_newsvd,1) )
deallocate( SxVt )
! perform new SVD
allocate( U_newsvd(mm,nn), Vt_newsvd(nn,nn), D_newsvd(nn) )
call svd_s( A_newsvd, size(A_newsvd,1), U_newsvd, size(U_newsvd,1), D_newsvd, Vt_newsvd, size(Vt_newsvd,1), mm, nn)
print *, ' +++ new perturbative SVD is performed +++ '
allocate( V_newsvd(nn,nn) )
do l = 1, nn
do j = 1, nn
V_newsvd(j,l) = Vt_newsvd(l,j)
enddo
enddo
! check SVD error
err0 = 0.d0
err_norm = 0.d0
do j = 1, nn
do i = 1, mm
err_tmp = 0.d0
do l = 1, n_selected
err_tmp = err_tmp + D_newsvd(l) * U_newsvd(i,l) * V_newsvd(j,l)
enddo
err_tmp = A_newsvd(i,j) - err_tmp
err0 += err_tmp * err_tmp
err_norm += A_newsvd(i,j) * A_newsvd(i,j)
enddo
enddo
print *, ' SVD err (%) = ', 100.d0 * dsqrt(err0/err_norm)
print *, ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ '
do l = 1, n_selected
Dref(l) = D_newsvd(l)
Uref(:,l) = U_newsvd(:,l)
Vref(:,l) = V_newsvd(:,l)
enddo
! print *, Dref(:)
overlopU_mat = 0.d0
overlopV_mat = 0.d0
do i = 1, nn
do j = 1, nn
overlopU = 0.d0
do ii = 1, mm
overlopU += Uref(ii,j) * Uref(ii,i)
enddo
overlopU_mat += overlopU
overlopV = 0.d0
do ii = 1, nn
overlopV += Vref(ii,j) * Vref(ii,i)
enddo
overlopV_mat += overlopV
enddo
enddo
print *, 'overlop U =', overlopU_mat
print *, 'overlop V =', overlopV_mat
deallocate( U_newsvd, V_newsvd, Vt_newsvd, D_newsvd, A_newsvd )
return
end subroutine perform_newpostSVD
subroutine const_H_uv(Uref, Vref, H)
USE OMP_LIB
implicit none
double precision, intent(in) :: Uref(n_det_alpha_unique,n_det_beta_unique)
double precision, intent(in) :: Vref(n_det_beta_unique ,n_det_beta_unique)
double precision, intent(out) :: H(n_det_beta_unique,n_det_beta_unique, n_det_beta_unique,n_det_beta_unique)
integer(bit_kind) :: det1(N_int,2), det2(N_int,2)
integer :: i, j, k, l, degree
integer :: ii0, jj0, ii, jj, n, m, np, mp
integer :: nn0, mm0, nn, mm, ind_gs
integer :: p,q,r,s
double precision :: h12, x
double precision, allocatable :: H0(:,:,:,:)
double precision, allocatable :: H1(:,:,:,:)
allocate( H0(n_det_alpha_unique,n_det_beta_unique, n_det_alpha_unique, n_det_beta_unique) )
allocate( H1(n_det_alpha_unique,n_det_beta_unique, n_det_alpha_unique, n_det_beta_unique) )
H0(:,:,:,:) = 0.d0
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(p,q,r,s,i,j,k,l,det1,det2,degree) &
!$OMP SHARED(n_det_alpha_unique,n_det_beta_unique,psi_det_alpha_unique,psi_det_beta_unique, &
!$OMP N_int,Uref,Vref,H0,H1,H)
!$OMP DO COLLAPSE(2) SCHEDULE(DYNAMIC,8)
do i = 1, n_det_alpha_unique
do k = 1, n_det_alpha_unique
det1(:,1) = psi_det_alpha_unique(:,i)
det2(:,1) = psi_det_alpha_unique(:,k)
call get_excitation_degree_spin(det1(1,1),det2(1,1),degree,N_int)
if (degree .gt. 2) then
cycle
endif
do j = 1, n_det_beta_unique
det1(:,2) = psi_det_beta_unique(:,j)
do l = 1, n_det_beta_unique
det2(:,2) = psi_det_beta_unique(:,l)
call get_excitation_degree(det1,det2,degree,N_int)
if (degree .gt. 2) then
cycle
endif
! !!!
call i_H_j(det2, det1, N_int, H0(k,l,i,j) )
! !!!
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP SINGLE
H1 = 0.d0
!$OMP END SINGLE
!$OMP DO
do s = 1, n_det_beta_unique
do l = 1, n_det_beta_unique
do k = 1, n_det_alpha_unique
do j = 1, n_det_beta_unique
do i = 1, n_det_alpha_unique
H1(i,j,k,s) = H1(i,j,k,s) + H0(i,j,k,l) * Vref(l,s)
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP SINGLE
H0 = 0.d0
!$OMP END SINGLE
!$OMP DO
do s = 1, n_det_beta_unique
do r = 1, n_det_beta_unique
do k = 1, n_det_alpha_unique
do j = 1, n_det_beta_unique
do i = 1, n_det_alpha_unique
H0(i,j,r,s) = H0(i,j,r,s) + H1(i,j,k,s) * Uref(k,r)
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP SINGLE
H1 = 0.d0
!$OMP END SINGLE
!$OMP DO
do s = 1, n_det_beta_unique
do j = 1, n_det_beta_unique
do r = 1, n_det_alpha_unique
do q = 1, n_det_beta_unique
do i = 1, n_det_alpha_unique
H1(i,q,r,s) = H1(i,q,r,s) + H0(i,j,r,s) * Vref(j,q)
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP SINGLE
H = 0.d0
!$OMP END SINGLE
!$OMP DO
do s = 1, n_det_beta_unique
do r = 1, n_det_beta_unique
do q = 1, n_det_beta_unique
do p = 1, n_det_beta_unique
do i = 1, n_det_alpha_unique
H(p,q,r,s) = H(p,q,r,s) + H1(i,q,r,s) * Uref(i,p)
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
deallocate(H1,H0)
return
end

View File

@ -0,0 +1,454 @@
program buildpsi_diagSVDit_Anthony_v1
implicit none
BEGIN_DOC
! perturbative approach to build psi_postsvd
END_DOC
read_wf = .True.
TOUCH read_wf
PROVIDE N_int
call run()
end
subroutine run
USE OMP_LIB
implicit none
integer(bit_kind) :: det1(N_int,2), det2(N_int,2)
integer :: degree, i_state
double precision :: h12
integer :: i, j, k, l, ii, jj, na, nb
double precision :: norm_psi, inv_sqrt_norm_psi
double precision, allocatable :: Uref(:,:), Dref(:), Vtref(:,:), Aref(:,:), Vref(:,:)
double precision :: err0, err_tmp, e_tmp, E0, overlap, E0_old, tol_energy
double precision :: ctmp, htmp, Ept2
double precision :: E0_postsvd, overlap_postsvd, E_prev
double precision :: norm_coeff_psi, inv_sqrt_norm_coeff_psi
double precision :: overlapU, overlapU_mat, overlapV, overlapV_mat, overlap_psi
double precision, allocatable :: Hdiag(:), Hkl(:,:), H0(:,:), H(:,:,:,:)
double precision, allocatable :: psi_postsvd(:,:), coeff_psi_perturb(:)
integer :: n_TSVD, n_FSVD, n_selected, n_toselect, n_tmp, it_svd, it_svd_max
integer :: n_selected2
integer, allocatable :: numalpha_selected(:), numbeta_selected(:)
integer, allocatable :: numalpha_toselect(:), numbeta_toselect(:)
integer, allocatable :: numalpha_tmp(:), numbeta_tmp(:)
integer(kind=8) :: W_tbeg, W_tend, W_tbeg_it, W_tend_it, W_ir
real(kind=8) :: W_tot_time, W_tot_time_it
real(kind=8) :: CPU_tbeg, CPU_tend, CPU_tbeg_it, CPU_tend_it
real(kind=8) :: CPU_tot_time, CPU_tot_time_it
real(kind=8) :: speedup, speedup_it
integer :: nb_taches
!$OMP PARALLEL
nb_taches = OMP_GET_NUM_THREADS()
!$OMP END PARALLEL
call CPU_TIME(CPU_tbeg)
call SYSTEM_CLOCK(COUNT=W_tbeg, COUNT_RATE=W_ir)
i_state = 1
det1(:,1) = psi_det_alpha_unique(:,1)
det2(:,1) = psi_det_alpha_unique(:,1)
det1(:,2) = psi_det_beta_unique(:,1)
det2(:,2) = psi_det_beta_unique(:,1)
call i_H_j(det1, det2, N_int, h12)
! ---------------------------------------------------------------------------------------
! construct the initial CISD matrix
print *, ' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~'
print *, ' CI matrix:', n_det_alpha_unique,'x',n_det_beta_unique
print *, ' N det :', N_det
print *, ' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~'
norm_psi = 0.d0
do k = 1, N_det
norm_psi = norm_psi + psi_bilinear_matrix_values(k,i_state) &
* psi_bilinear_matrix_values(k,i_state)
enddo
print *, ' initial norm = ', norm_psi
allocate( Aref(n_det_alpha_unique,n_det_beta_unique) )
Aref(:,:) = 0.d0
do k = 1, N_det
i = psi_bilinear_matrix_rows(k)
j = psi_bilinear_matrix_columns(k)
Aref(i,j) = psi_bilinear_matrix_values(k,i_state)
enddo
! ---------------------------------------------------------------------------------------
! ---------------------------------------------------------------------------------------
! perform a Full SVD
allocate( Uref(n_det_alpha_unique,n_det_alpha_unique) )
!allocate( Dref(max(n_det_beta_unique,n_det_alpha_unique)) )
allocate( Dref(min(n_det_beta_unique,n_det_alpha_unique)) )
allocate( Vref(n_det_beta_unique,n_det_beta_unique) )
allocate( Vtref(n_det_beta_unique,n_det_beta_unique) )
call svd_s(Aref, size(Aref,1), Uref, size(Uref,1), Dref, Vtref, size(Vtref,1) &
, n_det_alpha_unique, n_det_beta_unique)
print *, ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~ '
do l = 1, n_det_beta_unique
do i = 1, n_det_beta_unique
Vref(i,l) = Vtref(l,i)
enddo
enddo
deallocate( Vtref )
! Truncated rank
n_TSVD = 20
n_selected = n_TSVD
call write_int(6,n_TSVD, 'Rank of psi')
!________________________________________________________________________________________________________
!
! loop over SVD iterations
!________________________________________________________________________________________________________
tol_energy = 1.d0
it_svd = 0
it_svd_max = 100
E_prev = 0.d0
allocate(H(n_det_alpha_unique,n_det_beta_unique,n_det_alpha_unique,n_det_beta_unique))
allocate(psi_postsvd(n_det_alpha_unique,n_det_beta_unique))
do while( ( it_svd .lt. it_svd_max) .and. ( tol_energy .gt. 1d-8 ) )
call CPU_TIME(CPU_tbeg_it)
call SYSTEM_CLOCK(COUNT=W_tbeg_it, COUNT_RATE=W_ir)
it_svd = it_svd + 1
print*, '+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +'
print*, ' '
print*, ' '
print*, ' '
print*, ' iteration', it_svd
double precision :: norm
norm = 0.d0
do j = 1, n_selected
norm = norm + Dref(j)*Dref(j)
enddo
Dref = Dref / dsqrt(norm)
call const_H_uv(Uref, Vref, H)
E0 = 0.d0
do j = 1, n_selected
do i = 1, n_selected
E0 = E0 + Dref(i) * H(i,i,j,j) * Dref(j)
enddo
enddo
double precision :: E0_av, E0_ap, E0pt2
E0_av = E0 + nuclear_repulsion
print *,' E0 (avant SVD) =', E0_av
print *, ''
double precision, allocatable :: eigval0(:)
double precision, allocatable :: eigvec0(:,:,:)
double precision, allocatable :: H_tmp(:,:,:,:)
allocate( H_tmp(n_selected,n_selected,n_selected,n_selected) )
do l=1,n_selected
do k=1,n_selected
do j=1,n_selected
do i=1,n_selected
H_tmp(i,j,k,l) = H(i,j,k,l)
enddo
enddo
enddo
enddo
allocate( eigval0(n_selected**2),eigvec0(n_selected,n_selected,n_selected**2))
eigvec0 = 0.d0
call lapack_diag(eigval0, eigvec0, H_tmp, n_selected**2, n_selected**2)
E0_postsvd = eigval0(1) + nuclear_repulsion
print*, ' postsvd energy = ', E0_postsvd
deallocate(H_tmp, eigval0)
Dref = 0.d0
call perform_newpostSVD(n_selected, eigvec0(1,1,1), Uref, Vref, Dref)
deallocate(eigvec0)
print *, ' --- Compute H --- '
call const_H_uv(Uref, Vref, H)
E0 = 0.d0
norm = 0.d0
do j = 1, n_det_beta_unique
do i = 1, n_det_beta_unique
E0 = E0 + Dref(i) * H(i,i,j,j) * Dref(j)
enddo
norm = norm + Dref(j)*Dref(j)
enddo
E0_ap = E0 + nuclear_repulsion
print *,' E0 (apres SVD) =', E0_ap
psi_postsvd = 0.d0
do i=1,n_selected
psi_postsvd(i,i) = Dref(i)
enddo
E0 = E0_ap
Ept2 = 0.d0
do j=1,n_selected
do i=n_selected+1,n_det_alpha_unique
ctmp = 0.d0
do l=1,n_selected
do k=1,n_selected
ctmp = ctmp + H(k,l,i,j) * psi_postsvd(k,l)
enddo
enddo
psi_postsvd(i,j) = ctmp / (E0 - (H(i,j,i,j)+nuclear_repulsion) )
Ept2 += ctmp*ctmp / (E0 - (H(i,j,i,j)+nuclear_repulsion) )
enddo
enddo
do j=n_selected+1,n_det_beta_unique
do i=1,n_selected
ctmp = 0.d0
do l=1,n_selected
do k=1,n_selected
ctmp = ctmp + H(k,l,i,j) * psi_postsvd(k,l)
enddo
enddo
psi_postsvd(i,j) = ctmp / (E0 - (H(i,j,i,j)+nuclear_repulsion) )
Ept2 += ctmp*ctmp / (E0 - (H(i,j,i,j)+nuclear_repulsion) )
enddo
enddo
do j=n_selected+1,n_det_beta_unique
do i=n_selected+1,n_det_alpha_unique
ctmp = 0.d0
do l=1,n_selected
do k=1,n_selected
ctmp = ctmp + H(k,l,i,j) * psi_postsvd(k,l)
enddo
enddo
psi_postsvd(i,j) = ctmp / (E0 - (H(i,j,i,j)+nuclear_repulsion) )
Ept2 += ctmp*ctmp / (E0 - (H(i,j,i,j)+nuclear_repulsion) )
enddo
enddo
E0pt2 = E0_ap + ept2
print *, ' perturb energy = ', E0pt2, ept2
tol_energy = dabs(E_prev - E0_ap)
E_prev = E0_ap
call perform_newpostSVD(n_det_beta_unique, psi_postsvd, Uref, Vref, Dref)
write(44,'(i5,4x,4(f22.15,2x))') it_svd, E0_av, E0_postsvd, E0_ap, E0_ap+Ept2
call CPU_TIME(CPU_tend_it)
call SYSTEM_CLOCK(COUNT=W_tend_it, COUNT_RATE=W_ir)
CPU_tot_time_it = CPU_tend_it - CPU_tbeg_it
W_tot_time_it = real(W_tend_it-W_tbeg_it, kind=8) / real(W_ir, kind=8)
speedup_it = CPU_tot_time_it / W_tot_time_it
print '(//, 3X, "elapsed time = ", 1PE10.3, " min.", /, &
& 3X, "CPU time = ", 1PE10.3, " min.", /, &
& 3X, "speed up = ", 1PE10.3,//)', W_tot_time_it/60.d0, CPU_tot_time_it/60.d0, speedup_it
end do
deallocate( Uref, Vref, Dref )
call CPU_TIME(CPU_tend)
call SYSTEM_CLOCK(COUNT=W_tend, COUNT_RATE=W_ir)
CPU_tot_time = CPU_tend - CPU_tbeg
W_tot_time = real(W_tend - W_tbeg, kind=8) / real(W_ir, kind=8)
speedup = CPU_tot_time / W_tot_time
print *,' ___________________________________________________________________'
print '(//,3X,"Execution avec ",i2," threads")',nb_taches
print '(//, 3X, "elapsed time = ", 1PE10.3, " min.", /, &
& 3X, "CPU time = ", 1PE10.3, " min.", /, &
& 3X, "speed up = ", 1PE10.3 ,// )', W_tot_time/60.d0, CPU_tot_time/60.d0, speedup
print *,' ___________________________________________________________________'
end
subroutine perform_newpostSVD(n_selected, psi_postsvd, Uref, Vref, Dref)
USE OMP_LIB
integer, intent(in) :: n_selected
double precision, intent(in) :: psi_postsvd(n_selected,n_selected)
double precision, intent(inout) :: Uref(n_det_alpha_unique,n_det_alpha_unique)
double precision, intent(inout) :: Vref(n_det_beta_unique ,n_det_beta_unique)
double precision, intent(inout) :: Dref(min(n_det_beta_unique,n_det_alpha_unique))
integer :: mm, nn, i, j, ii0, ii, l, jj, na, nb
double precision :: err0, err_norm, err_tmp, norm_tmp
double precision :: overlapU_mat, overlapV_mat, overlapU, overlapV
double precision, allocatable :: S_mat(:,:), SxVt(:,:)
double precision, allocatable :: U_svd(:,:), V_svd(:,:)
double precision, allocatable :: U_newsvd(:,:), V_newsvd(:,:), Vt_newsvd(:,:), D_newsvd(:), A_newsvd(:,:)
mm = n_det_alpha_unique
nn = n_det_beta_unique
allocate( U_svd(mm,n_selected) , V_svd(nn,n_selected) , S_mat(n_selected,n_selected) )
U_svd(1:mm,1:n_selected) = Uref(1:mm,1:n_selected)
V_svd(1:nn,1:n_selected) = Vref(1:nn,1:n_selected)
S_mat(1:n_selected,1:n_selected) = psi_postsvd(1:n_selected,1:n_selected)
! first compute S_mat x transpose(V_svd)
allocate( SxVt(n_selected,nn) )
call dgemm( 'N', 'T', n_selected, nn, n_selected, 1.d0 &
, S_mat , size(S_mat,1) &
, V_svd , size(V_svd,1) &
, 0.d0, SxVt, size(SxVt ,1) )
deallocate(S_mat)
! then compute U_svd x SxVt
allocate( A_newsvd(mm,nn) )
call dgemm( 'N', 'N', mm, nn, n_selected, 1.d0 &
, U_svd , size(U_svd ,1) &
, SxVt , size(SxVt ,1) &
, 0.d0, A_newsvd, size(A_newsvd,1) )
deallocate( SxVt )
! perform new SVD
allocate( U_newsvd(mm,mm), Vt_newsvd(nn,nn), D_newsvd(min(mm,nn)) )
call svd_s( A_newsvd, size(A_newsvd,1), &
U_newsvd, size(U_newsvd,1), &
D_newsvd, &
Vt_newsvd, size(Vt_newsvd,1), &
mm, nn)
deallocate(A_newsvd)
allocate( V_newsvd(nn,nn) )
do l = 1, nn
do j = 1, nn
V_newsvd(j,l) = Vt_newsvd(l,j)
enddo
enddo
deallocate(Vt_newsvd)
!do l = 1, n_selected
! Dref(l) = D_newsvd(l)
! Uref(1:mm,l) = U_newsvd(1:mm,l)
! Vref(1:nn,l) = V_newsvd(1:nn,l)
!enddo
Dref(1:n_selected) = D_newsvd(1:n_selected)
Uref(1:mm,1:mm) = U_newsvd(1:mm,1:mm)
Vref(1:nn,1:nn) = V_newsvd(1:nn,1:nn)
deallocate(U_newsvd)
deallocate(V_newsvd)
deallocate(D_newsvd)
end subroutine perform_newpostSVD
subroutine const_H_uv(Uref, Vref, H)
USE OMP_LIB
implicit none
double precision, intent(in) :: Uref(n_det_alpha_unique,n_det_beta_unique)
double precision, intent(in) :: Vref(n_det_beta_unique ,n_det_beta_unique)
double precision, intent(out) :: H(n_det_alpha_unique,n_det_beta_unique, n_det_alpha_unique,n_det_beta_unique)
integer(bit_kind) :: det1(N_int,2), det2(N_int,2)
integer :: i, j, k, l, degree
integer :: ii0, jj0, ii, jj, n, m, np, mp
integer :: nn0, mm0, na, nb, mm, ind_gs
integer :: p,q,r,s
double precision :: h12, x
double precision, allocatable :: H0(:,:,:,:)
double precision, allocatable :: H1(:,:,:,:)
na = n_det_alpha_unique
nb = n_det_beta_unique
allocate( H0(na,nb,na,nb) )
allocate( H1(nb,na,nb,na) )
H0 = 0.d0
call wall_time(t0)
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(p,q,r,s,i,j,k,l,det1,det2,degree,h12) &
!$OMP SHARED(na,nb,psi_det_alpha_unique,psi_det_beta_unique, &
!$OMP N_int,Uref,Vref,H0,H1,H)
!$OMP DO
do l = 1, nb
det2(:,2) = psi_det_beta_unique(:,l)
do j = 1, nb
det1(:,2) = psi_det_beta_unique(:,j)
call get_excitation_degree_spin(det1(1,2),det2(1,2),degree,N_int)
if (degree > 2) cycle
do k = 1, na
det2(:,1) = psi_det_alpha_unique(:,k)
do i = 1, na
det1(:,1) = psi_det_alpha_unique(:,i)
call get_excitation_degree(det1,det2,degree,N_int)
if ( degree > 2) cycle
call i_H_j(det1, det2, N_int, h12)
H0(i,j,k,l) = h12
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(t1)
! (i,j,k,l) -> (j,k,l,p)
call DGEMM('T','N', nb * na * nb, na, na, &
1.d0, H0, size(H0,1), Uref, size(Uref,1), 0.d0, H1, size(H1,1)*size(H1,2)*size(H1,3))
! (j,k,l,p) -> (k,l,p,q)
call DGEMM('T','N', na * nb * na, nb, nb, &
1.d0, H1, size(H1,1), Vref, size(Vref,1), 0.d0, H0, size(H0,1)*size(H0,2)*size(H0,3))
! (k,l,p,q) -> (l,p,q,r)
call DGEMM('T','N', nb * na * nb, na, na, &
1.d0, H0, size(H0,1), Uref, size(Uref,1), 0.d0, H1, size(H1,1)*size(H1,2)*size(H1,3))
! (l,p,q,r) -> (p,q,r,s)
call DGEMM('T','N', na * nb * na, nb, nb, &
1.d0, H1, size(H1,1), Vref, size(Vref,1), 0.d0, H, size(H,1)*size(H,2)*size(H,3))
call wall_time(t2)
print *, t1-t0, t2-t1
double precision :: t0, t1, t2
deallocate(H1,H0)
end

View File

@ -0,0 +1,754 @@
program buildpsi_diagSVDit_Anthony_v2
implicit none
BEGIN_DOC
! perturbative approach to build psi_postsvd
END_DOC
read_wf = .True.
TOUCH read_wf
PROVIDE N_int
call run()
end
subroutine run
USE OMP_LIB
implicit none
integer(bit_kind) :: det1(N_int,2), det2(N_int,2)
integer :: degree, i_state
double precision :: h12
integer :: i, j, k, l, na, nb
double precision :: norm_psi
double precision, allocatable :: Uref(:,:), Dref(:), Vtref(:,:), Aref(:,:), Vref(:,:)
double precision :: err0, err_tmp, e_tmp, E0, E0_old, tol_energy
double precision :: ctmp, htmp, Ept2
double precision :: E0_postsvd, overlap_postsvd, E_prev
double precision, allocatable :: H_diag(:,:), Hkl(:,:), H0(:,:), H(:,:,:,:)
double precision, allocatable :: psi_postsvd(:,:), coeff_psi_perturb(:)
integer :: n_TSVD, it_svd, it_svd_max
det1(:,1) = psi_det_alpha_unique(:,1)
det2(:,1) = psi_det_alpha_unique(:,1)
det1(:,2) = psi_det_beta_unique(:,1)
det2(:,2) = psi_det_beta_unique(:,1)
call i_H_j(det1, det2, N_int, h12)
i_state = 1
! ---------------------------------------------------------------------------------------
! construct the initial CISD matrix
print *, ' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~'
print *, ' CI matrix:', n_det_alpha_unique,'x',n_det_beta_unique
print *, ' N det :', N_det
print *, ' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~'
norm_psi = 0.d0
do k = 1, N_det
norm_psi = norm_psi + psi_bilinear_matrix_values(k,i_state) &
* psi_bilinear_matrix_values(k,i_state)
enddo
print *, ' initial norm = ', norm_psi
allocate( Aref(n_det_alpha_unique,n_det_beta_unique) )
Aref(:,:) = 0.d0
do k = 1, N_det
i = psi_bilinear_matrix_rows(k)
j = psi_bilinear_matrix_columns(k)
Aref(i,j) = psi_bilinear_matrix_values(k,i_state)
enddo
! ---------------------------------------------------------------------------------------
! ---------------------------------------------------------------------------------------
! perform a Full SVD
allocate( Uref(n_det_alpha_unique,n_det_alpha_unique) )
!allocate( Dref(max(n_det_beta_unique,n_det_alpha_unique)) )
allocate( Dref(min(n_det_beta_unique,n_det_alpha_unique)) )
allocate( Vref(n_det_beta_unique,n_det_beta_unique) )
allocate( Vtref(n_det_beta_unique,n_det_beta_unique) )
call svd_s(Aref, size(Aref,1), Uref, size(Uref,1), Dref, Vtref, size(Vtref,1) &
, n_det_alpha_unique, n_det_beta_unique)
print *, ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~ '
do l = 1, n_det_beta_unique
do i = 1, n_det_beta_unique
Vref(i,l) = Vtref(l,i)
enddo
enddo
deallocate( Vtref )
! Truncated rank
!n_TSVD = 100
!call write_int(6,n_TSVD, 'Rank of psi')
!________________________________________________________________________________________________________
!
! loop over SVD iterations
!________________________________________________________________________________________________________
tol_energy = 1.d0
it_svd = 0
it_svd_max = 100
E_prev = 0.d0
print *, ci_energy(1)
allocate(H_diag(n_det_alpha_unique,n_det_beta_unique))
allocate(psi_postsvd(n_det_alpha_unique,n_det_beta_unique))
do while( ( it_svd .lt. it_svd_max) .and. ( tol_energy .gt. 1d-6 ) )
it_svd = it_svd + 1
! Truncated rank
n_TSVD = min(n_det_alpha_unique,n_det_beta_unique)
do i = min(n_det_alpha_unique,n_det_beta_unique), 10, -1
if( dabs(Dref(i)) .lt. 1d-2 ) then
n_TSVD = n_TSVD - 1
else
exit
endif
enddo
!do i = 1, min(n_det_alpha_unique,n_det_beta_unique)
! print *, i, Dref(i)
!enddo
call write_int(6,n_TSVD, 'Rank of psi')
n_TSVD = min(n_TSVD,100)
call write_int(6,n_TSVD, 'Rank of psi')
allocate(H(n_TSVD,n_TSVD,n_det_alpha_unique,n_det_beta_unique))
double precision :: norm
norm = 0.d0
do j = 1, n_TSVD
norm = norm + Dref(j)*Dref(j)
enddo
Dref = Dref / dsqrt(norm)
print *, '-- Compute H --'
!call const_H_uv_modif(Uref, Vref, H, H_diag, n_TSVD)
call const_H_uv(Uref, Vref, H, H_diag, n_TSVD)
! H0(i,j) = < u_i v_j | H | u_i v_j >
! E0 = < psi_0 | H | psi_0 >
E0 = 0.d0
do j = 1, n_TSVD
do i = 1, n_TSVD
E0 = E0 + Dref(i) * H(i,i,j,j) * Dref(j)
enddo
enddo
E0 = E0 + nuclear_repulsion
print *,' E0 =', E0
double precision, allocatable :: eigval0(:)
double precision, allocatable :: eigvec0(:,:,:)
double precision, allocatable :: H_tmp(:,:,:,:)
allocate( H_tmp(n_TSVD,n_TSVD,n_TSVD,n_TSVD) )
do l=1,n_TSVD
do k=1,n_TSVD
do j=1,n_TSVD
do i=1,n_TSVD
H_tmp(i,j,k,l) = H(i,j,k,l)
enddo
enddo
enddo
enddo
allocate( eigval0(n_TSVD**2),eigvec0(n_TSVD,n_TSVD,n_TSVD**2))
eigvec0 = 0.d0
print *, ' --- Diag post-SVD --- '
call lapack_diag(eigval0, eigvec0, H_tmp, n_TSVD**2, n_TSVD**2)
print *, 'eig =', eigval0(1) + nuclear_repulsion
deallocate(H_tmp, eigval0)
print *, ' --- SVD --- '
Dref = 0.d0
call perform_newpostSVD(n_TSVD, eigvec0(1,1,1), size(eigvec0,1), Uref, Vref, Dref)
deallocate(eigvec0)
print *, ' --- Compute H --- '
!call const_H_uv_modif(Uref, Vref, H, H_diag, n_TSVD)
call const_H_uv(Uref, Vref, H, H_diag, n_TSVD)
! H0(i,j) = < u_i v_j | H | u_i v_j >
! E0 = < psi_0 | H | psi_0 >
E0 = 0.d0
norm = 0.d0
do j = 1, n_det_beta_unique
do i = 1, n_TSVD
E0 = E0 + Dref(i) * H(i,i,j,j) * Dref(j)
enddo
norm = norm + Dref(j)*Dref(j)
enddo
E0 = E0 + nuclear_repulsion
print *,' E0 =', E0
! print *,' norm =', norm
print *, ' --- Perturbation --- '
psi_postsvd = 0.d0
!do i=1,n_TSVD
! psi_postsvd(i,i) = Dref(i)
!enddo
double precision :: lambda
lambda = 1.d0
Ept2 = 0.d0
do j=1,n_TSVD
do i=n_TSVD+1,n_det_alpha_unique
ctmp = 0.d0
do k=1,n_TSVD
ctmp = ctmp + H(k,k,i,j) * Dref(k)
enddo
psi_postsvd(i,j) = lambda * ctmp / (E0 - (H_diag(i,j)+nuclear_repulsion) )
Ept2 += ctmp*ctmp / (E0 - (H_diag(i,j)+nuclear_repulsion) )
enddo
enddo
do j=n_TSVD+1,n_det_beta_unique
do i=1,n_TSVD
ctmp = 0.d0
do k=1,n_TSVD
ctmp = ctmp + H(k,k,i,j) * Dref(k)
enddo
psi_postsvd(i,j) = lambda * ctmp / (E0 - (H_diag(i,j)+nuclear_repulsion) )
Ept2 += ctmp*ctmp / (E0 - (H_diag(i,j)+nuclear_repulsion) )
enddo
enddo
norm = 0.d0
do l = 1, n_det_beta_unique
do k = 1, n_det_alpha_unique
norm = norm + psi_postsvd(k,l)**2
enddo
enddo
norm = dsqrt(norm)
print *, norm
if( norm .gt. 0.01d0 ) then
psi_postsvd = 0.01d0 * psi_postsvd / norm
endif
do i=1,n_TSVD
psi_postsvd(i,i) = Dref(i)
enddo
norm = 0.d0
do l = 1, n_det_beta_unique
do k = 1, n_det_alpha_unique
norm = norm + psi_postsvd(k,l)**2
enddo
enddo
psi_postsvd = psi_postsvd / dsqrt(norm)
tol_energy = dabs(E_prev - E0)
print '(I5, 2X, I5, 3(3X, F20.10))', it_svd, n_TSVD, E0, E0 + Ept2, tol_energy
write(114,'(I5, 2X, I5, 3(3X, F20.10))') it_svd,n_TSVD, E0, E0 + Ept2, tol_energy
E_prev = E0
E0 = 0.d0
do j = 1, n_TSVD
do i = 1, n_TSVD
do l = 1, n_det_beta_unique
do k = 1, n_det_alpha_unique
E0 = E0 + psi_postsvd(i,j) * H(i,j,k,l) * psi_postsvd(k,l)
enddo
enddo
enddo
enddo
norm = 0.d0
do l = 1, n_det_beta_unique
do k = 1, n_det_alpha_unique
norm = norm + psi_postsvd(k,l)**2
enddo
enddo
E0 = E0/norm + nuclear_repulsion
print *,' E0 avant =', E0
!print *, ' --- SVD --- '
!call perform_newpostSVD(n_TSVD, psi_postsvd, size(psi_postsvd,1), Uref, Vref, Dref)
call perform_newSVD(n_TSVD, psi_postsvd, size(psi_postsvd,1), Uref, Vref, Dref)
deallocate( H )
end do
end
subroutine perform_newpostSVD(n_TSVD, psi_postsvd, LDP, Uref, Vref, Dref)
USE OMP_LIB
integer, intent(in) :: n_TSVD, LDP
double precision, intent(in) :: psi_postsvd(LDP,n_TSVD)
double precision, intent(inout) :: Uref(n_det_alpha_unique,n_det_alpha_unique)
double precision, intent(inout) :: Vref(n_det_beta_unique ,n_det_beta_unique)
!double precision, intent(inout) :: Dref(max(n_det_beta_unique,n_det_alpha_unique))
double precision, intent(inout) :: Dref(min(n_det_beta_unique,n_det_alpha_unique))
integer :: mm, nn, i, j, l, na, nb
double precision :: err0, err_norm, err_tmp, norm_tmp
double precision, allocatable :: S_mat(:,:), SxVt(:,:)
double precision, allocatable :: U_svd(:,:), V_svd(:,:)
double precision, allocatable :: U_newsvd(:,:), V_newsvd(:,:), Vt_newsvd(:,:), D_newsvd(:), A_newsvd(:,:)
mm = n_det_alpha_unique
nn = n_det_beta_unique
allocate( U_svd(mm,n_TSVD) , V_svd(nn,n_TSVD) , S_mat(n_TSVD,n_TSVD) )
U_svd(1:mm,1:n_TSVD) = Uref(1:mm,1:n_TSVD)
V_svd(1:nn,1:n_TSVD) = Vref(1:nn,1:n_TSVD)
S_mat(1:n_TSVD,1:n_TSVD) = psi_postsvd(1:n_TSVD,1:n_TSVD)
! first compute S_mat x transpose(V_svd)
allocate( SxVt(n_TSVD,nn) )
call dgemm( 'N', 'T', n_TSVD, nn, n_TSVD, 1.d0 &
, S_mat , size(S_mat,1) &
, V_svd , size(V_svd,1) &
, 0.d0, SxVt, size(SxVt ,1) )
deallocate(S_mat)
! then compute U_svd x SxVt
allocate( A_newsvd(mm,nn) )
call dgemm( 'N', 'N', mm, nn, n_TSVD, 1.d0 &
, U_svd , size(U_svd ,1) &
, SxVt , size(SxVt ,1) &
, 0.d0, A_newsvd, size(A_newsvd,1) )
deallocate( SxVt )
! perform new SVD
!allocate( U_newsvd(mm,mm), Vt_newsvd(nn,nn), D_newsvd(max(mm,nn)) )
allocate( U_newsvd(mm,mm), Vt_newsvd(nn,nn), D_newsvd(min(mm,nn)) )
call svd_s( A_newsvd, size(A_newsvd,1), &
U_newsvd, size(U_newsvd,1), &
D_newsvd, &
Vt_newsvd, size(Vt_newsvd,1), &
mm, nn)
deallocate(A_newsvd)
allocate( V_newsvd(nn,nn) )
do l = 1, nn
do j = 1, nn
V_newsvd(j,l) = Vt_newsvd(l,j)
enddo
enddo
deallocate(Vt_newsvd)
!do l = 1, n_TSVD
! Dref(l) = D_newsvd(l)
! Uref(1:mm,l) = U_newsvd(1:mm,l)
! Vref(1:nn,l) = V_newsvd(1:nn,l)
!enddo
Dref(1:n_TSVD) = D_newsvd(1:n_TSVD)
Uref(1:mm,1:mm) = U_newsvd(1:mm,1:mm)
Vref(1:nn,1:nn) = V_newsvd(1:nn,1:nn)
deallocate(U_newsvd)
deallocate(V_newsvd)
deallocate(D_newsvd)
end subroutine perform_newpostSVD
subroutine perform_newSVD(n_TSVD, psi_postsvd, LDP, Uref, Vref, Dref)
integer, intent(in) :: n_TSVD, LDP
double precision, intent(in) :: psi_postsvd(LDP,n_TSVD)
double precision, intent(inout) :: Uref(n_det_alpha_unique,n_det_alpha_unique)
double precision, intent(inout) :: Vref(n_det_beta_unique ,n_det_beta_unique)
double precision, intent(inout) :: Dref(min(n_det_beta_unique,n_det_alpha_unique))
integer :: mm, nn, i, j, l, na, nb
double precision :: err0, err_norm, err_tmp, norm_tmp
double precision, allocatable :: S_mat(:,:), SxVt(:,:)
double precision, allocatable :: U_svd(:,:), V_svd(:,:)
double precision, allocatable :: U_newsvd(:,:), V_newsvd(:,:), Vt_newsvd(:,:), D_newsvd(:), A_newsvd(:,:)
mm = n_det_alpha_unique
nn = n_det_beta_unique
allocate( U_svd(mm,mm) , V_svd(nn,nn) , S_mat(mm,nn) )
U_svd(1:mm,1:mm) = Uref(1:mm,1:mm)
V_svd(1:nn,1:nn) = Vref(1:nn,1:nn)
norm_tmp = 0.d0
do i = 1, nn
do j = 1, mm
S_mat(j,i) = psi_postsvd(j,i)
norm_tmp += psi_postsvd(j,i) * psi_postsvd(j,i)
enddo
enddo
norm_tmp = 1.d0 / dsqrt(norm_tmp)
do i = 1, nn
do j = 1, mm
S_mat(j,i) = S_mat(j,i) * norm_tmp
enddo
enddo
! first compute S_mat x transpose(V_svd)
allocate( SxVt(mm,nn) )
call dgemm( 'N', 'T', mm, nn, nn, 1.d0 &
, S_mat , size(S_mat,1) &
, V_svd , size(V_svd,1) &
, 0.d0, SxVt, size(SxVt ,1) )
deallocate(S_mat)
! then compute U_svd x SxVt
allocate( A_newsvd(mm,nn) )
call dgemm( 'N', 'N', mm, nn, mm, 1.d0 &
, U_svd , size(U_svd ,1) &
, SxVt , size(SxVt ,1) &
, 0.d0, A_newsvd, size(A_newsvd,1) )
deallocate( SxVt )
! perform new SVD
allocate( U_newsvd(mm,mm), Vt_newsvd(nn,nn), D_newsvd(min(mm,nn)) )
call svd_s( A_newsvd, size(A_newsvd,1), U_newsvd, size(U_newsvd,1), D_newsvd, Vt_newsvd, size(Vt_newsvd,1), mm, nn)
deallocate(A_newsvd)
allocate( V_newsvd(nn,nn) )
do l = 1, nn
do j = 1, nn
V_newsvd(j,l) = Vt_newsvd(l,j)
enddo
enddo
deallocate(Vt_newsvd)
!do l = 1, n_TSVD
! Dref(l) = D_newsvd(l)
! Uref(1:mm,l) = U_newsvd(1:mm,l)
! Vref(1:nn,l) = V_newsvd(1:nn,l)
!enddo
!Dref(1:n_TSVD) = D_newsvd(1:n_TSVD)
Dref = D_newsvd
Uref(1:mm,1:mm) = U_newsvd(1:mm,1:mm)
Vref(1:nn,1:nn) = V_newsvd(1:nn,1:nn)
deallocate(U_newsvd)
deallocate(V_newsvd)
deallocate(D_newsvd)
return
end subroutine perform_newSVD
subroutine const_H_uv(Uref, Vref, H, H_diag, n_TSVD)
USE OMP_LIB
implicit none
integer, intent(in) :: n_TSVD
double precision, intent(in) :: Uref(n_det_alpha_unique,n_det_alpha_unique)
double precision, intent(in) :: Vref(n_det_beta_unique ,n_det_beta_unique)
double precision, intent(out) :: H(n_TSVD,n_TSVD, n_det_alpha_unique, n_det_beta_unique)
double precision, intent(out) :: H_diag(n_det_alpha_unique,n_det_beta_unique)
integer(bit_kind) :: det1(N_int,2), det2(N_int,2)
integer :: i, j, k, l, degree
integer :: jj0, n, m, np, mp
integer :: nn0, mm0, na, nb, mm, ind_gs
integer :: p,q,r,s
double precision :: h12, x
double precision, allocatable :: H0(:,:,:,:)
double precision, allocatable :: H1(:,:,:,:)
double precision, allocatable :: tmp3(:,:,:)
double precision, allocatable :: tmp1(:,:), tmp0(:,:)
double precision :: c_tmp
na = n_det_alpha_unique
nb = n_det_beta_unique
call wall_time(t0)
tmp3 = 0.d0
allocate( H0(na,nb,n_TSVD,n_TSVD) )
allocate (tmp3(nb,nb,nb))
H0 = 0.d0
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(i,j,k,l,m,n,det1,det2,degree,h12,c_tmp,tmp1,tmp0)&
!$OMP SHARED(na,nb,psi_det_alpha_unique,psi_det_beta_unique,&
!$OMP N_int,tmp3,Uref,Vref,H_diag,H0,n_TSVD)
allocate(tmp1(na,na), tmp0(na,na))
do i=1,na
do m=1,na
tmp1(m,i) = Uref(i,m)
enddo
enddo
!$OMP DO
do l = 1, nb
det2(:,2) = psi_det_beta_unique(:,l)
do j = 1, nb
det1(:,2) = psi_det_beta_unique(:,j)
call get_excitation_degree_spin(det1(1,2),det2(1,2),degree,N_int)
if (degree > 2) cycle
do k = 1, na
det2(:,1) = psi_det_alpha_unique(:,k)
do i = 1, na
det1(:,1) = psi_det_alpha_unique(:,i)
call get_excitation_degree(det1,det2,degree,N_int)
if ( degree > 2) cycle
call i_H_j(det1, det2, N_int, h12)
if (h12 == 0.d0) cycle
do m=1,nb
tmp3(m,j,l) = tmp3(m,j,l) + h12 * tmp1(m,i) * tmp1(m,k)
enddo
do n=1,n_TSVD
c_tmp = h12 * Vref(j,n)
if (c_tmp == 0.d0) cycle
do m=1,n_TSVD
H0(k,l,m,n) = H0(k,l,m,n) + c_tmp * tmp1(m,i)
enddo
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP DO
do m=1,nb
do l=1,nb
do j=1,nb
tmp1(j,l) = tmp3(m,j,l)
enddo
enddo
!print *, 'DGEMM1'
call DGEMM('N','N',nb,nb,nb,1.d0, &
tmp1, size(tmp1,1), &
Vref, size(Vref,1), &
0.d0, tmp0, size(tmp0,1))
do n=1,nb
H_diag(m,n) = 0.d0
do j=1,nb
H_diag(m,n) = H_diag(m,n) + tmp0(j,n) * Vref(j,n)
enddo
enddo
enddo
!$OMP END DO
deallocate(tmp1, tmp0)
!$OMP END PARALLEL
call wall_time(t1)
allocate( H1(nb,n_TSVD,n_TSVD,na) )
!print *, 'DGEMM2'
call DGEMM('T','N', nb * n_TSVD * n_TSVD, na, na, &
1.d0, H0, size(H0,1), Uref, size(Uref,1), 0.d0, H1, size(H1,1)*size(H1,2)*size(H1,3))
deallocate( H0 )
! (l,p,q,r) -> (p,q,r,s)
!print *, 'DGEMM3'
call DGEMM('T','N', n_TSVD * n_TSVD * na, nb, nb, &
1.d0, H1, size(H1,1), Vref, size(Vref,1), 0.d0, H, size(H,1)*size(H,2)*size(H,3))
! do j=1,n_TSVD
! do i=1,n_TSVD
! print *, H_diag(i,j), H(i,j,i,j)
! enddo
! enddo
deallocate(H1)
call wall_time(t2)
print *, 't=', t1-t0, t2-t1
double precision :: t0, t1, t2
! stop
end subroutine const_H_uv
subroutine const_H_uv_modif(Uref, Vref, H, H_diag, n_TSVD)
USE OMP_LIB
implicit none
integer, intent(in) :: n_TSVD
double precision, intent(in) :: Uref(n_det_alpha_unique,n_det_alpha_unique)
double precision, intent(in) :: Vref(n_det_beta_unique ,n_det_beta_unique)
double precision, intent(out) :: H(n_TSVD,n_TSVD, n_det_alpha_unique, n_det_beta_unique)
double precision, intent(out) :: H_diag(n_det_alpha_unique,n_det_beta_unique)
integer(bit_kind) :: det1(N_int,2), det2(N_int,2)
integer :: i, j, k, l, degree, n, m, na, nb
double precision :: h12
double precision, allocatable :: H0(:,:,:,:)
double precision, allocatable :: H1(:,:,:,:)
double precision, allocatable :: tmp3(:,:,:)
double precision, allocatable :: tmp1(:,:), tmp0(:,:), tmp4(:,:)
double precision :: c_tmp
na = n_det_alpha_unique
nb = n_det_beta_unique
call wall_time(t0)
allocate( H0(na,nb,n_TSVD,n_TSVD) )
allocate( tmp3(na,nb,nb) )
H0 = 0.d0
tmp3 = 0.d0
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(i,j,k,l,m,n,det1,det2,degree,h12,c_tmp,tmp1,tmp0,tmp4)&
!$OMP SHARED(na,nb,psi_det_alpha_unique,psi_det_beta_unique,&
!$OMP N_int,tmp3,Uref,Vref,H_diag,H0,n_TSVD)
allocate(tmp1(na,na), tmp0(nb,nb), tmp4(nb,nb))
do i=1,na
do m=1,na
tmp1(m,i) = Uref(i,m)
enddo
enddo
!$OMP DO
do l = 1, nb
det2(:,2) = psi_det_beta_unique(:,l)
do j = 1, nb
det1(:,2) = psi_det_beta_unique(:,j)
call get_excitation_degree_spin(det1(1,2),det2(1,2),degree,N_int)
if (degree > 2) cycle
do k = 1, na
det2(:,1) = psi_det_alpha_unique(:,k)
do i = 1, na
det1(:,1) = psi_det_alpha_unique(:,i)
call get_excitation_degree(det1,det2,degree,N_int)
if ( degree > 2) cycle
call i_H_j(det1, det2, N_int, h12)
if (h12 == 0.d0) cycle
do m=1,na
tmp3(m,j,l) = tmp3(m,j,l) + h12 * tmp1(m,i) * tmp1(m,k)
enddo
do n=1,n_TSVD
c_tmp = h12 * Vref(j,n)
if (c_tmp == 0.d0) cycle
do m=1,n_TSVD
H0(k,l,m,n) = H0(k,l,m,n) + c_tmp * tmp1(m,i)
enddo
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP DO
do m=1,na
do l=1,nb
do j=1,nb
tmp4(j,l) = tmp3(m,j,l)
enddo
enddo
call DGEMM('N','N',nb,nb,nb,1.d0, &
tmp4, size(tmp4,1), &
Vref, size(Vref,1), &
0.d0, tmp0, size(tmp0,1))
do n=1,nb
H_diag(m,n) = 0.d0
do j=1,nb
H_diag(m,n) = H_diag(m,n) + tmp0(j,n) * Vref(j,n)
enddo
enddo
enddo
!$OMP END DO
deallocate(tmp1, tmp0)
deallocate(tmp4)
!$OMP END PARALLEL
deallocate(tmp3)
call wall_time(t1)
allocate( H1(nb,n_TSVD,n_TSVD,na) )
call DGEMM('T','N', nb * n_TSVD * n_TSVD, na, na, &
1.d0, H0, size(H0,1), Uref, size(Uref,1), 0.d0, H1, size(H1,1)*size(H1,2)*size(H1,3))
deallocate( H0 )
! (l,p,q,r) -> (p,q,r,s)
call DGEMM('T','N', n_TSVD * n_TSVD * na, nb, nb, &
1.d0, H1, size(H1,1), Vref, size(Vref,1), 0.d0, H, size(H,1)*size(H,2)*size(H,3))
! do j=1,n_TSVD
! do i=1,n_TSVD
! print *, H_diag(i,j), H(i,j,i,j)
! enddo
! enddo
deallocate(H1)
call wall_time(t2)
print *, 't=', t1-t0, t2-t1
double precision :: t0, t1, t2
! stop
end subroutine const_H_uv_modif

View File

@ -0,0 +1,776 @@
program buildpsi_diagSVDit_Anthony_v4
implicit none
BEGIN_DOC
! perturbative approach to build psi_postsvd
END_DOC
read_wf = .True.
TOUCH read_wf
PROVIDE N_int
call run()
end
subroutine run
USE OMP_LIB
implicit none
integer(bit_kind) :: det1(N_int,2), det2(N_int,2)
integer :: degree, i_state
double precision :: h12
integer :: i, j, k, l
double precision :: norm_psi
double precision, allocatable :: Uref(:,:), Dref(:), Vtref(:,:), Aref(:,:), Vref(:,:)
double precision :: E0, tol_energy, ctmp, Ept2, E_prev
double precision, allocatable :: H_diag(:,:), Hkl(:,:), H0(:,:), H(:,:,:,:)
double precision, allocatable :: psi_postsvd(:,:)
integer :: n_TSVD, it_svd, it_svd_max
integer :: ii, jj, n_perturb
double precision :: norm, lambda, E_perturb
double precision, allocatable :: eigval0(:), eigvec0(:,:,:), H_tmp(:,:,:,:)
double precision, allocatable :: norm_row(:), norm_col(:), Utmp(:,:), Vtmp(:,:)
det1(:,1) = psi_det_alpha_unique(:,1)
det2(:,1) = psi_det_alpha_unique(:,1)
det1(:,2) = psi_det_beta_unique(:,1)
det2(:,2) = psi_det_beta_unique(:,1)
call i_H_j(det1, det2, N_int, h12)
i_state = 1
! ---------------------------------------------------------------------------------------
! construct the initial CISD matrix
print *, ' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~'
print *, ' CI matrix:', n_det_alpha_unique,'x',n_det_beta_unique
print *, ' N det :', N_det
print *, ' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~'
norm_psi = 0.d0
do k = 1, N_det
norm_psi = norm_psi + psi_bilinear_matrix_values(k,i_state) &
* psi_bilinear_matrix_values(k,i_state)
enddo
print *, ' initial norm = ', norm_psi
allocate( Aref(n_det_alpha_unique,n_det_beta_unique) )
Aref(:,:) = 0.d0
do k = 1, N_det
i = psi_bilinear_matrix_rows(k)
j = psi_bilinear_matrix_columns(k)
Aref(i,j) = psi_bilinear_matrix_values(k,i_state)
enddo
! ---------------------------------------------------------------------------------------
! ---------------------------------------------------------------------------------------
! perform a Full SVD
allocate( Uref(n_det_alpha_unique,n_det_alpha_unique) )
!allocate( Dref(max(n_det_beta_unique,n_det_alpha_unique)) )
allocate( Dref(min(n_det_beta_unique,n_det_alpha_unique)) )
allocate( Vref(n_det_beta_unique,n_det_beta_unique) )
allocate( Vtref(n_det_beta_unique,n_det_beta_unique) )
call svd_s(Aref, size(Aref,1), Uref, size(Uref,1), Dref, Vtref, size(Vtref,1) &
, n_det_alpha_unique, n_det_beta_unique)
print *, ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~ '
do l = 1, n_det_beta_unique
do i = 1, n_det_beta_unique
Vref(i,l) = Vtref(l,i)
enddo
enddo
deallocate( Vtref )
! Truncated rank
!n_TSVD = 100
!call write_int(6,n_TSVD, 'Rank of psi')
!________________________________________________________________________________________________________
!
! loop over SVD iterations
!________________________________________________________________________________________________________
tol_energy = 1.d0
it_svd = 0
it_svd_max = 100
E_prev = 0.d0
!print *, ci_energy(1)
allocate(H_diag(n_det_alpha_unique,n_det_beta_unique))
allocate(psi_postsvd(n_det_alpha_unique,n_det_beta_unique))
do while( ( it_svd .lt. it_svd_max) .and. ( tol_energy .gt. 1d-6 ) )
it_svd = it_svd + 1
! Truncated rank
!n_TSVD = min(n_det_alpha_unique,n_det_beta_unique)
!do i = min(n_det_alpha_unique,n_det_beta_unique), 10, -1
! if( dabs(Dref(i)) .lt. 1d-2 ) then
! n_TSVD = n_TSVD - 1
! else
! exit
! endif
!enddo
!do i = 1, min(n_det_alpha_unique,n_det_beta_unique)
! print *, i, Dref(i)
!enddo
!call write_int(6,n_TSVD, 'Rank of psi')
n_TSVD = 30 !min(n_TSVD,100)
call write_int(6,n_TSVD, 'Rank of psi')
print *, '-- Compute H --'
allocate(H(n_TSVD,n_TSVD,n_det_alpha_unique,n_det_beta_unique))
call const_H_uv_modif(Uref, Vref, H, H_diag, n_TSVD)
!call const_H_uv(Uref, Vref, H, H_diag, n_TSVD)
! E0 = < psi_0 | H | psi_0 >
!norm = 0.d0
!do j = 1, n_TSVD
! norm = norm + Dref(j)*Dref(j)
!enddo
!Dref = Dref / dsqrt(norm)
!E0 = 0.d0
!do j = 1, n_TSVD
! do i = 1, n_TSVD
! E0 = E0 + Dref(i) * H(i,i,j,j) * Dref(j)
! enddo
!enddo
!E0 = E0 + nuclear_repulsion
!print *,' E0 bef diag =', E0
allocate( H_tmp(n_TSVD,n_TSVD,n_TSVD,n_TSVD) )
do l = 1, n_TSVD
do k = 1, n_TSVD
do j = 1, n_TSVD
do i = 1, n_TSVD
H_tmp(i,j,k,l) = H(i,j,k,l)
enddo
enddo
enddo
enddo
allocate( eigval0(n_TSVD**2) , eigvec0(n_TSVD,n_TSVD,n_TSVD**2) )
eigvec0 = 0.d0
!print *, ' --- Diag post-SVD --- '
call lapack_diag(eigval0, eigvec0, H_tmp, n_TSVD**2, n_TSVD**2)
!print *, 'eig =', eigval0(1) + nuclear_repulsion
deallocate(H_tmp, eigval0)
print *, ' --- first SVD --- '
Dref = 0.d0
call perform_newpostSVD(n_TSVD, eigvec0(1,1,1), size(eigvec0,1), Uref, Vref, Dref)
deallocate(eigvec0)
print *, ' --- Compute H --- '
call const_H_uv_modif(Uref, Vref, H, H_diag, n_TSVD)
!call const_H_uv(Uref, Vref, H, H_diag, n_TSVD)
! E0 = < psi_0 | H | psi_0 >
E0 = 0.d0
norm = 0.d0
do j = 1, n_det_beta_unique
do i = 1, n_TSVD
E0 = E0 + Dref(i) * H(i,i,j,j) * Dref(j)
enddo
norm = norm + Dref(j)*Dref(j)
enddo
E0 = E0 + nuclear_repulsion
print *,' E0 aft diag =', E0
! -----------------------------------------------------------------
!print *, ' --- Perturbation --- '
psi_postsvd = 0.d0
do i = 1, n_TSVD
psi_postsvd(i,i) = Dref(i)
enddo
lambda = 1.d0
Ept2 = 0.d0
do j = 1, n_TSVD
do i = n_TSVD+1, n_det_alpha_unique
ctmp = 0.d0
do k = 1, n_TSVD
ctmp = ctmp + H(k,k,i,j) * Dref(k)
enddo
psi_postsvd(i,j) = lambda * ctmp / (E0 - (H_diag(i,j)+nuclear_repulsion) )
Ept2 += ctmp * ctmp / (E0 - (H_diag(i,j)+nuclear_repulsion) )
enddo
enddo
do j = n_TSVD+1, n_det_beta_unique
do i = 1, n_TSVD
ctmp = 0.d0
do k = 1, n_TSVD
ctmp = ctmp + H(k,k,i,j) * Dref(k)
enddo
psi_postsvd(i,j) = lambda * ctmp / (E0 - (H_diag(i,j)+nuclear_repulsion) )
Ept2 += ctmp * ctmp / (E0 - (H_diag(i,j)+nuclear_repulsion) )
enddo
enddo
deallocate( H )
! -----------------------------------------------------------------
n_perturb = n_TSVD + n_TSVD
allocate( norm_row(n_det_alpha_unique) , norm_col(n_det_beta_unique) )
do i = 1, n_det_alpha_unique
norm_row(i) = 0.d0
do j = 1, n_det_beta_unique
norm_row(i) += psi_postsvd(i,j) * psi_postsvd(i,j)
enddo
enddo
do j = 1, n_det_beta_unique
norm_col(j) = 0.d0
do i = 1, n_det_alpha_unique
norm_col(j) += psi_postsvd(i,j) * psi_postsvd(i,j)
enddo
enddo
allocate( Utmp(n_det_alpha_unique,n_perturb) , Vtmp(n_det_beta_unique,n_perturb) )
do i = 1, n_perturb
ii = MAXLOC( norm_row , DIM=1 )
jj = MAXLOC( norm_col , DIM=1 )
if( (norm_row(ii).lt.1.d-12) .or. (norm_col(jj).lt.1.d-12) ) then
print *, ' !!!!!!! '
print *, ii, norm_row(ii)
print *, jj, norm_col(jj)
stop
endif
Utmp(:,i) = Uref(:,ii)
Vtmp(:,i) = Vref(:,jj)
norm_row(ii) = 0.d0
norm_col(jj) = 0.d0
enddo
deallocate( norm_row , norm_col )
print *, ' --- Compute H in n_perturb space --- '
allocate(H(n_perturb,n_perturb,n_det_alpha_unique,n_det_beta_unique))
call const_H_TSVD(Uref, Vref, H, n_perturb)
allocate( H_tmp(n_perturb,n_perturb,n_perturb,n_perturb) )
do l = 1, n_perturb
do k = 1, n_perturb
do j = 1, n_perturb
do i = 1, n_perturb
H_tmp(i,j,k,l) = H(i,j,k,l)
enddo
enddo
enddo
enddo
deallocate( H )
allocate( eigval0(n_perturb**2) , eigvec0(n_perturb,n_perturb,n_perturb**2) )
eigvec0 = 0.d0
call lapack_diag(eigval0, eigvec0, H_tmp, n_perturb**2, n_perturb**2)
E_perturb = eigval0(1) + nuclear_repulsion
print *, ' diag in n_perturb space: ', E_perturb
deallocate(H_tmp, eigval0)
print *, ' --- second SVD --- '
Uref = 0.d0
Vref = 0.d0
Dref = 0.d0
do l = 1, n_perturb
Uref(1:n_det_alpha_unique,l) = Utmp(1:n_det_alpha_unique,l)
Vref(1:n_det_beta_unique ,l) = Vtmp(1:n_det_beta_unique ,l)
enddo
deallocate( Utmp , Vtmp )
call perform_perturbSVD(n_TSVD, n_perturb, eigvec0(1,1,1), size(eigvec0,1), Uref, Vref, Dref)
deallocate(eigvec0)
tol_energy = dabs(E_prev - E0)
print '(I5, 2(2X,I5), 3(3X, F20.10))', it_svd, n_TSVD, n_perturb, E0, E_perturb, tol_energy
write(222,'(I5, 2(2X,I5), 3(3X, F20.10))') it_svd, n_TSVD, n_perturb, E0, E_perturb, tol_energy
E_prev = E0
!print *, ' --- SVD --- '
!call perform_newpostSVD(n_TSVD, psi_postsvd, size(psi_postsvd,1), Uref, Vref, Dref)
!call perform_newSVD(n_TSVD, psi_postsvd, size(psi_postsvd,1), Uref, Vref, Dref)
end do
end
subroutine perform_newpostSVD(n_TSVD, psi_postsvd, LDP, Uref, Vref, Dref)
integer, intent(in) :: n_TSVD, LDP
double precision, intent(in) :: psi_postsvd(LDP,n_TSVD)
double precision, intent(inout) :: Uref(n_det_alpha_unique,n_det_alpha_unique)
double precision, intent(inout) :: Vref(n_det_beta_unique ,n_det_beta_unique)
!double precision, intent(inout) :: Dref(max(n_det_beta_unique,n_det_alpha_unique))
double precision, intent(inout) :: Dref(min(n_det_beta_unique,n_det_alpha_unique))
integer :: mm, nn, i, j, l, na, nb
double precision :: err0, err_norm, err_tmp, norm_tmp
double precision, allocatable :: S_mat(:,:), SxVt(:,:)
double precision, allocatable :: U_svd(:,:), V_svd(:,:)
double precision, allocatable :: U_newsvd(:,:), V_newsvd(:,:), Vt_newsvd(:,:), D_newsvd(:), A_newsvd(:,:)
mm = n_det_alpha_unique
nn = n_det_beta_unique
allocate( U_svd(mm,n_TSVD) , V_svd(nn,n_TSVD) , S_mat(n_TSVD,n_TSVD) )
U_svd(1:mm,1:n_TSVD) = Uref(1:mm,1:n_TSVD)
V_svd(1:nn,1:n_TSVD) = Vref(1:nn,1:n_TSVD)
S_mat(1:n_TSVD,1:n_TSVD) = psi_postsvd(1:n_TSVD,1:n_TSVD)
! first compute S_mat x transpose(V_svd)
allocate( SxVt(n_TSVD,nn) )
call dgemm( 'N', 'T', n_TSVD, nn, n_TSVD, 1.d0 &
, S_mat , size(S_mat,1) &
, V_svd , size(V_svd,1) &
, 0.d0, SxVt, size(SxVt ,1) )
deallocate(S_mat)
! then compute U_svd x SxVt
allocate( A_newsvd(mm,nn) )
call dgemm( 'N', 'N', mm, nn, n_TSVD, 1.d0 &
, U_svd , size(U_svd ,1) &
, SxVt , size(SxVt ,1) &
, 0.d0, A_newsvd, size(A_newsvd,1) )
deallocate( SxVt )
! perform new SVD
!allocate( U_newsvd(mm,mm), Vt_newsvd(nn,nn), D_newsvd(max(mm,nn)) )
allocate( U_newsvd(mm,mm), Vt_newsvd(nn,nn), D_newsvd(min(mm,nn)) )
call svd_s( A_newsvd, size(A_newsvd,1), &
U_newsvd, size(U_newsvd,1), &
D_newsvd, &
Vt_newsvd, size(Vt_newsvd,1), &
mm, nn)
deallocate(A_newsvd)
allocate( V_newsvd(nn,nn) )
do l = 1, nn
do j = 1, nn
V_newsvd(j,l) = Vt_newsvd(l,j)
enddo
enddo
deallocate(Vt_newsvd)
!do l = 1, n_TSVD
! Dref(l) = D_newsvd(l)
! Uref(1:mm,l) = U_newsvd(1:mm,l)
! Vref(1:nn,l) = V_newsvd(1:nn,l)
!enddo
Dref(1:n_TSVD) = D_newsvd(1:n_TSVD)
Uref(1:mm,1:mm) = U_newsvd(1:mm,1:mm)
Vref(1:nn,1:nn) = V_newsvd(1:nn,1:nn)
deallocate(U_newsvd)
deallocate(V_newsvd)
deallocate(D_newsvd)
end subroutine perform_newpostSVD
subroutine perform_perturbSVD(n_TSVD, n_perturb, psi_postsvd, LDP, Uref, Vref, Dref)
integer, intent(in) :: n_TSVD, LDP, n_perturb
double precision, intent(in) :: psi_postsvd(LDP,n_TSVD)
double precision, intent(inout) :: Uref(n_det_alpha_unique,n_det_alpha_unique)
double precision, intent(inout) :: Vref(n_det_beta_unique ,n_det_beta_unique)
double precision, intent(inout) :: Dref(min(n_det_beta_unique,n_det_alpha_unique))
integer :: mm, nn, i, j, l, na, nb
double precision :: err0, err_norm, err_tmp, norm_tmp
double precision, allocatable :: S_mat(:,:), SxVt(:,:)
double precision, allocatable :: U_svd(:,:), V_svd(:,:)
double precision, allocatable :: U_newsvd(:,:), V_newsvd(:,:), Vt_newsvd(:,:), D_newsvd(:), A_newsvd(:,:)
mm = n_det_alpha_unique
nn = n_det_beta_unique
allocate( U_svd(mm,n_perturb) , V_svd(nn,n_perturb) , S_mat(n_perturb,n_perturb) )
U_svd(1:mm,1:n_perturb) = Uref(1:mm,1:n_perturb)
V_svd(1:nn,1:n_perturb) = Vref(1:nn,1:n_perturb)
S_mat(1:n_perturb,1:n_perturb) = psi_postsvd(1:n_perturb,1:n_perturb)
! first compute S_mat x transpose(V_svd)
allocate( SxVt(n_perturb,nn) )
call dgemm( 'N', 'T', n_perturb, nn, n_perturb, 1.d0 &
, S_mat , size(S_mat,1) &
, V_svd , size(V_svd,1) &
, 0.d0, SxVt, size(SxVt ,1) )
deallocate(S_mat)
! then compute U_svd x SxVt
allocate( A_newsvd(mm,nn) )
call dgemm( 'N', 'N', mm, nn, n_perturb, 1.d0 &
, U_svd , size(U_svd ,1) &
, SxVt , size(SxVt ,1) &
, 0.d0, A_newsvd, size(A_newsvd,1) )
deallocate( SxVt )
! perform new SVD
allocate( U_newsvd(mm,mm), Vt_newsvd(nn,nn), D_newsvd(min(mm,nn)) )
call svd_s( A_newsvd, size(A_newsvd,1), &
U_newsvd, size(U_newsvd,1), &
D_newsvd, &
Vt_newsvd, size(Vt_newsvd,1), &
mm, nn)
deallocate(A_newsvd)
allocate( V_newsvd(nn,nn) )
do l = 1, nn
do j = 1, nn
V_newsvd(j,l) = Vt_newsvd(l,j)
enddo
enddo
deallocate(Vt_newsvd)
Dref(1:n_TSVD) = D_newsvd(1:n_TSVD)
Uref(1:mm,1:mm) = U_newsvd(1:mm,1:mm)
Vref(1:nn,1:nn) = V_newsvd(1:nn,1:nn)
deallocate(U_newsvd)
deallocate(V_newsvd)
deallocate(D_newsvd)
end subroutine perform_perturbSVD
subroutine perform_newSVD(n_TSVD, psi_postsvd, LDP, Uref, Vref, Dref)
integer, intent(in) :: n_TSVD, LDP
double precision, intent(in) :: psi_postsvd(LDP,n_TSVD)
double precision, intent(inout) :: Uref(n_det_alpha_unique,n_det_alpha_unique)
double precision, intent(inout) :: Vref(n_det_beta_unique ,n_det_beta_unique)
double precision, intent(inout) :: Dref(min(n_det_beta_unique,n_det_alpha_unique))
integer :: mm, nn, i, j, l, na, nb
double precision :: err0, err_norm, err_tmp, norm_tmp
double precision, allocatable :: S_mat(:,:), SxVt(:,:)
double precision, allocatable :: U_svd(:,:), V_svd(:,:)
double precision, allocatable :: U_newsvd(:,:), V_newsvd(:,:), Vt_newsvd(:,:), D_newsvd(:), A_newsvd(:,:)
mm = n_det_alpha_unique
nn = n_det_beta_unique
allocate( U_svd(mm,mm) , V_svd(nn,nn) , S_mat(mm,nn) )
U_svd(1:mm,1:mm) = Uref(1:mm,1:mm)
V_svd(1:nn,1:nn) = Vref(1:nn,1:nn)
norm_tmp = 0.d0
do i = 1, nn
do j = 1, mm
S_mat(j,i) = psi_postsvd(j,i)
norm_tmp += psi_postsvd(j,i) * psi_postsvd(j,i)
enddo
enddo
norm_tmp = 1.d0 / dsqrt(norm_tmp)
do i = 1, nn
do j = 1, mm
S_mat(j,i) = S_mat(j,i) * norm_tmp
enddo
enddo
! first compute S_mat x transpose(V_svd)
allocate( SxVt(mm,nn) )
call dgemm( 'N', 'T', mm, nn, nn, 1.d0 &
, S_mat , size(S_mat,1) &
, V_svd , size(V_svd,1) &
, 0.d0, SxVt, size(SxVt ,1) )
deallocate(S_mat)
! then compute U_svd x SxVt
allocate( A_newsvd(mm,nn) )
call dgemm( 'N', 'N', mm, nn, mm, 1.d0 &
, U_svd , size(U_svd ,1) &
, SxVt , size(SxVt ,1) &
, 0.d0, A_newsvd, size(A_newsvd,1) )
deallocate( SxVt )
! perform new SVD
allocate( U_newsvd(mm,mm), Vt_newsvd(nn,nn), D_newsvd(min(mm,nn)) )
call svd_s( A_newsvd, size(A_newsvd,1), U_newsvd, size(U_newsvd,1), D_newsvd, Vt_newsvd, size(Vt_newsvd,1), mm, nn)
deallocate(A_newsvd)
allocate( V_newsvd(nn,nn) )
do l = 1, nn
do j = 1, nn
V_newsvd(j,l) = Vt_newsvd(l,j)
enddo
enddo
deallocate(Vt_newsvd)
!Dref(1:n_TSVD) = D_newsvd(1:n_TSVD)
Dref = D_newsvd
Uref(1:mm,1:mm) = U_newsvd(1:mm,1:mm)
Vref(1:nn,1:nn) = V_newsvd(1:nn,1:nn)
deallocate(U_newsvd)
deallocate(V_newsvd)
deallocate(D_newsvd)
return
end subroutine perform_newSVD
subroutine const_H_uv_modif(Uref, Vref, H, H_diag, n_TSVD)
USE OMP_LIB
implicit none
integer, intent(in) :: n_TSVD
double precision, intent(in) :: Uref(n_det_alpha_unique,n_det_alpha_unique)
double precision, intent(in) :: Vref(n_det_beta_unique ,n_det_beta_unique)
double precision, intent(out) :: H(n_TSVD,n_TSVD, n_det_alpha_unique, n_det_beta_unique)
double precision, intent(out) :: H_diag(n_det_alpha_unique,n_det_beta_unique)
integer(bit_kind) :: det1(N_int,2), det2(N_int,2)
integer :: i, j, k, l, degree, n, m, na, nb
double precision :: h12
double precision, allocatable :: H0(:,:,:,:)
double precision, allocatable :: H1(:,:,:,:)
double precision, allocatable :: tmp3(:,:,:)
double precision, allocatable :: tmp1(:,:), tmp0(:,:), tmp4(:,:)
double precision :: c_tmp
na = n_det_alpha_unique
nb = n_det_beta_unique
call wall_time(t0)
allocate( H0(na,nb,n_TSVD,n_TSVD) )
allocate( tmp3(na,nb,nb) )
H0 = 0.d0
tmp3 = 0.d0
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(i,j,k,l,m,n,det1,det2,degree,h12,c_tmp,tmp1,tmp0,tmp4) &
!$OMP SHARED(na,nb,psi_det_alpha_unique,psi_det_beta_unique, &
!$OMP N_int,tmp3,Uref,Vref,H_diag,H0,n_TSVD)
allocate(tmp1(na,na), tmp0(nb,nb), tmp4(nb,nb))
do i = 1, na
do m = 1, na
tmp1(m,i) = Uref(i,m)
enddo
enddo
!$OMP DO
do l = 1, nb
det2(:,2) = psi_det_beta_unique(:,l)
do j = 1, nb
det1(:,2) = psi_det_beta_unique(:,j)
call get_excitation_degree_spin(det1(1,2),det2(1,2),degree,N_int)
if (degree > 2) cycle
do k = 1, na
det2(:,1) = psi_det_alpha_unique(:,k)
do i = 1, na
det1(:,1) = psi_det_alpha_unique(:,i)
call get_excitation_degree(det1,det2,degree,N_int)
if ( degree > 2) cycle
call i_H_j(det1, det2, N_int, h12)
if (h12 == 0.d0) cycle
do m = 1, na
tmp3(m,j,l) = tmp3(m,j,l) + h12 * tmp1(m,i) * tmp1(m,k)
enddo
do n = 1, n_TSVD
c_tmp = h12 * Vref(j,n)
if (c_tmp == 0.d0) cycle
do m = 1, n_TSVD
H0(k,l,m,n) = H0(k,l,m,n) + c_tmp * tmp1(m,i)
enddo
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP DO
do m = 1, na
do l = 1, nb
do j = 1, nb
tmp4(j,l) = tmp3(m,j,l)
enddo
enddo
call DGEMM('N','N',nb,nb,nb,1.d0, &
tmp4, size(tmp4,1), &
Vref, size(Vref,1), &
0.d0, tmp0, size(tmp0,1))
do n = 1, nb
H_diag(m,n) = 0.d0
do j = 1, nb
H_diag(m,n) = H_diag(m,n) + tmp0(j,n) * Vref(j,n)
enddo
enddo
enddo
!$OMP END DO
deallocate(tmp1, tmp0)
deallocate(tmp4)
!$OMP END PARALLEL
deallocate(tmp3)
call wall_time(t1)
! H0(na,nb,n_TSVD,n_TSVD)
allocate( H1(nb,n_TSVD,n_TSVD,na) )
call DGEMM('T', 'N', nb * n_TSVD * n_TSVD, na, na, 1.d0, &
H0 , size(H0,1) , &
Uref, size(Uref,1), 0.d0, &
H1 , size(H1,1) * size(H1,2) * size(H1,3) )
deallocate( H0 )
! (l,p,q,r) -> (p,q,r,s)
call DGEMM('T','N', n_TSVD * n_TSVD * na, nb, nb, &
1.d0, H1, size(H1,1), Vref, size(Vref,1), 0.d0, H, size(H,1)*size(H,2)*size(H,3))
! do j=1,n_TSVD
! do i=1,n_TSVD
! print *, H_diag(i,j), H(i,j,i,j)
! enddo
! enddo
deallocate(H1)
call wall_time(t2)
print *, 't=', t1-t0, t2-t1
double precision :: t0, t1, t2
! stop
end subroutine const_H_uv_modif
subroutine const_H_TSVD(Uref, Vref, H, n_TSVD)
USE OMP_LIB
implicit none
integer, intent(in) :: n_TSVD
double precision, intent(in) :: Uref(n_det_alpha_unique,n_TSVD)
double precision, intent(in) :: Vref(n_det_beta_unique ,n_TSVD)
double precision, intent(out) :: H(n_TSVD,n_TSVD, n_det_alpha_unique, n_det_beta_unique)
integer(bit_kind) :: det1(N_int,2), det2(N_int,2)
integer :: i, j, k, l, degree, n, m, na, nb
double precision :: h12
double precision, allocatable :: H0(:,:,:,:)
double precision, allocatable :: H1(:,:,:,:)
double precision, allocatable :: tmp1(:,:)
double precision :: c_tmp
double precision :: t0, t1, t2
na = n_det_alpha_unique
nb = n_det_beta_unique
call wall_time(t0)
allocate( H0(na,nb,n_TSVD,n_TSVD) )
H0 = 0.d0
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(i,j,k,l,m,n,det1,det2,degree,h12,c_tmp,tmp1) &
!$OMP SHARED(na,nb,psi_det_alpha_unique,psi_det_beta_unique &
!$OMP ,N_int,Uref,Vref,H0,n_TSVD)
allocate(tmp1(na,na))
do i = 1, na
do m = 1, na
tmp1(m,i) = Uref(i,m)
enddo
enddo
!$OMP DO
do l = 1, nb
det2(:,2) = psi_det_beta_unique(:,l)
do j = 1, nb
det1(:,2) = psi_det_beta_unique(:,j)
call get_excitation_degree_spin(det1(1,2),det2(1,2),degree,N_int)
if (degree > 2) cycle
do k = 1, na
det2(:,1) = psi_det_alpha_unique(:,k)
do i = 1, na
det1(:,1) = psi_det_alpha_unique(:,i)
call get_excitation_degree(det1,det2,degree,N_int)
if ( degree > 2) cycle
call i_H_j(det1, det2, N_int, h12)
if (h12 == 0.d0) cycle
do n = 1, n_TSVD
c_tmp = h12 * Vref(j,n)
if (c_tmp == 0.d0) cycle
do m = 1, n_TSVD
H0(k,l,m,n) = H0(k,l,m,n) + c_tmp * tmp1(m,i)
enddo
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
deallocate(tmp1)
!$OMP END PARALLEL
call wall_time(t1)
allocate( H1(nb,n_TSVD,n_TSVD,na) )
call DGEMM('T','N', nb * n_TSVD * n_TSVD, na, na, &
1.d0, H0, size(H0,1), Uref, size(Uref,1), 0.d0, H1, size(H1,1)*size(H1,2)*size(H1,3))
deallocate( H0 )
! (l,p,q,r) -> (p,q,r,s)
call DGEMM('T','N', n_TSVD * n_TSVD * na, nb, nb, &
1.d0, H1, size(H1,1), Vref, size(Vref,1), 0.d0, H, size(H,1)*size(H,2)*size(H,3))
deallocate(H1)
call wall_time(t2)
print *, 't=', t1-t0, t2-t1
end subroutine const_H_TSVD

View File

@ -0,0 +1,822 @@
program buildpsi_diagSVDit_v0
implicit none
BEGIN_DOC
! perturbative approach to build psi_postsvd
END_DOC
read_wf = .True.
TOUCH read_wf
PROVIDE N_int
call run()
end
subroutine run
USE OMP_LIB
implicit none
integer(bit_kind) :: det1(N_int,2), det2(N_int,2)
integer :: degree, i_state
double precision :: h12
integer :: i, j, k, l, ii, jj, nn, na, nb
double precision :: norm_psi, inv_sqrt_norm_psi
double precision, allocatable :: Uref(:,:), Dref(:), Vtref(:,:), Aref(:,:), Vref(:,:)
double precision :: E0_av, E0_ap, E0pt2
double precision :: err0, err_tmp, e_tmp, E0, overlop, E0_old, tol_energy
double precision :: ctmp, htmp, Ept2
double precision :: E0_postsvd, overlop_postsvd
double precision :: norm_coeff_psi, inv_sqrt_norm_coeff_psi
double precision :: overlopU, overlopU_mat, overlopV, overlopV_mat, overlop_psi
double precision, allocatable :: Hdiag(:), Hkl(:,:), H0(:,:)
double precision, allocatable :: psi_postsvd(:), coeff_psi(:), coeff_psi_perturb(:)
integer :: n_FSVD, n_selected, n_toselect, n_tmp, it_svd, it_svd_max
integer :: n_selected2
integer, allocatable :: numalpha_selected(:), numbeta_selected(:)
integer, allocatable :: numalpha_toselect(:), numbeta_toselect(:)
integer, allocatable :: numalpha_tmp(:), numbeta_tmp(:)
integer(kind=8) :: W_tbeg, W_tend, W_tbeg_it, W_tend_it, W_ir
real(kind=8) :: W_tot_time, W_tot_time_it
real(kind=8) :: CPU_tbeg, CPU_tend, CPU_tbeg_it, CPU_tend_it
real(kind=8) :: CPU_tot_time, CPU_tot_time_it
real(kind=8) :: speedup, speedup_it
integer :: nb_taches
!$OMP PARALLEL
nb_taches = OMP_GET_NUM_THREADS()
!$OMP END PARALLEL
call CPU_TIME(CPU_tbeg)
call SYSTEM_CLOCK(COUNT=W_tbeg, COUNT_RATE=W_ir)
i_state = 1
det1(:,1) = psi_det_alpha_unique(:,1)
det2(:,1) = psi_det_alpha_unique(:,1)
call get_excitation_degree_spin(det1(1,1),det2(1,1),degree,N_int)
det1(:,2) = psi_det_beta_unique(:,1)
det2(:,2) = psi_det_beta_unique(:,1)
call get_excitation_degree(det1,det2,degree,N_int)
call i_H_j(det1, det2, N_int, h12)
! ---------------------------------------------------------------------------------------
! construct the initial CISD matrix
print *, ' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~'
print *, ' CISD matrix:', n_det_alpha_unique,'x',n_det_beta_unique
print *, ' N det :', N_det
print *, ' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~'
norm_psi = 0.d0
do k = 1, N_det
norm_psi = norm_psi + psi_bilinear_matrix_values(k,i_state) &
* psi_bilinear_matrix_values(k,i_state)
enddo
print *, ' initial norm = ', norm_psi
allocate( Aref(n_det_alpha_unique,n_det_beta_unique) )
Aref(:,:) = 0.d0
do k = 1, N_det
i = psi_bilinear_matrix_rows(k)
j = psi_bilinear_matrix_columns(k)
Aref(i,j) = psi_bilinear_matrix_values(k,i_state)
enddo
! ---------------------------------------------------------------------------------------
! ---------------------------------------------------------------------------------------
! perform a Full SVD
allocate( Uref(n_det_alpha_unique,n_det_beta_unique) )
allocate( Dref(n_det_beta_unique) )
allocate( Vref(n_det_beta_unique,n_det_beta_unique) )
allocate( Vtref(n_det_beta_unique,n_det_beta_unique) )
call svd_s(Aref, size(Aref,1), Uref, size(Uref,1), Dref, Vtref, size(Vtref,1) &
, n_det_alpha_unique, n_det_beta_unique)
print *, ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~ '
print *, ' --- First SVD: ok --- '
print *, ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~ '
do l = 1, n_det_beta_unique
do i = 1, n_det_beta_unique
Vref(i,l) = Vtref(l,i)
enddo
enddo
deallocate( Vtref )
! ---------------------------------------------------------------------------------------
nn = n_det_beta_unique
! ---------------------------------------------------------------------------------------
! numerote vectors
! Full rank
n_FSVD = nn * nn
print*, ' Full psi space rank = ', n_FSVD
! Truncated rank
n_selected = 20
n_selected2 = n_selected * n_selected
print*, ' initial psi space rank = ', n_selected
allocate( numalpha_selected(n_selected) , numbeta_selected(n_selected) )
do i = 1, n_selected
numalpha_selected(i) = i
numbeta_selected (i) = i
enddo
! check SVD error
err0 = 0.d0
do j = 1, nn
do i = 1, n_det_alpha_unique
err_tmp = 0.d0
do l = 1, n_selected
err_tmp = err_tmp + Dref(l) * Uref(i,l) * Vref(j,l)
enddo
err_tmp = Aref(i,j) - err_tmp
err0 += err_tmp * err_tmp
enddo
enddo
print *, ' SVD err (%) = ', 100.d0 * dsqrt(err0/norm_psi)
deallocate( Aref )
! perturbative space rank
k = 0
n_toselect = nn*nn - n_selected*n_selected
allocate( numalpha_toselect(n_toselect) , numbeta_toselect(n_toselect) )
! nondiagonal blocs
do i = 1, n_selected
do j = n_selected+1, nn
k = k + 1
numalpha_toselect(k) = j
numbeta_toselect (k) = i
enddo
enddo
do j = 1, n_selected
do i = n_selected+1, nn
k = k + 1
numalpha_toselect(k) = j
numbeta_toselect (k) = i
enddo
enddo
! diagonal bloc
do i = n_selected+1, nn
do j = n_selected+1, nn
k = k + 1
numalpha_toselect(k) = j
numbeta_toselect (k) = i
enddo
enddo
if( k.ne.n_toselect ) then
print*, ' error in numeroting '
stop
endif
print*, ' perturbative psi space rank = ', n_toselect
! ---------------------------------------------------------------------------------------
!________________________________________________________________________________________________________
!
! loop over SVD iterations
!________________________________________________________________________________________________________
E0_old = 0.d0
tol_energy = 1.d0
it_svd = 0
it_svd_max = 100
do while( ( it_svd .lt. it_svd_max) .and. ( tol_energy .gt. 1d-8 ) )
call CPU_TIME(CPU_tbeg_it)
call SYSTEM_CLOCK(COUNT=W_tbeg_it, COUNT_RATE=W_ir)
it_svd = it_svd + 1
print*, '+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +'
print*, ' '
print*, ' iteration', it_svd
norm_coeff_psi = 0.d0
do j = 1, n_selected
norm_coeff_psi += Dref(j) * Dref(j)
enddo
inv_sqrt_norm_coeff_psi = 1.d0 / dsqrt(norm_coeff_psi)
do j = 1, n_selected
Dref(j) = Dref(j) * inv_sqrt_norm_coeff_psi
enddo
allocate( H0(n_selected2,n_selected2) )
print *, ''
print *, ''
print *, ''
print *, '-- Compute H --'
call const_psihpsi_postsvd_H0(n_selected, n_selected2, Uref, Vref, H0)
! avant SVD
E0 = 0.d0
do i = 1, n_selected
ii = (i-1)*n_selected + i
do j = 1, n_selected
jj = (j-1)*n_selected + j
E0 += Dref(j) * H0(jj,ii) * Dref(i)
enddo
enddo
E0_av = E0 + nuclear_repulsion
print *,' E0 (avant SVD) =', E0_av
allocate( psi_postsvd(n_selected2) )
print *, ' --- Diag post-SVD --- '
call diag_postsvd(n_selected, n_selected2, Dref, H0, E0_postsvd, overlop_postsvd, psi_postsvd)
print*, ' postsvd energy = ', E0_postsvd
deallocate( H0 )
! post-SVD
print *, ' --- SVD --- '
!Dref(:) = 0.d0
call perform_newpostSVD(n_selected, n_selected2, psi_postsvd, Uref, Vref, Dref)
deallocate( psi_postsvd )
allocate( H0(n_selected2,n_selected2) )
print *, ' --- Compute H --- '
call const_psihpsi_postsvd_H0(n_selected, n_selected2, Uref, Vref, H0)
E0 = 0.d0
norm_coeff_psi = 0.d0
do i = 1, n_selected
ii = (i-1)*n_selected + i
do j = 1, n_selected
jj = (j-1)*n_selected + j
E0 += Dref(j) * H0(jj,ii) * Dref(i)
enddo
norm_coeff_psi += Dref(i) * Dref(i)
enddo
E0_ap = E0 + nuclear_repulsion
print *,' E0 (apres SVD) =', E0_ap
!print *,' norm =', norm_coeff_psi
deallocate(H0)
print *, ' --- Perturbation --- '
allocate( Hdiag(n_toselect), Hkl(n_selected2,n_toselect) )
call const_Hdiag_Hkl(n_selected, n_selected2, n_toselect, Uref, Vref, numalpha_toselect, numbeta_toselect, Hdiag, Hkl)
!do l = 1, n_toselect
! na = numalpha_toselect(l)
! nb = numbeta_toselect (l)
! print *, na, nb, Hdiag(l)
!enddo
! evaluate the coefficients for all the vectors
allocate( coeff_psi_perturb(n_toselect) )
ept2 = 0.d0
do ii = 1, n_toselect
!na = numalpha_toselect(ii)
!nb = numbeta_toselect (ii)
ctmp = 0.d0
do i = 1, n_selected
l = (i-1)*n_selected + i
ctmp += Dref(i) * Hkl(l,ii)
enddo
coeff_psi_perturb(ii) = ctmp / ( E0_ap - (Hdiag(ii)+nuclear_repulsion) )
ept2 += ctmp*ctmp / ( E0_ap - (Hdiag(ii)+nuclear_repulsion) )
enddo
E0pt2 = E0_ap + ept2
print *, ' perturb energy = ', E0pt2, ept2
tol_energy = 100.d0 * dabs(E0pt2-E0_old) / dabs(E0pt2)
E0_old = E0pt2
deallocate( Hdiag, Hkl)
print *, ' --- SVD --- '
call perform_newSVD(n_selected, n_selected2, n_toselect, numalpha_toselect, numbeta_toselect, coeff_psi_perturb, Uref, Vref, Dref)
deallocate( coeff_psi_perturb )
write(11,'(i5,4x,4(f22.15,2x))') it_svd, E0_av, E0_postsvd, E0_ap, E0pt2
call CPU_TIME(CPU_tend_it)
call SYSTEM_CLOCK(COUNT=W_tend_it, COUNT_RATE=W_ir)
CPU_tot_time_it = CPU_tend_it - CPU_tbeg_it
W_tot_time_it = real(W_tend_it-W_tbeg_it, kind=8) / real(W_ir, kind=8)
speedup_it = CPU_tot_time_it / W_tot_time_it
print '(//, 3X, "elapsed time = ", 1PE10.3, " min.", /, &
& 3X, "CPU time = ", 1PE10.3, " min.", /, &
& 3X, "speed up = ", 1PE10.3,//)', W_tot_time_it/60.d0, CPU_tot_time_it/60.d0, speedup_it
end do
!________________________________________________________________________________________________________
!________________________________________________________________________________________________________
deallocate( Uref, Vref, Dref )
call CPU_TIME(CPU_tend)
call SYSTEM_CLOCK(COUNT=W_tend, COUNT_RATE=W_ir)
CPU_tot_time = CPU_tend - CPU_tbeg
W_tot_time = real(W_tend - W_tbeg, kind=8) / real(W_ir, kind=8)
speedup = CPU_tot_time / W_tot_time
print *,' ___________________________________________________________________'
print '(//,3X,"Execution avec ",i2," threads")',nb_taches
print '(//, 3X, "elapsed time = ", 1PE10.3, " min.", /, &
& 3X, "CPU time = ", 1PE10.3, " min.", /, &
& 3X, "speed up = ", 1PE10.3 ,// )', W_tot_time/60.d0, CPU_tot_time/60.d0, speedup
print *,' ___________________________________________________________________'
end
subroutine const_psihpsi_postsvd_H0(n_selected, n_selected2, Uref, Vref, H0)
USE OMP_LIB
implicit none
integer, intent(in) :: n_selected, n_selected2
double precision, intent(in) :: Uref(n_det_alpha_unique,n_det_beta_unique)
double precision, intent(in) :: Vref(n_det_beta_unique ,n_det_beta_unique)
double precision, intent(out) :: H0(n_selected2,n_selected2)
integer(bit_kind) :: det1(N_int,2), det2(N_int,2)
integer :: i, j, k, l, degree
integer :: ii0, jj0, ii, jj, n, m, np, mp
integer :: nn0, mm0, nn, mm, ind_gs
double precision :: h12, x
double precision, allocatable :: H0_tmp(:,:)
H0(:,:) = 0.d0
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(n,np,nn0,nn,ii0,jj0,x,m,mp,mm0,mm,ii,jj,i,j,k,l,h12,det1,det2,H0_tmp,degree) &
!$OMP SHARED(n_det_alpha_unique,n_det_beta_unique,psi_det_alpha_unique,psi_det_beta_unique, &
!$OMP N_int,n_selected,n_selected2,Uref,Vref,H0 )
allocate( H0_tmp(n_selected2,n_selected2) )
H0_tmp(:,:) = 0.d0
!$OMP DO COLLAPSE(2) SCHEDULE(DYNAMIC,8)
do i = 1, n_det_alpha_unique
do k = 1, n_det_alpha_unique
det1(:,1) = psi_det_alpha_unique(:,i)
det2(:,1) = psi_det_alpha_unique(:,k)
call get_excitation_degree_spin(det1(1,1),det2(1,1),degree,N_int)
if (degree .gt. 2) then
cycle
endif
do j = 1, n_det_beta_unique
det1(:,2) = psi_det_beta_unique(:,j)
do l = 1, n_det_beta_unique
det2(:,2) = psi_det_beta_unique(:,l)
call get_excitation_degree(det1,det2,degree,N_int)
if (degree .gt. 2) then
cycle
endif
! !!!
call i_H_j(det1, det2, N_int, h12)
! !!!
! ~~~ H0 ~~~
do n = 1, n_selected
nn0 = (n-1)*n_selected
do np = 1, n_selected
nn = nn0 + np
x = Uref(k,n) * Vref(l,np) * h12
do m = 1, n_selected
mm0 = (m-1)*n_selected
do mp = 1, n_selected
mm = mm0 + mp
H0_tmp(mm,nn) += Uref(i,m) * Vref(j,mp) * x
enddo
enddo
enddo
enddo
! ~~~ ~~~~~~ ~~~
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP CRITICAL
do n = 1, n_selected2
do m = 1, n_selected2
H0(m,n) += H0_tmp(m,n)
enddo
enddo
!$OMP END CRITICAL
deallocate( H0_tmp )
!$OMP END PARALLEL
return
end subroutine const_psihpsi_postsvd_H0
subroutine diag_postsvd(n_selected, n_selected2, Dref, H0, E0, overlop, psi_postsvd )
USE OMP_LIB
implicit none
integer, intent(in) :: n_selected, n_selected2
double precision, intent(in) :: H0(n_selected2,n_selected2)
double precision, intent(in) :: Dref(n_det_beta_unique)
double precision, intent(out) :: E0, overlop, psi_postsvd(n_selected2)
integer(bit_kind) :: det1(N_int,2), det2(N_int,2)
integer :: i, j, k, l, degree
integer :: ii0, jj0, ii, jj, n, m, np, mp
integer :: nn0, mm0, nn, mm, ind_gs
double precision :: h12, x
double precision, allocatable :: eigvec0(:,:), eigval0(:), check_ov(:)
! diagonalize H0
allocate( eigvec0(n_selected2,n_selected2), eigval0(n_selected2) )
call lapack_diag(eigval0, eigvec0, H0, n_selected2, n_selected2)
! get the postsvd ground state
allocate( check_ov(n_selected2) )
do l = 1, n_selected2
overlop = 0.d0
do i = 1, n_selected
ii = n_selected*(i-1) + i
overlop = overlop + eigvec0(ii,l) * Dref(i)
enddo
check_ov(l) = dabs(overlop)
enddo
ind_gs = MAXLOC( check_ov, DIM=1 )
!ind_gs = 1
overlop = check_ov(ind_gs)
E0 = eigval0(ind_gs)+nuclear_repulsion
psi_postsvd = eigvec0(:,ind_gs)
deallocate( check_ov, eigvec0, eigval0 )
return
end subroutine diag_postsvd
subroutine const_Hdiag_Hkl(n_selected, n_selected2, n_toselect, Uref, Vref, numalpha_toselect, numbeta_toselect, Hdiag, Hkl)
implicit none
integer, intent(in) :: n_selected, n_selected2, n_toselect
integer, intent(in) :: numalpha_toselect(n_toselect), numbeta_toselect(n_toselect)
double precision, intent(in) :: Uref(n_det_alpha_unique,n_det_beta_unique)
double precision, intent(in) :: Vref(n_det_beta_unique ,n_det_beta_unique)
double precision, intent(out) :: Hdiag(n_toselect), Hkl(n_selected2,n_toselect)
integer(bit_kind) :: det1(N_int,2)
integer(bit_kind) :: det2(N_int,2)
integer :: degree
integer :: i, j, k, l
integer :: ii0, jj0, ii, jj, n, m, np, mp
double precision :: h12, y
double precision, allocatable :: Hdiag_tmp(:), Hkl_tmp(:,:)
Hdiag(:) = 0.d0
Hkl(:,:) = 0.d0
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(n,ii0,jj0,y,m,mp,ii,jj,i,j,k,l,h12,det1,det2,Hdiag_tmp,Hkl_tmp,degree) &
!$OMP SHARED(n_det_alpha_unique,n_det_beta_unique,psi_det_alpha_unique,psi_det_beta_unique, &
!$OMP N_int,n_selected,n_toselect,Uref,Vref,numalpha_toselect,numbeta_toselect, &
!$OMP Hkl,Hdiag,n_selected2 )
allocate( Hdiag_tmp(n_toselect), Hkl_tmp(n_selected2,n_toselect) )
Hdiag_tmp(:) = 0.d0
Hkl_tmp(:,:) = 0.d0
!$OMP DO COLLAPSE(2) SCHEDULE(DYNAMIC,8)
do i = 1, n_det_alpha_unique
do k = 1, n_det_alpha_unique
det1(:,1) = psi_det_alpha_unique(:,i)
det2(:,1) = psi_det_alpha_unique(:,k)
! !!!
! ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
call get_excitation_degree_spin(det1(1,1),det2(1,1),degree,N_int)
if (degree .gt. 2) then
cycle
endif
! ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
! !!!
do j = 1, n_det_beta_unique
det1(:,2) = psi_det_beta_unique(:,j)
do l = 1, n_det_beta_unique
det2(:,2) = psi_det_beta_unique(:,l)
! !!!
! ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
call get_excitation_degree(det1,det2,degree,N_int)
if (degree .gt. 2) then
cycle
endif
! ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
! !!!
call i_H_j(det1, det2, N_int, h12)
! ~ ~ ~ H ~ ~ ~
do n = 1, n_toselect
ii0 = numalpha_toselect(n)
jj0 = numbeta_toselect (n)
y = Uref(k,ii0) * Vref(l,jj0) * h12
! Hdiag
Hdiag_tmp(n) += y * Uref(i,ii0) * Vref(j,jj0)
do m = 1, n_selected
ii = (m-1)*n_selected
do mp = 1, n_selected
jj = ii + mp
! Hkl
Hkl_tmp(jj,n) += Uref(i,m) * Vref(j,mp) * y
enddo
enddo
enddo
! ~ ~ ~ ! ! ! ~ ~ ~
enddo
enddo
! !!!
enddo
enddo
!$OMP END DO
!$OMP CRITICAL
do n = 1, n_toselect
Hdiag(n) += Hdiag_tmp(n)
do m = 1, n_selected2
Hkl(m,n) += Hkl_tmp(m,n)
enddo
enddo
!$OMP END CRITICAL
deallocate( Hdiag_tmp,Hkl_tmp )
!$OMP END PARALLEL
end subroutine const_Hdiag_Hkl
subroutine perform_newSVD(n_selected, n_selected2, n_toselect, numalpha_toselect, numbeta_toselect, coeff_psi_perturb, Uref, Vref, Dref)
USE OMP_LIB
integer, intent(in) :: n_selected, n_toselect, n_selected2
integer, intent(in) :: numalpha_toselect(n_toselect), numbeta_toselect(n_toselect)
double precision, intent(in) :: coeff_psi_perturb(n_toselect)
double precision, intent(inout) :: Uref(n_det_alpha_unique,n_det_beta_unique)
double precision, intent(inout) :: Vref(n_det_beta_unique ,n_det_beta_unique)
double precision, intent(inout) :: Dref(n_det_beta_unique)
integer :: mm, nn, i, j, ii0, ii, l, jj, na, nb
double precision :: err0, err_norm, err_tmp, norm_tmp
double precision :: overlopU_mat, overlopV_mat, overlopU, overlopV
double precision, allocatable :: S_mat(:,:), SxVt(:,:)
double precision, allocatable :: U_svd(:,:), V_svd(:,:)
double precision, allocatable :: U_newsvd(:,:), V_newsvd(:,:), Vt_newsvd(:,:), D_newsvd(:), A_newsvd(:,:)
mm = n_det_alpha_unique
nn = n_det_beta_unique
allocate( U_svd(mm,nn) , V_svd(nn,nn) , S_mat(nn,nn) )
U_svd(:,:) = Uref(:,:)
V_svd(:,:) = Vref(:,:)
S_mat(:,:) = 0.d0
norm_tmp = 0.d0
do j = 1, n_det_beta_unique
S_mat(j,j) = Dref(j)
norm_tmp += S_mat(j,j)*S_mat(j,j)
enddo
do l = 1, n_toselect
na = numalpha_toselect(l)
nb = numbeta_toselect (l)
S_mat(na,nb) = coeff_psi_perturb(l)
norm_tmp += S_mat(na,nb)*S_mat(na,nb)
enddo
print*, ' norm de S_mat =', norm_tmp
!norm_tmp = 1.d0/dsqrt(norm_tmp)
!do i = 1, nn
! do j = 1, nn
! S_mat(j,i) = S_mat(j,i) * norm_tmp
! enddo
!enddo
! first compute S_mat x transpose(V_svd)
allocate( SxVt(nn,nn) )
call dgemm( 'N', 'T', nn, nn, nn, 1.d0 &
, S_mat , size(S_mat,1) &
, V_svd , size(V_svd,1) &
, 0.d0, SxVt, size(SxVt ,1) )
! then compute U_svd x SxVt
allocate( A_newsvd(mm,nn) )
call dgemm( 'N', 'N', mm, nn, nn, 1.d0 &
, U_svd , size(U_svd ,1) &
, SxVt , size(SxVt ,1) &
, 0.d0, A_newsvd, size(A_newsvd,1) )
deallocate( SxVt )
! perform new SVD
allocate( U_newsvd(mm,nn), Vt_newsvd(nn,nn), D_newsvd(nn) )
call svd_s( A_newsvd, size(A_newsvd,1), U_newsvd, size(U_newsvd,1), D_newsvd, Vt_newsvd, size(Vt_newsvd,1), mm, nn)
print *, ' +++ new perturbative SVD is performed +++ '
allocate( V_newsvd(nn,nn) )
do l = 1, nn
do j = 1, nn
V_newsvd(j,l) = Vt_newsvd(l,j)
enddo
enddo
! check SVD error
err0 = 0.d0
err_norm = 0.d0
do j = 1, nn
do i = 1, mm
err_tmp = 0.d0
do l = 1, nn
err_tmp = err_tmp + D_newsvd(l) * U_newsvd(i,l) * V_newsvd(j,l)
enddo
err_tmp = A_newsvd(i,j) - err_tmp
err0 += err_tmp * err_tmp
err_norm += A_newsvd(i,j) * A_newsvd(i,j)
enddo
enddo
print *, ' SVD err (%) = ', 100.d0 * dsqrt(err0/err_norm)
print *, ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ '
do l = 1, nn
Dref(l) = D_newsvd(l)
Uref(:,l) = U_newsvd(:,l)
Vref(:,l) = V_newsvd(:,l)
enddo
!print *, Dref(:)
overlopU_mat = 0.d0
overlopV_mat = 0.d0
do i = 1, nn
do j = 1, nn
overlopU = 0.d0
do ii = 1, mm
overlopU += Uref(ii,j) * Uref(ii,i)
enddo
overlopU_mat += overlopU
overlopV = 0.d0
do ii = 1, nn
overlopV += Vref(ii,j) * Vref(ii,i)
enddo
overlopV_mat += overlopV
enddo
enddo
print *, 'overlop U =', overlopU_mat
print *, 'overlop V =', overlopV_mat
deallocate( U_newsvd, V_newsvd, Vt_newsvd, D_newsvd, A_newsvd )
return
end subroutine perform_newSVD
subroutine perform_newpostSVD(n_selected, n_selected2, psi_postsvd, Uref, Vref, Dref)
USE OMP_LIB
integer, intent(in) :: n_selected, n_selected2
double precision, intent(in) :: psi_postsvd(n_selected2)
double precision, intent(inout) :: Uref(n_det_alpha_unique,n_det_beta_unique)
double precision, intent(inout) :: Vref(n_det_beta_unique ,n_det_beta_unique)
double precision, intent(inout) :: Dref(n_det_beta_unique)
integer :: mm, nn, i, j, ii0, ii, l, jj, na, nb
double precision :: err0, err_norm, err_tmp, norm_tmp
double precision :: overlopU_mat, overlopV_mat, overlopU, overlopV
double precision, allocatable :: S_mat(:,:), SxVt(:,:)
double precision, allocatable :: U_svd(:,:), V_svd(:,:)
double precision, allocatable :: U_newsvd(:,:), V_newsvd(:,:), Vt_newsvd(:,:), D_newsvd(:), A_newsvd(:,:)
mm = n_det_alpha_unique
nn = n_det_beta_unique
allocate( U_svd(mm,n_selected) , V_svd(nn,n_selected) , S_mat(n_selected,n_selected) )
U_svd(:,:) = Uref(:,1:n_selected)
V_svd(:,:) = Vref(:,1:n_selected)
S_mat(:,:) = 0.d0
do i = 1, n_selected
ii = (i-1)*n_selected
do j = 1, n_selected
jj = ii + j
S_mat(i,j) = psi_postsvd(jj)
enddo
enddo
! first compute S_mat x transpose(V_svd)
allocate( SxVt(n_selected,nn) )
call dgemm( 'N', 'T', n_selected, nn, n_selected, 1.d0 &
, S_mat , size(S_mat,1) &
, V_svd , size(V_svd,1) &
, 0.d0, SxVt, size(SxVt ,1) )
! then compute U_svd x SxVt
allocate( A_newsvd(mm,nn) )
call dgemm( 'N', 'N', mm, nn, n_selected, 1.d0 &
, U_svd , size(U_svd ,1) &
, SxVt , size(SxVt ,1) &
, 0.d0, A_newsvd, size(A_newsvd,1) )
deallocate( SxVt )
! perform new SVD
allocate( U_newsvd(mm,nn), Vt_newsvd(nn,nn), D_newsvd(nn) )
call svd_s( A_newsvd, size(A_newsvd,1), U_newsvd, size(U_newsvd,1), D_newsvd, Vt_newsvd, size(Vt_newsvd,1), mm, nn)
print *, ' +++ new SVD is performed +++ '
allocate( V_newsvd(nn,nn) )
do l = 1, nn
do j = 1, nn
V_newsvd(j,l) = Vt_newsvd(l,j)
enddo
enddo
! check SVD error
err0 = 0.d0
err_norm = 0.d0
do j = 1, nn
do i = 1, mm
err_tmp = 0.d0
do l = 1, n_selected
err_tmp = err_tmp + D_newsvd(l) * U_newsvd(i,l) * V_newsvd(j,l)
enddo
err_tmp = A_newsvd(i,j) - err_tmp
err0 += err_tmp * err_tmp
err_norm += A_newsvd(i,j) * A_newsvd(i,j)
enddo
enddo
print *, ' SVD err (%) = ', 100.d0 * dsqrt(err0/err_norm)
print *, ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ '
do l = 1, n_selected
Dref(l) = D_newsvd(l)
Uref(:,l) = U_newsvd(:,l)
Vref(:,l) = V_newsvd(:,l)
enddo
! print *, Dref(:)
overlopU_mat = 0.d0
overlopV_mat = 0.d0
do i = 1, nn
do j = 1, nn
overlopU = 0.d0
do ii = 1, mm
overlopU += Uref(ii,j) * Uref(ii,i)
enddo
overlopU_mat += overlopU
overlopV = 0.d0
do ii = 1, nn
overlopV += Vref(ii,j) * Vref(ii,i)
enddo
overlopV_mat += overlopV
enddo
enddo
print *, 'overlop U =', overlopU_mat
print *, 'overlop V =', overlopV_mat
deallocate( U_newsvd, V_newsvd, Vt_newsvd, D_newsvd, A_newsvd )
return
end subroutine perform_newpostSVD

View File

@ -0,0 +1,915 @@
program buildpsi_diagSVDit_v1
implicit none
BEGIN_DOC
! study efficiency for different way to build | psi >
END_DOC
read_wf = .True.
TOUCH read_wf
PROVIDE N_int
call run()
end
subroutine run
USE OMP_LIB
implicit none
integer(bit_kind) :: det1(N_int,2), det2(N_int,2)
integer :: degree, i_state
double precision :: h12
integer :: i, j, k, l, ii, jj, nn, n, na, nb, m, ma, mb
double precision :: norm_psi, inv_sqrt_norm_psi
double precision, allocatable :: Uref(:,:), Dref(:), Vtref(:,:), Aref(:,:), Vref(:,:)
double precision :: E0_av, E0_ap, E0pt2
double precision :: err0, err_tmp, e_tmp, E0, overlop, E0_old, tol_energy
double precision :: ctmp, htmp, Ept2
double precision :: E0_postsvd, overlop_postsvd
double precision :: norm_coeff_psi, inv_sqrt_norm_coeff_psi
double precision :: overlopU, overlopU_mat, overlopV, overlopV_mat, overlop_psi
double precision, allocatable :: H(:,:,:,:)
double precision, allocatable :: Hdiag(:), Hkl(:,:), H0(:,:)
double precision, allocatable :: psi_postsvd(:), coeff_psi_perturb(:)
integer :: it_svd, it_svd_max
integer :: n_TSVD, n_FSVD, n_selected, n_toselect
integer, allocatable :: numalpha_selected(:), numbeta_selected(:)
integer, allocatable :: numalpha_toselect(:), numbeta_toselect(:)
integer(kind=8) :: W_tbeg, W_tend, W_tbeg_it, W_tend_it, W_tbeg_step, W_tend_step, W_ir
real(kind=8) :: W_tot_time, W_tot_time_it, W_tot_time_step
real(kind=8) :: CPU_tbeg, CPU_tend, CPU_tbeg_it, CPU_tend_it, CPU_tbeg_step, CPU_tend_step
real(kind=8) :: CPU_tot_time, CPU_tot_time_it, CPU_tot_time_step
real(kind=8) :: speedup, speedup_it, speedup_step
integer :: nb_taches
!$OMP PARALLEL
nb_taches = OMP_GET_NUM_THREADS()
!$OMP END PARALLEL
call CPU_TIME(CPU_tbeg)
call SYSTEM_CLOCK(COUNT=W_tbeg, COUNT_RATE=W_ir)
i_state = 1
det1(:,1) = psi_det_alpha_unique(:,1)
det2(:,1) = psi_det_alpha_unique(:,1)
call get_excitation_degree_spin(det1(1,1),det2(1,1),degree,N_int)
det1(:,2) = psi_det_beta_unique(:,1)
det2(:,2) = psi_det_beta_unique(:,1)
call get_excitation_degree(det1,det2,degree,N_int)
call i_H_j(det1, det2, N_int, h12)
! ---------------------------------------------------------------------------------------
! construct the initial CISD matrix
print *, ' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~'
print *, ' CISD matrix:', n_det_alpha_unique,'x',n_det_beta_unique
print *, ' N det :', N_det
print *, ' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~'
norm_psi = 0.d0
do k = 1, N_det
norm_psi = norm_psi + psi_bilinear_matrix_values(k,i_state) &
* psi_bilinear_matrix_values(k,i_state)
enddo
print *, ' initial norm = ', norm_psi
allocate( Aref(n_det_alpha_unique,n_det_beta_unique) )
Aref(:,:) = 0.d0
do k = 1, N_det
i = psi_bilinear_matrix_rows(k)
j = psi_bilinear_matrix_columns(k)
Aref(i,j) = psi_bilinear_matrix_values(k,i_state)
enddo
! ---------------------------------------------------------------------------------------
! ---------------------------------------------------------------------------------------
! perform a Full SVD
allocate( Uref(n_det_alpha_unique,n_det_beta_unique) )
allocate( Dref(n_det_beta_unique) )
allocate( Vref(n_det_beta_unique,n_det_beta_unique) )
allocate( Vtref(n_det_beta_unique,n_det_beta_unique) )
call svd_s(Aref, size(Aref,1), Uref, size(Uref,1), Dref, Vtref, size(Vtref,1) &
, n_det_alpha_unique, n_det_beta_unique)
print *, ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~ '
print *, ' --- First SVD: ok --- '
print *, ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~ '
do l = 1, n_det_beta_unique
do i = 1, n_det_beta_unique
Vref(i,l) = Vtref(l,i)
enddo
enddo
deallocate( Vtref )
! check Truncate SVD error
err0 = 0.d0
do j = 1, n_det_beta_unique
do i = 1, n_det_alpha_unique
err_tmp = 0.d0
do l = 1, n_det_beta_unique
err_tmp = err_tmp + Dref(l) * Uref(i,l) * Vref(j,l)
enddo
err_tmp = Aref(i,j) - err_tmp
err0 += err_tmp * err_tmp
enddo
enddo
print *, ' Full SVD err (%) = ', 100.d0 * dsqrt(err0/norm_psi)
! ---------------------------------------------------------------------------------------
nn = n_det_beta_unique
! ---------------------------------------------------------------------------------------
! numerote vectors
! Full rank
n_FSVD = nn * nn
print*, ' Full psi space rank = ', n_FSVD
! Truncated rank
n_TSVD = 20
print*, ' initial psi space rank = ', n_TSVD
! check Truncate SVD error
err0 = 0.d0
do j = 1, n_det_beta_unique
do i = 1, n_det_alpha_unique
err_tmp = 0.d0
do l = 1, n_TSVD
err_tmp = err_tmp + Dref(l) * Uref(i,l) * Vref(j,l)
enddo
err_tmp = Aref(i,j) - err_tmp
err0 += err_tmp * err_tmp
enddo
enddo
deallocate( Aref )
print *, ' Truncate SVD err (%) = ', 100.d0 * dsqrt(err0/norm_psi)
n_selected = n_TSVD * n_TSVD
allocate( numalpha_selected(n_selected) , numbeta_selected(n_selected) )
k = 0
! first diagonal bloc
do i = 1, n_TSVD
do j = 1, n_TSVD
k = k + 1
numalpha_selected(k) = j
numbeta_selected (k) = i
enddo
enddo
! check size
if( k.ne.n_selected ) then
print*, ' error in numeroting: selected '
print*, ' k = ', k
print*, ' n_selected = ', n_selected
stop
endif
! perturbative space rank
k = 0
n_toselect = n_FSVD - n_selected
print*, ' perturbative psi space rank = ', n_toselect
allocate( numalpha_toselect(n_toselect) , numbeta_toselect(n_toselect) )
! nondiagonal blocs
do i = 1, n_TSVD
do j = n_TSVD+1, nn
k = k + 1
numalpha_toselect(k) = j
numbeta_toselect (k) = i
enddo
enddo
do j = 1, n_TSVD
do i = n_TSVD+1, nn
k = k + 1
numalpha_toselect(k) = j
numbeta_toselect (k) = i
enddo
enddo
! diagonal bloc
do i = n_TSVD+1, nn
do j = n_TSVD+1, nn
k = k + 1
numalpha_toselect(k) = j
numbeta_toselect (k) = i
enddo
enddo
! check size
if( k.ne.n_toselect ) then
print*, ' error in numeroting: to select '
print*, ' k = ', k
print*, ' n_toselect = ', n_toselect
stop
endif
! ---------------------------------------------------------------------------------------
!________________________________________________________________________________________________________
!
! loop over SVD iterations
!________________________________________________________________________________________________________
E0_old = 0.d0
tol_energy = 1.d0
it_svd = 0
it_svd_max = 10
do while( ( it_svd .lt. it_svd_max) .and. ( tol_energy .gt. 1d-8 ) )
call CPU_TIME(CPU_tbeg_it)
call SYSTEM_CLOCK(COUNT=W_tbeg_it, COUNT_RATE=W_ir)
it_svd = it_svd + 1
print*, '+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +'
print*, ' '
print*, ' '
print*, ' '
print*, ' iteration', it_svd
norm_coeff_psi = 0.d0
do j = 1, n_TSVD
norm_coeff_psi += Dref(j) * Dref(j)
enddo
inv_sqrt_norm_coeff_psi = 1.d0 / dsqrt(norm_coeff_psi)
do j = 1, n_TSVD
Dref(j) = Dref(j) * inv_sqrt_norm_coeff_psi
enddo
allocate( H0(n_selected,n_selected) )
call const_psihpsi_postsvd_H0_modif(n_selected, numalpha_selected, numbeta_selected, Uref, Vref, H0)
! avant SVD
E0 = 0.d0
do i = 1, n_TSVD
ii = (i-1)*n_TSVD + i
do j = 1, n_TSVD
jj = (j-1)*n_TSVD + j
E0 += Dref(j) * H0(jj,ii) * Dref(i)
enddo
enddo
E0_av = E0 + nuclear_repulsion
print *,' E0 (avant SVD) =', E0_av
print *, ''
allocate( psi_postsvd(n_selected) )
print *, ' --- Diag post-SVD --- '
call diag_postsvd(n_TSVD, n_selected, Dref, H0, E0_postsvd, overlop_postsvd, psi_postsvd)
print*, ' postsvd energy = ', E0_postsvd
deallocate( H0 )
! post-SVD
!Dref(:) = 0.d0
call perform_newpostSVD(n_TSVD, n_selected, psi_postsvd, Uref, Vref, Dref)
deallocate( psi_postsvd )
print *, ''
print *, ''
print *, ' --- Compute H --- '
allocate( H0(n_selected,n_selected), Hdiag(n_toselect), Hkl(n_selected,n_toselect) )
call const_Hdiag_Hkl_H0(n_selected, n_toselect, Uref, Vref, numalpha_selected, numbeta_selected &
, numalpha_toselect, numbeta_toselect, Hdiag, Hkl, H0)
E0 = 0.d0
norm_coeff_psi = 0.d0
do i = 1, n_TSVD
ii = (i-1)*n_TSVD + i
do j = 1, n_TSVD
jj = (j-1)*n_TSVD + j
E0 += Dref(j) * H0(jj,ii) * Dref(i)
enddo
norm_coeff_psi += Dref(i) * Dref(i)
enddo
E0_ap = E0 + nuclear_repulsion
print *,' E0 (apres SVD) =', E0_ap
deallocate(H0)
print *, ' --- Perturbation --- '
allocate( coeff_psi_perturb(n_toselect) )
ept2 = 0.d0
do ii = 1, n_toselect
ctmp = 0.d0
do i = 1, n_TSVD
l = (i-1)*n_TSVD + i
ctmp += Dref(i) * Hkl(l,ii)
enddo
coeff_psi_perturb(ii) = ctmp / ( E0_ap - (Hdiag(ii)+nuclear_repulsion) )
ept2 += ctmp*ctmp / ( E0_ap - (Hdiag(ii)+nuclear_repulsion) )
enddo
E0pt2 = E0_ap + ept2
print *, ' perturb energy = ', E0pt2, ept2
tol_energy = 100.d0 * dabs(E0pt2-E0_old) / dabs(E0pt2)
E0_old = E0pt2
deallocate( Hdiag, Hkl)
print *, ' --- SVD --- '
call perform_newSVD(n_toselect, numalpha_toselect, numbeta_toselect, coeff_psi_perturb, Uref, Vref, Dref)
deallocate( coeff_psi_perturb )
write(11,'(i5,4x,4(f22.15,2x))') it_svd, E0_av, E0_postsvd, E0_ap, E0pt2
call CPU_TIME(CPU_tend_it)
call SYSTEM_CLOCK(COUNT=W_tend_it, COUNT_RATE=W_ir)
CPU_tot_time_it = CPU_tend_it - CPU_tbeg_it
W_tot_time_it = real(W_tend_it-W_tbeg_it, kind=8) / real(W_ir, kind=8)
speedup_it = CPU_tot_time_it / W_tot_time_it
print '(//, 3X, "elapsed time = ", 1PE10.3, " min.", /, &
& 3X, "CPU time = ", 1PE10.3, " min.", /, &
& 3X, "speed up = ", 1PE10.3,//)', W_tot_time_it/60.d0, CPU_tot_time_it/60.d0, speedup_it
end do
!________________________________________________________________________________________________________
!________________________________________________________________________________________________________
deallocate( Uref, Vref, Dref )
call CPU_TIME(CPU_tend)
call SYSTEM_CLOCK(COUNT=W_tend, COUNT_RATE=W_ir)
CPU_tot_time = CPU_tend - CPU_tbeg
W_tot_time = real(W_tend - W_tbeg, kind=8) / real(W_ir, kind=8)
speedup = CPU_tot_time / W_tot_time
print *,' ___________________________________________________________________'
print '(//,3X,"Execution avec ",i2," threads")',nb_taches
print '(//, 3X, "elapsed time = ", 1PE10.3, " min.", /, &
& 3X, "CPU time = ", 1PE10.3, " min.", /, &
& 3X, "speed up = ", 1PE10.3 ,// )', W_tot_time/60.d0, CPU_tot_time/60.d0, speedup
print *,' ___________________________________________________________________'
end
subroutine const_psihpsi_postsvd_H0_modif(n_selected, numalpha_selected, numbeta_selected, Uref, Vref, H0)
USE OMP_LIB
implicit none
integer, intent(in) :: n_selected
integer, intent(in) :: numalpha_selected(n_selected), numbeta_selected(n_selected)
double precision, intent(in) :: Uref(n_det_alpha_unique,n_det_beta_unique)
double precision, intent(in) :: Vref(n_det_beta_unique ,n_det_beta_unique)
double precision, intent(out) :: H0(n_selected,n_selected)
integer(bit_kind) :: det1(N_int,2), det2(N_int,2)
integer :: i, j, k, l, degree
integer :: n, na, nb, m , ma, mb
double precision, allocatable :: Htot(:,:,:,:), H1(:,:,:)
H0(:,:) = 0.d0
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(i,j,k,l,n,na,nb,m,ma,mb,det1,det2,degree) &
!$OMP SHARED(n_det_alpha_unique,n_det_beta_unique,psi_det_alpha_unique,psi_det_beta_unique, &
!$OMP N_int,n_selected,Uref,Vref,H0,Htot,H1,numalpha_selected,numbeta_selected )
!$OMP SINGLE
allocate( Htot(n_det_alpha_unique,n_det_beta_unique,n_det_alpha_unique,n_det_beta_unique) )
Htot(:,:,:,:) = 0.d0
!$OMP END SINGLE
!$OMP DO COLLAPSE(2) SCHEDULE(DYNAMIC,20)
do i = 1, n_det_alpha_unique
do k = 1, n_det_alpha_unique
det1(:,1) = psi_det_alpha_unique(:,i)
det2(:,1) = psi_det_alpha_unique(:,k)
call get_excitation_degree_spin(det1(1,1),det2(1,1),degree,N_int)
if (degree .gt. 2) then
cycle
endif
do j = 1, n_det_beta_unique
det1(:,2) = psi_det_beta_unique(:,j)
do l = 1, n_det_beta_unique
det2(:,2) = psi_det_beta_unique(:,l)
call get_excitation_degree(det1,det2,degree,N_int)
if (degree .gt. 2) then
cycle
endif
! !!!
call i_H_j(det1, det2, N_int, Htot(k,l,i,j))
! !!!
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP SINGLE
allocate( H1(n_det_alpha_unique,n_det_beta_unique,n_selected) )
H1(:,:,:) = 0.d0
!$OMP END SINGLE
!$OMP DO
do n = 1, n_selected
na = numalpha_selected(n)
nb = numbeta_selected (n)
do i = 1, n_det_alpha_unique
do j = 1, n_det_beta_unique
do l = 1, n_det_beta_unique
do k = 1, n_det_alpha_unique
H1(k,l,n) += Htot(k,l,i,j) * Uref(i,na) * Vref(j,nb)
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP SINGLE
deallocate( Htot )
!$OMP END SINGLE
!$OMP DO
do m = 1, n_selected
ma = numalpha_selected(m)
mb = numbeta_selected (m)
do n = 1, n_selected
do k = 1, n_det_alpha_unique
do l = 1, n_det_beta_unique
H0(m,n) += H1(k,l,n) * Uref(k,ma) * Vref(l,mb)
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP SINGLE
deallocate( H1 )
!$OMP END SINGLE
!$OMP END PARALLEL
return
end subroutine const_psihpsi_postsvd_H0_modif
subroutine diag_postsvd(n_TSVD, n_selected, Dref, H0, E0, overlop, psi_postsvd )
USE OMP_LIB
implicit none
integer, intent(in) :: n_TSVD, n_selected
double precision, intent(in) :: H0(n_selected,n_selected)
double precision, intent(in) :: Dref(n_det_beta_unique)
double precision, intent(out) :: E0, overlop, psi_postsvd(n_selected)
integer(bit_kind) :: det1(N_int,2), det2(N_int,2)
integer :: i, j, k, l, degree
integer :: ii0, jj0, ii, jj, n, m, np, mp
integer :: nn0, mm0, nn, mm, ind_gs
double precision :: h12, x
double precision, allocatable :: eigvec0(:,:), eigval0(:), check_ov(:)
! diagonalize H0
allocate( eigvec0(n_selected,n_selected), eigval0(n_selected) )
call lapack_diag(eigval0, eigvec0, H0, n_selected, n_selected)
! get the postsvd ground state
allocate( check_ov(n_selected) )
do l = 1, n_selected
overlop = 0.d0
do i = 1, n_TSVD
ii = n_TSVD*(i-1) + i
overlop = overlop + eigvec0(ii,l) * Dref(i)
enddo
check_ov(l) = dabs(overlop)
enddo
ind_gs = MAXLOC( check_ov, DIM=1 )
!ind_gs = 1
overlop = check_ov(ind_gs)
E0 = eigval0(ind_gs)+nuclear_repulsion
psi_postsvd = eigvec0(:,ind_gs)
deallocate( check_ov, eigvec0, eigval0 )
return
end subroutine diag_postsvd
subroutine perform_newSVD(n_toselect, numalpha_toselect, numbeta_toselect, coeff_psi_perturb, Uref, Vref, Dref)
USE OMP_LIB
integer, intent(in) :: n_toselect
integer, intent(in) :: numalpha_toselect(n_toselect), numbeta_toselect(n_toselect)
double precision, intent(in) :: coeff_psi_perturb(n_toselect)
double precision, intent(inout) :: Uref(n_det_alpha_unique,n_det_beta_unique)
double precision, intent(inout) :: Vref(n_det_beta_unique ,n_det_beta_unique)
double precision, intent(inout) :: Dref(n_det_beta_unique)
integer :: mm, nn, i, j, ii0, ii, l, jj, na, nb
double precision :: err0, err_norm, err_tmp, norm_tmp
double precision :: overlopU_mat, overlopV_mat, overlopU, overlopV
double precision, allocatable :: S_mat(:,:), SxVt(:,:)
double precision, allocatable :: U_svd(:,:), V_svd(:,:)
double precision, allocatable :: U_newsvd(:,:), V_newsvd(:,:), Vt_newsvd(:,:), D_newsvd(:), A_newsvd(:,:)
mm = n_det_alpha_unique
nn = n_det_beta_unique
allocate( U_svd(mm,nn) , V_svd(nn,nn) , S_mat(nn,nn) )
U_svd(:,:) = Uref(:,:)
V_svd(:,:) = Vref(:,:)
S_mat(:,:) = 0.d0
norm_tmp = 0.d0
do j = 1, n_det_beta_unique
S_mat(j,j) = Dref(j)
norm_tmp += S_mat(j,j)*S_mat(j,j)
enddo
do l = 1, n_toselect
na = numalpha_toselect(l)
nb = numbeta_toselect (l)
S_mat(na,nb) = coeff_psi_perturb(l)
norm_tmp += S_mat(na,nb)*S_mat(na,nb)
enddo
print*, ' norm de S_mat =', norm_tmp
!norm_tmp = 1.d0/dsqrt(norm_tmp)
!do i = 1, nn
! do j = 1, nn
! S_mat(j,i) = S_mat(j,i) * norm_tmp
! enddo
!enddo
! first compute S_mat x transpose(V_svd)
allocate( SxVt(nn,nn) )
call dgemm( 'N', 'T', nn, nn, nn, 1.d0 &
, S_mat , size(S_mat,1) &
, V_svd , size(V_svd,1) &
, 0.d0, SxVt, size(SxVt ,1) )
! then compute U_svd x SxVt
allocate( A_newsvd(mm,nn) )
call dgemm( 'N', 'N', mm, nn, nn, 1.d0 &
, U_svd , size(U_svd ,1) &
, SxVt , size(SxVt ,1) &
, 0.d0, A_newsvd, size(A_newsvd,1) )
deallocate( SxVt )
! perform new SVD
allocate( U_newsvd(mm,nn), Vt_newsvd(nn,nn), D_newsvd(nn) )
call svd_s( A_newsvd, size(A_newsvd,1), U_newsvd, size(U_newsvd,1), D_newsvd, Vt_newsvd, size(Vt_newsvd,1), mm, nn)
print *, ' +++ new perturbative SVD is performed +++ '
allocate( V_newsvd(nn,nn) )
do l = 1, nn
do j = 1, nn
V_newsvd(j,l) = Vt_newsvd(l,j)
enddo
enddo
! check SVD error
err0 = 0.d0
err_norm = 0.d0
do j = 1, nn
do i = 1, mm
err_tmp = 0.d0
do l = 1, nn
err_tmp = err_tmp + D_newsvd(l) * U_newsvd(i,l) * V_newsvd(j,l)
enddo
err_tmp = A_newsvd(i,j) - err_tmp
err0 += err_tmp * err_tmp
err_norm += A_newsvd(i,j) * A_newsvd(i,j)
enddo
enddo
print *, ' SVD err (%) = ', 100.d0 * dsqrt(err0/err_norm)
print *, ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ '
do l = 1, nn
Dref(l) = D_newsvd(l)
Uref(:,l) = U_newsvd(:,l)
Vref(:,l) = V_newsvd(:,l)
enddo
!print *, Dref(:)
overlopU_mat = 0.d0
overlopV_mat = 0.d0
do i = 1, nn
do j = 1, nn
overlopU = 0.d0
do ii = 1, mm
overlopU += Uref(ii,j) * Uref(ii,i)
enddo
overlopU_mat += overlopU
overlopV = 0.d0
do ii = 1, nn
overlopV += Vref(ii,j) * Vref(ii,i)
enddo
overlopV_mat += overlopV
enddo
enddo
print *, 'overlop U =', overlopU_mat
print *, 'overlop V =', overlopV_mat
deallocate( U_newsvd, V_newsvd, Vt_newsvd, D_newsvd, A_newsvd )
return
end subroutine perform_newSVD
subroutine perform_newpostSVD(n_TSVD, n_selected, psi_postsvd, Uref, Vref, Dref)
! TODO: general case wherer we we don't consider the first trucated block
USE OMP_LIB
integer, intent(in) :: n_TSVD, n_selected
double precision, intent(in) :: psi_postsvd(n_selected)
double precision, intent(inout) :: Uref(n_det_alpha_unique,n_det_beta_unique)
double precision, intent(inout) :: Vref(n_det_beta_unique ,n_det_beta_unique)
double precision, intent(inout) :: Dref(n_det_beta_unique)
integer :: mm, nn, i, j, ii0, ii, l, jj, na, nb
double precision :: err0, err_norm, err_tmp, norm_tmp
double precision :: overlopU_mat, overlopV_mat, overlopU, overlopV
double precision, allocatable :: S_mat(:,:), SxVt(:,:)
double precision, allocatable :: U_svd(:,:), V_svd(:,:)
double precision, allocatable :: U_newsvd(:,:), V_newsvd(:,:), Vt_newsvd(:,:), D_newsvd(:), A_newsvd(:,:)
mm = n_det_alpha_unique
nn = n_det_beta_unique
allocate( U_svd(mm,n_TSVD) , V_svd(nn,n_TSVD) , S_mat(n_TSVD,n_TSVD) )
U_svd(:,:) = Uref(:,1:n_TSVD)
V_svd(:,:) = Vref(:,1:n_TSVD)
S_mat(:,:) = 0.d0
do i = 1, n_TSVD
ii = (i-1)*n_TSVD
do j = 1, n_TSVD
jj = ii + j
S_mat(j,i) = psi_postsvd(jj)
enddo
enddo
! first compute S_mat x transpose(V_svd)
allocate( SxVt(n_TSVD,nn) )
call dgemm( 'N', 'T', n_TSVD, nn, n_TSVD, 1.d0 &
, S_mat , size(S_mat,1) &
, V_svd , size(V_svd,1) &
, 0.d0, SxVt, size(SxVt ,1) )
! then compute U_svd x SxVt
allocate( A_newsvd(mm,nn) )
call dgemm( 'N', 'N', mm, nn, n_TSVD, 1.d0 &
, U_svd , size(U_svd ,1) &
, SxVt , size(SxVt ,1) &
, 0.d0, A_newsvd, size(A_newsvd,1) )
deallocate( SxVt )
! perform new SVD
allocate( U_newsvd(mm,nn), Vt_newsvd(nn,nn), D_newsvd(nn) )
call svd_s( A_newsvd, size(A_newsvd,1), U_newsvd, size(U_newsvd,1), D_newsvd, Vt_newsvd, size(Vt_newsvd,1), mm, nn)
print *, ' +++ new SVD is performed +++ '
allocate( V_newsvd(nn,nn) )
do l = 1, nn
do j = 1, nn
V_newsvd(j,l) = Vt_newsvd(l,j)
enddo
enddo
! check SVD error
err0 = 0.d0
err_norm = 0.d0
do j = 1, nn
do i = 1, mm
err_tmp = 0.d0
do l = 1, n_TSVD
err_tmp = err_tmp + D_newsvd(l) * U_newsvd(i,l) * V_newsvd(j,l)
enddo
err_tmp = A_newsvd(i,j) - err_tmp
err0 += err_tmp * err_tmp
err_norm += A_newsvd(i,j) * A_newsvd(i,j)
enddo
enddo
print *, ' SVD err (%) = ', 100.d0 * dsqrt(err0/err_norm)
print *, ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ '
do l = 1, n_TSVD
Dref(l) = D_newsvd(l)
Uref(:,l) = U_newsvd(:,l)
Vref(:,l) = V_newsvd(:,l)
enddo
! print *, Dref(:)
overlopU_mat = 0.d0
overlopV_mat = 0.d0
do i = 1, nn
do j = 1, nn
overlopU = 0.d0
do ii = 1, mm
overlopU += Uref(ii,j) * Uref(ii,i)
enddo
overlopU_mat += overlopU
overlopV = 0.d0
do ii = 1, nn
overlopV += Vref(ii,j) * Vref(ii,i)
enddo
overlopV_mat += overlopV
enddo
enddo
print *, 'overlop U =', overlopU_mat
print *, 'overlop V =', overlopV_mat
deallocate( U_newsvd, V_newsvd, Vt_newsvd, D_newsvd, A_newsvd )
return
end subroutine perform_newpostSVD
subroutine const_Hdiag_Hkl_H0(n_selected, n_toselect, Uref, Vref, numalpha_selected, numbeta_selected &
, numalpha_toselect, numbeta_toselect, Hdiag, Hkl, H0)
implicit none
integer, intent(in) :: n_selected, n_toselect
integer, intent(in) :: numalpha_selected(n_selected), numbeta_selected(n_selected)
integer, intent(in) :: numalpha_toselect(n_toselect), numbeta_toselect(n_toselect)
double precision, intent(in) :: Uref(n_det_alpha_unique,n_det_beta_unique)
double precision, intent(in) :: Vref(n_det_beta_unique ,n_det_beta_unique)
double precision, intent(out) :: Hdiag(n_toselect), Hkl(n_selected,n_toselect), H0(n_selected,n_selected)
integer(bit_kind) :: det1(N_int,2)
integer(bit_kind) :: det2(N_int,2)
integer :: degree
integer :: i, j, k, l
integer :: n, na, nb, m, ma, mb
double precision, allocatable :: Htot(:,:,:,:), H1(:,:,:), H2(:,:,:)
Hdiag(:) = 0.d0
Hkl(:,:) = 0.d0
H0(:,:) = 0.d0
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(i,j,k,l,n,na,nb,m,ma,mb,det1,det2,degree) &
!$OMP SHARED(n_det_alpha_unique,n_det_beta_unique,psi_det_alpha_unique,psi_det_beta_unique, &
!$OMP N_int,n_selected,n_toselect,Uref,Vref,H0,Htot,H1,H2,Hdiag,Hkl, &
!$OMP numalpha_selected,numbeta_selected,numalpha_toselect,numbeta_toselect )
!$OMP SINGLE
allocate( Htot(n_det_alpha_unique,n_det_beta_unique,n_det_alpha_unique,n_det_beta_unique) )
Htot(:,:,:,:) = 0.d0
!$OMP END SINGLE
!$OMP DO COLLAPSE(2) SCHEDULE(DYNAMIC,20)
do i = 1, n_det_alpha_unique
do k = 1, n_det_alpha_unique
det1(:,1) = psi_det_alpha_unique(:,i)
det2(:,1) = psi_det_alpha_unique(:,k)
call get_excitation_degree_spin(det1(1,1),det2(1,1),degree,N_int)
if (degree .gt. 2) then
cycle
endif
do j = 1, n_det_beta_unique
det1(:,2) = psi_det_beta_unique(:,j)
do l = 1, n_det_beta_unique
det2(:,2) = psi_det_beta_unique(:,l)
call get_excitation_degree(det1,det2,degree,N_int)
if (degree .gt. 2) then
cycle
endif
! !!!
call i_H_j(det1, det2, N_int, Htot(k,l,i,j))
! !!!
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP SINGLE
print *, ' *** Htot is calculated *** '
allocate( H1(n_det_alpha_unique,n_det_beta_unique,n_selected) )
H1(:,:,:) = 0.d0
!$OMP END SINGLE
!$OMP DO
do n = 1, n_selected
na = numalpha_selected(n)
nb = numbeta_selected (n)
do i = 1, n_det_alpha_unique
do j = 1, n_det_beta_unique
do l = 1, n_det_beta_unique
do k = 1, n_det_alpha_unique
H1(k,l,n) += Htot(k,l,i,j) * Uref(i,na) * Vref(j,nb)
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP SINGLE
allocate( H2(n_det_alpha_unique,n_det_beta_unique,n_toselect) )
H2(:,:,:) = 0.d0
!$OMP END SINGLE
!$OMP DO
do n = 1, n_toselect
na = numalpha_toselect(n)
nb = numbeta_toselect (n)
do i = 1, n_det_alpha_unique
do j = 1, n_det_beta_unique
do l = 1, n_det_beta_unique
do k = 1, n_det_alpha_unique
H2(k,l,n) += Htot(k,l,i,j) * Uref(i,na) * Vref(j,nb)
Hdiag(n) += Htot(k,l,i,j) * Uref(i,na) * Vref(j,nb) * Uref(k,na) * Vref(l,nb)
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP SINGLE
deallocate( Htot )
!$OMP END SINGLE
!$OMP DO
do m = 1, n_selected
ma = numalpha_selected(m)
mb = numbeta_selected (m)
do n = 1, n_toselect
do k = 1, n_det_alpha_unique
do l = 1, n_det_beta_unique
Hkl(m,n) += H2(k,l,n) * Uref(k,ma) * Vref(l,mb)
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP SINGLE
deallocate( H2 )
!$OMP END SINGLE
!$OMP DO
do m = 1, n_selected
ma = numalpha_selected(m)
mb = numbeta_selected (m)
do n = 1, n_selected
do k = 1, n_det_alpha_unique
do l = 1, n_det_beta_unique
H0(m,n) += H1(k,l,n) * Uref(k,ma) * Vref(l,mb)
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP SINGLE
deallocate( H1 )
!$OMP END SINGLE
!$OMP END PARALLEL
return
end subroutine const_Hdiag_Hkl_H0

View File

@ -0,0 +1,840 @@
program buildpsi_diagSVDit_v2
implicit none
BEGIN_DOC
! study efficiency for different way to build | psi >
END_DOC
read_wf = .True.
TOUCH read_wf
PROVIDE N_int
call run()
end
subroutine run
USE OMP_LIB
implicit none
integer(bit_kind) :: det1(N_int,2), det2(N_int,2)
integer :: degree, i_state, n_blocs
double precision :: h12
integer :: i, j, k, l, ii, jj, nn, n, na, nb, m, ma, mb
double precision :: norm_psi, inv_sqrt_norm_psi
double precision, allocatable :: Uref(:,:), Dref(:), Vtref(:,:), Aref(:,:), Vref(:,:)
double precision :: E0_av, E0_ap, E0pt2
double precision :: err0, err_tmp, e_tmp, E0, overlop, E0_old, tol_energy
double precision :: ctmp, htmp, Ept2
double precision :: E0_postsvd, overlop_postsvd
double precision :: norm_coeff_psi, inv_sqrt_norm_coeff_psi
double precision :: overlopU, overlopU_mat, overlopV, overlopV_mat, overlop_psi
double precision, allocatable :: H(:,:,:,:)
double precision, allocatable :: Hdiag(:), Hkl(:,:), H0(:,:)
double precision, allocatable :: psi_postsvd(:), coeff_psi_perturb(:)
integer :: it_svd, it_svd_max
integer :: n_TSVD, n_FSVD, n_selected, n_toselect
integer, allocatable :: numalpha_selected(:), numbeta_selected(:)
integer, allocatable :: numalpha_toselect(:), numbeta_toselect(:)
integer(kind=8) :: W_tbeg, W_tend, W_tbeg_it, W_tend_it, W_tbeg_step, W_tend_step, W_ir
real(kind=8) :: W_tot_time, W_tot_time_it, W_tot_time_step
real(kind=8) :: CPU_tbeg, CPU_tend, CPU_tbeg_it, CPU_tend_it, CPU_tbeg_step, CPU_tend_step
real(kind=8) :: CPU_tot_time, CPU_tot_time_it, CPU_tot_time_step
real(kind=8) :: speedup, speedup_it, speedup_step
integer :: nb_taches
double precision, allocatable :: Uezfio(:,:,:), Dezfio(:,:), Vezfio(:,:,:)
!$OMP PARALLEL
nb_taches = OMP_GET_NUM_THREADS()
!$OMP END PARALLEL
call CPU_TIME(CPU_tbeg)
call SYSTEM_CLOCK(COUNT=W_tbeg, COUNT_RATE=W_ir)
i_state = 1
det1(:,1) = psi_det_alpha_unique(:,1)
det2(:,1) = psi_det_alpha_unique(:,1)
det1(:,2) = psi_det_beta_unique(:,1)
det2(:,2) = psi_det_beta_unique(:,1)
call i_H_j(det1, det2, N_int, h12)
! ---------------------------------------------------------------------------------------
! construct the initial CISD matrix
print *, ' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~'
print *, ' CISD matrix:', n_det_alpha_unique,'x',n_det_beta_unique
print *, ' N det :', N_det
print *, ' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~'
norm_psi = 0.d0
do k = 1, N_det
norm_psi = norm_psi + psi_bilinear_matrix_values(k,i_state) &
* psi_bilinear_matrix_values(k,i_state)
enddo
print *, ' initial norm = ', norm_psi
allocate( Aref(n_det_alpha_unique,n_det_beta_unique) )
Aref(:,:) = 0.d0
do k = 1, N_det
i = psi_bilinear_matrix_rows(k)
j = psi_bilinear_matrix_columns(k)
Aref(i,j) = psi_bilinear_matrix_values(k,i_state)
enddo
! ---------------------------------------------------------------------------------------
! ---------------------------------------------------------------------------------------
! perform a Full SVD
allocate( Uref(n_det_alpha_unique,n_det_alpha_unique) )
allocate( Dref(min(n_det_alpha_unique,n_det_beta_unique)) )
allocate( Vref (n_det_beta_unique,n_det_beta_unique) )
allocate( Vtref(n_det_beta_unique,n_det_beta_unique) )
call svd_s( Aref, size(Aref,1), &
Uref, size(Uref,1), &
Dref, &
Vtref, size(Vtref,1), &
n_det_alpha_unique, n_det_beta_unique )
print *, ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~ '
print *, ' --- First SVD: ok --- '
do l = 1, n_det_beta_unique
do i = 1, n_det_beta_unique
Vref(i,l) = Vtref(l,i)
enddo
enddo
deallocate( Vtref )
! check Full SVD error
err0 = 0.d0
do j = 1, n_det_beta_unique
do i = 1, n_det_alpha_unique
err_tmp = 0.d0
do l = 1, min(n_det_alpha_unique,n_det_beta_unique)
err_tmp = err_tmp + Dref(l) * Uref(i,l) * Vref(j,l)
enddo
err_tmp = Aref(i,j) - err_tmp
err0 += err_tmp * err_tmp
enddo
enddo
print *, ' Full SVD err (%) = ', 100.d0 * dsqrt(err0/norm_psi)
print *, ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~ '
! ---------------------------------------------------------------------------------------
! ---------------------------------------------------------------------------------------
! numerote vectors
! Full rank
n_FSVD = n_det_alpha_unique * n_det_beta_unique
print*, ' Full psi space rank = ', n_FSVD
! Truncated rank
n_TSVD = 15
print*, ' initial psi space rank = ', n_TSVD
! check Truncate SVD error
err0 = 0.d0
do j = 1, n_det_beta_unique
do i = 1, n_det_alpha_unique
err_tmp = 0.d0
do l = 1, n_TSVD
err_tmp = err_tmp + Dref(l) * Uref(i,l) * Vref(j,l)
enddo
err_tmp = Aref(i,j) - err_tmp
err0 += err_tmp * err_tmp
enddo
enddo
deallocate( Aref )
print *, ' Truncate SVD err (%) = ', 100.d0 * dsqrt(err0/norm_psi)
n_selected = n_TSVD * n_TSVD
allocate( numalpha_selected(n_selected) , numbeta_selected(n_selected) )
k = 0
! first diagonal bloc
do i = 1, n_TSVD
do j = 1, n_TSVD
k = k + 1
numalpha_selected(k) = j
numbeta_selected (k) = i
enddo
enddo
! check size
if( k.ne.n_selected ) then
print*, ' error in numeroting: selected '
print*, ' k = ', k
print*, ' n_selected = ', n_selected
stop
endif
! perturbative space rank
n_blocs = 2
k = 0
if( n_blocs.eq.3 ) then
n_toselect = n_FSVD - n_selected
allocate( numalpha_toselect(n_toselect) , numbeta_toselect(n_toselect) )
! nondiagonal blocs
do i = 1, n_TSVD
do j = n_TSVD+1, n_det_beta_unique
k = k + 1
numalpha_toselect(k) = i
numbeta_toselect (k) = j
enddo
enddo
do i = n_TSVD+1, n_det_alpha_unique
do j = 1, n_TSVD
k = k + 1
numalpha_toselect(k) = i
numbeta_toselect (k) = j
enddo
enddo
! diagonal bloc
do i = n_TSVD+1, n_det_alpha_unique
do j = n_TSVD+1, n_det_beta_unique
k = k + 1
numalpha_toselect(k) = i
numbeta_toselect (k) = j
enddo
enddo
elseif( n_blocs.eq.2 ) then
n_toselect = n_FSVD - n_selected - (n_det_alpha_unique-n_TSVD)*(n_det_beta_unique-n_TSVD)
allocate( numalpha_toselect(n_toselect) , numbeta_toselect(n_toselect) )
! nondiagonal blocs
do i = 1, n_TSVD
do j = n_TSVD+1, n_det_beta_unique
k = k + 1
numalpha_toselect(k) = j
numbeta_toselect (k) = i
enddo
enddo
do j = 1, n_TSVD
!do i = n_TSVD+1, n_det_beta_unique
do i = n_TSVD+1, n_det_alpha_unique
k = k + 1
numalpha_toselect(k) = j
numbeta_toselect (k) = i
enddo
enddo
endif
! check size
if( k.ne.n_toselect ) then
print*, ' error in numeroting: to select '
print*, ' k = ', k
print*, ' n_toselect = ', n_toselect
stop
endif
print*, ' perturbative psi space rank = ', n_toselect
! ---------------------------------------------------------------------------------------
!________________________________________________________________________________________________________
!
! loop over SVD iterations
!________________________________________________________________________________________________________
E0_old = 0.d0
tol_energy = 1.d0
it_svd = 0
it_svd_max = 100
do while( ( it_svd .lt. it_svd_max) .and. ( tol_energy .gt. 1d-8 ) )
call CPU_TIME(CPU_tbeg_it)
call SYSTEM_CLOCK(COUNT=W_tbeg_it, COUNT_RATE=W_ir)
it_svd = it_svd + 1
print*, '+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +'
print*, ' '
print*, ' '
print*, ' '
print*, ' iteration', it_svd
norm_coeff_psi = 0.d0
do j = 1, n_TSVD
norm_coeff_psi += Dref(j) * Dref(j)
enddo
inv_sqrt_norm_coeff_psi = 1.d0 / dsqrt(norm_coeff_psi)
do j = 1, n_TSVD
Dref(j) = Dref(j) * inv_sqrt_norm_coeff_psi
enddo
allocate( H0(n_selected,n_selected) )
call const_H0(n_TSVD, n_selected, Uref, Vref, H0)
E0 = 0.d0
do i = 1, n_TSVD
ii = (i-1)*n_TSVD + i
do j = 1, n_TSVD
jj = (j-1)*n_TSVD + j
E0 += Dref(j) * H0(jj,ii) * Dref(i)
enddo
enddo
E0_av = E0 + nuclear_repulsion
print *,' E0 (avant SVD) =', E0_av
allocate( psi_postsvd(n_selected) )
call diag_postsvd(n_TSVD, n_selected, Dref, H0, E0_postsvd, overlop_postsvd, psi_postsvd)
print*, ' postsvd energy = ', E0_postsvd
deallocate( H0 )
!Dref(:) = 0.d0
call perform_newpostSVD(n_TSVD, n_selected, psi_postsvd, Uref, Vref, Dref)
deallocate( psi_postsvd )
print *, ' --- Compute H --- '
allocate( H0(n_selected,n_selected), Hdiag(n_toselect), Hkl(n_selected,n_toselect) )
call const_Hdiag_Hkl_H0(n_TSVD, n_selected, n_toselect, numalpha_selected, numbeta_selected, &
numalpha_toselect, numbeta_toselect, Uref, Vref, Hdiag, Hkl, H0)
E0 = 0.d0
norm_coeff_psi = 0.d0
do i = 1, n_TSVD
ii = (i-1)*n_TSVD + i
do j = 1, n_TSVD
jj = (j-1)*n_TSVD + j
E0 += Dref(j) * H0(jj,ii) * Dref(i)
enddo
norm_coeff_psi += Dref(i) * Dref(i)
enddo
E0_ap = E0 + nuclear_repulsion
print *,' E0 (apres SVD) =', E0_ap
deallocate(H0)
allocate( coeff_psi_perturb(n_toselect) )
ept2 = 0.d0
do ii = 1, n_toselect
ctmp = 0.d0
do i = 1, n_TSVD
l = (i-1)*n_TSVD + i
ctmp += Dref(i) * Hkl(l,ii)
enddo
coeff_psi_perturb(ii) = ctmp / ( E0_ap - (Hdiag(ii)+nuclear_repulsion) )
ept2 += ctmp*ctmp / ( E0_ap - (Hdiag(ii)+nuclear_repulsion) )
enddo
E0pt2 = E0_ap + ept2
print *, ' perturb energy = ', E0pt2, ept2
tol_energy = dabs(E0_ap-E0_old)
E0_old = E0_ap
deallocate( Hdiag, Hkl)
call perform_newSVD(n_toselect, numalpha_toselect, numbeta_toselect, coeff_psi_perturb, Uref, Vref, Dref)
deallocate( coeff_psi_perturb )
write(n_blocs,'(i5,4x,4(f22.15,2x))') it_svd, E0_av, E0_postsvd, E0_ap, E0pt2
!write(222,'(i5,4x,4(f22.15,2x))') it_svd, E0_av, E0_postsvd, E0_ap, E0pt2
call CPU_TIME(CPU_tend_it)
call SYSTEM_CLOCK(COUNT=W_tend_it, COUNT_RATE=W_ir)
CPU_tot_time_it = CPU_tend_it - CPU_tbeg_it
W_tot_time_it = real(W_tend_it-W_tbeg_it, kind=8) / real(W_ir, kind=8)
speedup_it = CPU_tot_time_it / W_tot_time_it
print '(//, 3X, "elapsed time = ", 1PE10.3, " min.", /, &
& 3X, "CPU time = ", 1PE10.3, " min.", /, &
& 3X, "speed up = ", 1PE10.3,//)', W_tot_time_it/60.d0, CPU_tot_time_it/60.d0, speedup_it
end do
!________________________________________________________________________________________________________
!________________________________________________________________________________________________________
! save to EZFIO
allocate(Uezfio(n_det_alpha_unique,n_TSVD,1), Dezfio(n_TSVD,1), Vezfio(n_det_beta_unique,n_TSVD,1))
Dezfio(1:n_TSVD,1) = Dref(1:n_TSVD)
Uezfio(1:n_det_alpha_unique,1:n_TSVD,1) = Uref(1:n_det_alpha_unique,1:n_TSVD)
Vezfio(1:n_det_beta_unique ,1:n_TSVD,1) = Vref(1:n_det_beta_unique ,1:n_TSVD)
!call ezfio_set_spindeterminants_n_det(N_det)
!call ezfio_set_spindeterminants_n_states(N_states)
!call ezfio_set_spindeterminants_n_det_alpha(n_det_alpha_unique)
!call ezfio_set_spindeterminants_n_det_beta(n_det_beta_unique)
!call ezfio_set_spindeterminants_psi_coef_matrix_rows(psi_bilinear_matrix_rows)
!call ezfio_set_spindeterminants_psi_coef_matrix_columns(psi_bilinear_matrix_columns)
!call ezfio_set_spindeterminants_psi_coef_matrix_values(psi_bilinear_matrix_values)
!call ezfio_set_spindeterminants_n_svd_coefs(n_TSVD)
!call ezfio_set_spindeterminants_psi_svd_alpha(Uezfio)
!call ezfio_set_spindeterminants_psi_svd_beta(Vezfio )
!call ezfio_set_spindeterminants_psi_svd_coefs(Dezfio)
deallocate(Uezfio, Dezfio, Vezfio)
deallocate( Uref, Vref, Dref )
call CPU_TIME(CPU_tend)
call SYSTEM_CLOCK(COUNT=W_tend, COUNT_RATE=W_ir)
CPU_tot_time = CPU_tend - CPU_tbeg
W_tot_time = real(W_tend - W_tbeg, kind=8) / real(W_ir, kind=8)
speedup = CPU_tot_time / W_tot_time
print *,' ___________________________________________________________________'
print '(//,3X,"Execution avec ",i2," threads")',nb_taches
print '(//, 3X, "elapsed time = ", 1PE10.3, " min.", /, &
& 3X, "CPU time = ", 1PE10.3, " min.", /, &
& 3X, "speed up = ", 1PE10.3 ,// )', W_tot_time/60.d0, CPU_tot_time/60.d0, speedup
print *,' ___________________________________________________________________'
end
subroutine const_H0(n_TSVD, n_selected, Uref, Vref, H0)
USE OMP_LIB
implicit none
integer, intent(in) :: n_TSVD, n_selected
double precision, intent(in) :: Uref(n_det_alpha_unique,n_det_alpha_unique)
double precision, intent(in) :: Vref(n_det_beta_unique ,n_det_beta_unique)
double precision, intent(out) :: H0(n_selected,n_selected)
integer :: i, j, k, l
integer :: n, m
double precision, allocatable :: H(:,:,:,:)
H0(:,:) = 0.d0
allocate( H(n_det_alpha_unique,n_det_beta_unique,n_det_alpha_unique,n_det_beta_unique) )
call const_H_uv_lapack(Uref, Vref, H)
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(i,j,k,l,m,n) &
!$OMP SHARED(n_TSVD,H0,H)
!$OMP DO COLLAPSE(2) SCHEDULE(DYNAMIC,8)
do i = 1, n_TSVD
do j = 1, n_TSVD
m = (i-1)*n_TSVD + j
do k = 1, n_TSVD
do l = 1, n_TSVD
n = (k-1)*n_TSVD + l
H0(n,m) = H(k,l,i,j)
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
deallocate( H )
return
end subroutine const_H0
subroutine diag_postsvd(n_TSVD, n_selected, Dref, H0, E0, overlop, psi_postsvd )
USE OMP_LIB
implicit none
integer, intent(in) :: n_TSVD, n_selected
double precision, intent(in) :: H0(n_selected,n_selected)
double precision, intent(in) :: Dref(min(n_det_alpha_unique,n_det_beta_unique))
double precision, intent(out) :: E0, overlop, psi_postsvd(n_selected)
integer(bit_kind) :: det1(N_int,2), det2(N_int,2)
integer :: i, j, k, l, degree
integer :: ii0, jj0, ii, jj, n, m, np, mp
integer :: nn0, mm0, nn, mm, ind_gs
double precision :: h12, x
double precision, allocatable :: eigvec0(:,:), eigval0(:), check_ov(:)
! diagonalize H0
allocate( eigvec0(n_selected,n_selected), eigval0(n_selected) )
call lapack_diag(eigval0, eigvec0, H0, n_selected, n_selected)
! get the postsvd ground state
allocate( check_ov(n_selected) )
do l = 1, n_selected
overlop = 0.d0
do i = 1, n_TSVD
ii = n_TSVD*(i-1) + i
overlop = overlop + eigvec0(ii,l) * Dref(i)
enddo
check_ov(l) = dabs(overlop)
enddo
ind_gs = MAXLOC( check_ov, DIM=1 )
!ind_gs = 1
overlop = check_ov(ind_gs)
E0 = eigval0(ind_gs)+nuclear_repulsion
psi_postsvd = eigvec0(:,ind_gs)
deallocate( check_ov, eigvec0, eigval0 )
return
end subroutine diag_postsvd
subroutine perform_newSVD(n_toselect, numalpha_toselect, numbeta_toselect, coeff_psi_perturb, Uref, Vref, Dref)
USE OMP_LIB
integer, intent(in) :: n_toselect
integer, intent(in) :: numalpha_toselect(n_toselect), numbeta_toselect(n_toselect)
double precision, intent(in) :: coeff_psi_perturb(n_toselect)
double precision, intent(inout) :: Uref(n_det_alpha_unique,n_det_alpha_unique)
double precision, intent(inout) :: Vref(n_det_beta_unique ,n_det_beta_unique)
double precision, intent(inout) :: Dref(min(n_det_beta_unique,n_det_alpha_unique))
integer :: mm, nn, i, j, ii0, ii, l, jj, na, nb
double precision :: err0, err_norm, err_tmp, norm_tmp
double precision :: overlopU_mat, overlopV_mat, overlopU, overlopV
double precision, allocatable :: S_mat(:,:), SxVt(:,:)
double precision, allocatable :: U_svd(:,:), V_svd(:,:)
double precision, allocatable :: U_newsvd(:,:), V_newsvd(:,:), Vt_newsvd(:,:), D_newsvd(:), A_newsvd(:,:)
mm = n_det_alpha_unique
nn = n_det_beta_unique
allocate( U_svd(mm,mm) , V_svd(nn,nn) , S_mat(mm,nn) )
U_svd(:,:) = Uref(:,:)
V_svd(:,:) = Vref(:,:)
S_mat(:,:) = 0.d0
norm_tmp = 0.d0
do j = 1, min(mm,nn)
S_mat(j,j) = Dref(j)
norm_tmp += S_mat(j,j)*S_mat(j,j)
enddo
do l = 1, n_toselect
na = numalpha_toselect(l)
nb = numbeta_toselect (l)
S_mat(na,nb) = coeff_psi_perturb(l)
norm_tmp += S_mat(na,nb)*S_mat(na,nb)
enddo
norm_tmp = 1.d0/dsqrt(norm_tmp)
do i = 1, nn
do j = 1, mm
S_mat(j,i) = S_mat(j,i) * norm_tmp
enddo
enddo
! first compute S_mat x transpose(V_svd)
allocate( SxVt(mm,nn) )
call dgemm( 'N', 'T', mm, nn, nn, 1.d0 &
, S_mat , size(S_mat,1) &
, V_svd , size(V_svd,1) &
, 0.d0, SxVt, size(SxVt ,1) )
! then compute U_svd x SxVt
allocate( A_newsvd(mm,nn) )
call dgemm( 'N', 'N', mm, nn, mm, 1.d0 &
, U_svd , size(U_svd ,1) &
, SxVt , size(SxVt ,1) &
, 0.d0, A_newsvd, size(A_newsvd,1) )
deallocate( SxVt )
! perform new SVD
allocate( U_newsvd(mm,mm), Vt_newsvd(nn,nn), D_newsvd(min(mm,nn)) )
call svd_s( A_newsvd, size(A_newsvd,1), U_newsvd, size(U_newsvd,1), D_newsvd, Vt_newsvd, size(Vt_newsvd,1), mm, nn)
allocate( V_newsvd(nn,nn) )
do l = 1, nn
do j = 1, nn
V_newsvd(j,l) = Vt_newsvd(l,j)
enddo
enddo
Dref(:) = D_newsvd(:)
Uref(1:mm,1:mm) = U_newsvd(1:mm,1:mm)
Vref(1:nn,1:nn) = V_newsvd(1:nn,1:nn)
deallocate( U_newsvd, V_newsvd, Vt_newsvd, D_newsvd, A_newsvd )
return
end subroutine perform_newSVD
subroutine perform_newpostSVD(n_TSVD, n_selected, psi_postsvd, Uref, Vref, Dref)
USE OMP_LIB
integer, intent(in) :: n_TSVD, n_selected
double precision, intent(in) :: psi_postsvd(n_selected)
double precision, intent(inout) :: Uref(n_det_alpha_unique,n_det_alpha_unique)
double precision, intent(inout) :: Vref(n_det_beta_unique ,n_det_beta_unique)
double precision, intent(inout) :: Dref(min(n_det_beta_unique,n_det_alpha_unique))
integer :: mm, nn, i, j, ii0, ii, l, jj, na, nb
double precision :: err0, err_norm, err_tmp, norm_tmp
double precision :: overlopU_mat, overlopV_mat, overlopU, overlopV
double precision, allocatable :: S_mat(:,:), SxVt(:,:)
double precision, allocatable :: U_svd(:,:), V_svd(:,:)
double precision, allocatable :: U_newsvd(:,:), V_newsvd(:,:), Vt_newsvd(:,:), D_newsvd(:), A_newsvd(:,:)
mm = n_det_alpha_unique
nn = n_det_beta_unique
allocate( U_svd(mm,n_TSVD) , V_svd(nn,n_TSVD) , S_mat(n_TSVD,n_TSVD) )
U_svd(1:mm,1:n_TSVD) = Uref(1:mm,1:n_TSVD)
V_svd(1:nn,1:n_TSVD) = Vref(1:nn,1:n_TSVD)
S_mat(:,:) = 0.d0
do i = 1, n_TSVD
ii = (i-1)*n_TSVD
do j = 1, n_TSVD
jj = ii + j
S_mat(i,j) = psi_postsvd(jj)
enddo
enddo
! first compute S_mat x transpose(V_svd)
allocate( SxVt(n_TSVD,nn) )
call dgemm( 'N', 'T', n_TSVD, nn, n_TSVD, 1.d0 &
, S_mat , size(S_mat,1) &
, V_svd , size(V_svd,1) &
, 0.d0, SxVt, size(SxVt ,1) )
! then compute U_svd x SxVt
allocate( A_newsvd(mm,nn) )
call dgemm( 'N', 'N', mm, nn, n_TSVD, 1.d0 &
, U_svd , size(U_svd ,1) &
, SxVt , size(SxVt ,1) &
, 0.d0, A_newsvd, size(A_newsvd,1) )
deallocate( SxVt )
! perform new SVD
allocate( U_newsvd(mm,mm), Vt_newsvd(nn,nn), D_newsvd(min(mm,nn)) )
call svd_s( A_newsvd, size(A_newsvd,1), U_newsvd, size(U_newsvd,1), D_newsvd, Vt_newsvd, size(Vt_newsvd,1), mm, nn)
allocate( V_newsvd(nn,nn) )
do l = 1, nn
do j = 1, nn
V_newsvd(j,l) = Vt_newsvd(l,j)
enddo
enddo
! check SVD error
err0 = 0.d0
err_norm = 0.d0
do j = 1, nn
do i = 1, mm
err_tmp = 0.d0
do l = 1, n_TSVD
err_tmp = err_tmp + D_newsvd(l) * U_newsvd(i,l) * V_newsvd(j,l)
enddo
err_tmp = A_newsvd(i,j) - err_tmp
err0 += err_tmp * err_tmp
err_norm += A_newsvd(i,j) * A_newsvd(i,j)
enddo
enddo
Dref(1:n_TSVD) = D_newsvd(1:n_TSVD)
Uref(1:mm,1:mm) = U_newsvd(1:mm,1:mm)
Vref(1:nn,1:nn) = V_newsvd(1:nn,1:nn)
deallocate( U_newsvd, V_newsvd, Vt_newsvd, D_newsvd, A_newsvd )
return
end subroutine perform_newpostSVD
subroutine const_Hdiag_Hkl_H0(n_TSVD, n_selected, n_toselect, numalpha_selected, numbeta_selected, &
numalpha_toselect, numbeta_toselect, Uref, Vref, Hdiag, Hkl, H0)
USE OMP_LIB
implicit none
integer, intent(in) :: n_TSVD, n_selected, n_toselect
integer, intent(in) :: numalpha_selected(n_selected), numbeta_selected(n_selected)
integer, intent(in) :: numalpha_toselect(n_toselect), numbeta_toselect(n_toselect)
double precision, intent(in) :: Uref(n_det_alpha_unique,n_det_alpha_unique)
double precision, intent(in) :: Vref(n_det_beta_unique ,n_det_beta_unique)
double precision, intent(out) :: Hdiag(n_toselect), Hkl(n_selected,n_toselect), H0(n_selected,n_selected)
integer :: i, j, k, l
integer :: n, na, nb, m, ma, mb
double precision, allocatable :: H(:,:,:,:)
integer(kind=8) :: W_tbeg_step, W_tend_step, W_ir
real(kind=8) :: W_tot_time_step
Hdiag(:) = 0.d0
Hkl(:,:) = 0.d0
H0(:,:) = 0.d0
allocate( H(n_det_alpha_unique,n_det_beta_unique,n_det_alpha_unique,n_det_beta_unique) )
call const_H_uv_lapack(Uref, Vref, H)
call SYSTEM_CLOCK(COUNT=W_tbeg_step, COUNT_RATE=W_ir)
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(i,j,k,l,n,na,nb,m,ma,mb) &
!$OMP SHARED(n_TSVD,n_selected,n_toselect,H0,H,Hdiag,Hkl, &
!$OMP numalpha_selected,numbeta_selected,numalpha_toselect,numbeta_toselect )
!$OMP DO COLLAPSE(2) SCHEDULE(DYNAMIC,8)
do i = 1, n_TSVD
do j = 1, n_TSVD
m = (i-1)*n_TSVD + j
do k = 1, n_TSVD
do l = 1, n_TSVD
n = (k-1)*n_TSVD + l
H0(n,m) = H(k,l,i,j)
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP DO
do n = 1, n_toselect
na = numalpha_toselect(n)
nb = numbeta_toselect (n)
! diagonal part
Hdiag(n) = H(na,nb,na,nb)
do m = 1, n_selected
ma = numalpha_selected(m)
mb = numalpha_selected(m)
! 3 blocs treated perturbatively
Hkl(m,n) = H(ma,mb,na,nb)
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call SYSTEM_CLOCK(COUNT=W_tend_step, COUNT_RATE=W_ir)
W_tot_time_step = real(W_tend_step-W_tbeg_step, kind=8) / real(W_ir, kind=8)
deallocate( H )
return
end subroutine const_Hdiag_Hkl_H0
subroutine const_H_uv_lapack(Uref, Vref, H)
USE OMP_LIB
implicit none
double precision, intent(in) :: Uref(n_det_alpha_unique,n_det_beta_unique)
double precision, intent(in) :: Vref(n_det_beta_unique ,n_det_beta_unique)
double precision, intent(out) :: H(n_det_alpha_unique,n_det_beta_unique, n_det_alpha_unique,n_det_beta_unique)
integer(bit_kind) :: det1(N_int,2), det2(N_int,2)
integer :: i, j, k, l, degree
integer :: ii0, jj0, ii, jj, n, m, np, mp
integer :: nn0, mm0, na, nb, mm, ind_gs
integer :: p,q,r,s
double precision :: h12, x
double precision, allocatable :: H0(:,:,:,:)
double precision, allocatable :: H1(:,:,:,:)
na = n_det_alpha_unique
nb = n_det_beta_unique
allocate( H0(na,nb,na,nb) )
allocate( H1(nb,na,nb,na) )
H0 = 0.d0
call wall_time(t0)
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(p,q,r,s,i,j,k,l,det1,det2,degree,h12) &
!$OMP SHARED(na,nb,psi_det_alpha_unique,psi_det_beta_unique, &
!$OMP N_int,Uref,Vref,H0,H1,H)
!$OMP DO
do l = 1, nb
det2(:,2) = psi_det_beta_unique(:,l)
do j = 1, nb
det1(:,2) = psi_det_beta_unique(:,j)
call get_excitation_degree_spin(det1(1,2),det2(1,2),degree,N_int)
if (degree > 2) cycle
do k = 1, na
det2(:,1) = psi_det_alpha_unique(:,k)
do i = 1, na
det1(:,1) = psi_det_alpha_unique(:,i)
call get_excitation_degree(det1,det2,degree,N_int)
if ( degree > 2) cycle
call i_H_j(det1, det2, N_int, h12)
H0(i,j,k,l) = h12
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(t1)
! (i,j,k,l) -> (j,k,l,p)
call DGEMM('T','N', nb * na * nb, na, na, &
1.d0, H0, size(H0,1), Uref, size(Uref,1), 0.d0, H1, size(H1,1)*size(H1,2)*size(H1,3))
! (j,k,l,p) -> (k,l,p,q)
call DGEMM('T','N', na * nb * na, nb, nb, &
1.d0, H1, size(H1,1), Vref, size(Vref,1), 0.d0, H0, size(H0,1)*size(H0,2)*size(H0,3))
! (k,l,p,q) -> (l,p,q,r)
call DGEMM('T','N', nb * na * nb, na, na, &
1.d0, H0, size(H0,1), Uref, size(Uref,1), 0.d0, H1, size(H1,1)*size(H1,2)*size(H1,3))
! (l,p,q,r) -> (p,q,r,s)
call DGEMM('T','N', na * nb * na, nb, nb, &
1.d0, H1, size(H1,1), Vref, size(Vref,1), 0.d0, H, size(H,1)*size(H,2)*size(H,3))
call wall_time(t2)
print *, t1-t0, t2-t1
double precision :: t0, t1, t2
deallocate(H1,H0)
end const_H_uv_lapack

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,326 @@
program kl_H_kl_v0
implicit none
BEGIN_DOC
! perturbative approach to build psi_postsvd
END_DOC
read_wf = .True.
TOUCH read_wf
PROVIDE N_int
call run()
end
subroutine run
USE OMP_LIB
implicit none
integer(bit_kind) :: det1(N_int,2), det2(N_int,2)
integer :: degree, i_state
integer :: i, j, k, l, m, n
double precision :: x, y, h12
double precision, allocatable :: Uref(:,:), Dref(:), Vtref(:,:), Aref(:,:), Vref(:,:)
integer :: rank_max
double precision :: E0, overlop, Ept2
double precision, allocatable :: H0(:,:)
double precision, allocatable :: eigvec0(:,:), eigval0(:), coeff_psi(:), coeff_tmp(:)
integer :: ii, ia, ib
double precision, allocatable :: Hdiag(:), Hkl_save(:,:), Hkl_1d(:), Hkl_tmp(:,:), Hdiag_tmp(:)
integer :: na_new, nb_new, ind_new, ind_gs
double precision :: ctmp, coeff_new
double precision, allocatable :: epsil(:), epsil_energ(:), check_ov(:)
double precision, allocatable :: Uezfio(:,:,:), Dezfio(:,:), Vezfio(:,:,:)
integer :: ibeg_alpha, ibeg_beta, iend_alpha, iend_beta
integer :: n_toselect, na_max, nb_max
integer, allocatable :: numalpha_toselect(:), numbeta_toselect(:)
integer :: cantor_pairing_ij, cantor_pairing_new
integer, allocatable :: cantor_pairing(:), cantor_pairing_tmp(:)
double precision :: t_beg, t_end
integer(kind=8) :: W_tbeg, W_tend, W_tbeg_it, W_tend_it, W_ir
real(kind=8) :: W_tot_time, W_tot_time_it
integer :: nb_taches
!$OMP PARALLEL
nb_taches = OMP_GET_NUM_THREADS()
!$OMP END PARALLEL
call SYSTEM_CLOCK(COUNT=W_tbeg, COUNT_RATE=W_ir)
i_state = 1
det1(:,1) = psi_det_alpha_unique(:,1)
det2(:,1) = psi_det_alpha_unique(:,1)
det1(:,2) = psi_det_beta_unique(:,1)
det2(:,2) = psi_det_beta_unique(:,1)
call get_excitation_degree_spin(det1(1,1),det2(1,1),degree,N_int)
call get_excitation_degree(det1,det2,degree,N_int)
call i_H_j(det1, det2, N_int, h12)
! ---------------------------------------------------------------------------------------
! construct the initial CISD matrix
print *, ' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~'
print *, ' CISD matrix:', n_det_alpha_unique,'x',n_det_beta_unique
print *, ' N det :', N_det
print *, ' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~'
allocate( Aref(n_det_alpha_unique,n_det_beta_unique) )
Aref(:,:) = 0.d0
do k = 1, N_det
i = psi_bilinear_matrix_rows(k)
j = psi_bilinear_matrix_columns(k)
Aref(i,j) = psi_bilinear_matrix_values(k,i_state)
enddo
! ---------------------------------------------------------------------------------------
! ---------------------------------------------------------------------------------------
! perform a Full SVD
allocate( Uref(n_det_alpha_unique,n_det_alpha_unique) )
allocate( Dref(min(n_det_alpha_unique,n_det_beta_unique)) )
allocate( Vtref(n_det_beta_unique,n_det_beta_unique) )
call cpu_time(t_beg)
call svd_s(Aref, size(Aref,1), Uref, size(Uref,1), Dref, Vtref &
, size(Vtref,1), n_det_alpha_unique, n_det_beta_unique)
call cpu_time(t_end)
print *, " SVD is performed after (min)", (t_end-t_beg)/60.
deallocate( Aref , Dref )
allocate( Vref(n_det_beta_unique,n_det_beta_unique) )
do l = 1, n_det_beta_unique
do i = 1, n_det_beta_unique
Vref(i,l) = Vtref(l,i)
enddo
enddo
deallocate( Vtref )
ibeg_alpha = 1
iend_alpha = n_det_alpha_unique
na_max = iend_alpha - ibeg_alpha + 1
ibeg_beta = 1
iend_beta = n_det_beta_unique
nb_max = iend_beta - ibeg_beta + 1
n_toselect = na_max * nb_max
print *, ' na_max = ', na_max
print *, ' nb_max = ', nb_max
print *, ' n_toselect = ', n_toselect
allocate( numalpha_toselect(n_toselect) , numbeta_toselect(n_toselect) )
k = 0
do i = ibeg_alpha, iend_alpha
do j = ibeg_beta, iend_beta
k = k + 1
numalpha_toselect(k) = i
numbeta_toselect (k) = j
enddo
enddo
if( k.ne.n_toselect ) then
print *, " error in numbering"
stop
endif
allocate( Hdiag(n_toselect) )
! get < u_k v_l | H | u_k v_l > for all vectors
call const_Hdiag(na_max, nb_max, n_toselect, Uref, Vref, numalpha_toselect, numbeta_toselect, Hdiag)
open(UNIT=11, FILE="klHkl_v0.dat", ACTION="WRITE")
do i = 1, n_toselect
write(11, '(2(I5,2X), 5X, E15.7)') numalpha_toselect(i), numbeta_toselect(i), Hdiag(i)
enddo
close(11)
deallocate( Uref, Vref )
deallocate( numalpha_toselect, numbeta_toselect, Hdiag )
! ***************************************************************************************************
! save to ezfion
!allocate( Uezfio(n_det_alpha_unique,rank0,1), Dezfio(rank0,1), Vezfio(n_det_beta_unique,rank0,1) )
!do l = 1, rank0
! Dezfio(l,1) = coeff_psi(l)
! Uezfio(:,l,1) = U0(:,l)
! Vezfio(:,l,1) = V0(:,l)
!enddo
!call ezfio_set_spindeterminants_n_det(N_det)
!call ezfio_set_spindeterminants_n_states(N_states)
!call ezfio_set_spindeterminants_n_det_alpha(n_det_alpha_unique)
!call ezfio_set_spindeterminants_n_det_beta(n_det_beta_unique)
!call ezfio_set_spindeterminants_psi_coef_matrix_rows(psi_bilinear_matrix_rows)
!call ezfio_set_spindeterminants_psi_coef_matrix_columns(psi_bilinear_matrix_columns)
!call ezfio_set_spindeterminants_psi_coef_matrix_values(psi_bilinear_matrix_values)
!call ezfio_set_spindeterminants_n_svd_coefs(rank0)
!call ezfio_set_spindeterminants_psi_svd_alpha(Uezfio)
!call ezfio_set_spindeterminants_psi_svd_beta(Vezfio )
!call ezfio_set_spindeterminants_psi_svd_coefs(Dezfio)
!deallocate( Uezfio, Dezfio, Vezfio )
! ***************************************************************************************************
call SYSTEM_CLOCK(COUNT=W_tend, COUNT_RATE=W_ir)
W_tot_time = real(W_tend - W_tbeg, kind=8) / real(W_ir, kind=8)
print *, ' ___________________________________________________________________'
print *, ' '
print *, " Execution avec ", nb_taches, " threads"
print *, " total elapsed time (min) = ", W_tot_time/60.d0
print *, ' ___________________________________________________________________'
end
subroutine const_Hdiag(na_max, nb_max, n_toselect, Uref, Vref, numalpha_toselect, numbeta_toselect, Hdiag)
implicit none
integer, intent(in) :: n_toselect, na_max, nb_max
integer, intent(in) :: numalpha_toselect(n_toselect), numbeta_toselect(n_toselect)
double precision, intent(in) :: Uref(n_det_alpha_unique,n_det_alpha_unique)
double precision, intent(in) :: Vref(n_det_beta_unique ,n_det_beta_unique)
double precision, intent(out) :: Hdiag(n_toselect)
integer(bit_kind) :: det1(N_int,2)
integer(bit_kind) :: det2(N_int,2)
integer :: degree, na, nb
integer :: i, j, k, l, ii, jj, m, n
double precision :: h12, xtmp
double precision, allocatable :: Hmat_diag(:,:), Vt(:,:), bl1_tmp(:,:,:)
double precision, allocatable :: Ut(:,:), tmp0(:,:,:) , Hmat_diag_tmp(:,:)
double precision :: t1, t2, t3, t4
print *, ""
print *, " start const_Hdiag"
call wall_time(t1)
na = n_det_alpha_unique
nb = n_det_beta_unique
allocate(Hmat_diag(na_max,nb_max))
Hmat_diag = 0.d0
allocate( bl1_tmp(na,na,nb_max) )
bl1_tmp = 0.d0
allocate( Vt(nb_max,nb) )
do i = 1, nb
do n = 1, nb_max
Vt(n,i) = Vref(i,n)
enddo
enddo
do l = 1, nb
det2(:,2) = psi_det_beta_unique(:,l)
do j = 1, nb
det1(:,2) = psi_det_beta_unique(:,j)
call get_excitation_degree_spin(det1(1,2),det2(1,2),degree,N_int)
if(degree .gt. 2) cycle
do k = 1, na
det2(:,1) = psi_det_alpha_unique(:,k)
do i = 1, na
det1(:,1) = psi_det_alpha_unique(:,i)
call get_excitation_degree(det1,det2,degree,N_int)
if(degree .gt. 2) cycle
call i_H_j(det1, det2, N_int, h12)
if( h12 .eq. 0.d0) cycle
do n = 1, nb_max
bl1_tmp(i,k,n) += h12 * Vt(n,j) * Vt(n,l)
enddo
enddo
enddo
enddo
enddo
deallocate(Vt)
call wall_time(t2)
print *, " end bl1_tmp after (min) ", (t2-t1)/60.
allocate( Ut(na,na_max) )
Ut(1:na,1:na_max) = Uref(1:na,1:na_max)
allocate( tmp0(na,nb_max,na_max) )
call DGEMM('T', 'N', na*nb_max, na_max, na, 1.d0, &
bl1_tmp, size(bl1_tmp,1), Ut, size(Ut,1), &
0.d0, tmp0, size(tmp0,1)*size(tmp0,2) )
deallocate( bl1_tmp )
call wall_time(t3)
print *, " end DGEMM after (min) ", (t3-t2)/60.
do n = 1, nb_max
do m = 1, na_max
do k = 1, na
Hmat_diag(m,n) += tmp0(k,n,m) * Ut(k,m)
enddo
enddo
enddo
deallocate( tmp0 , Ut )
Hdiag(:) = 0.d0
do m = 1, n_toselect
ii = numalpha_toselect(m)
jj = numbeta_toselect (m)
Hdiag(m) = Hmat_diag(ii,jj)
enddo
deallocate( Hmat_diag )
call wall_time(t4)
print *, " end const_Hdiag after (min) ", (t4-t3)/60.
print *, ""
print *, " total time (min) ", (t4-t1)/60.
print *, ""
return
end subroutine const_Hdiag

View File

@ -0,0 +1,352 @@
program kl_H_kl_v1
implicit none
BEGIN_DOC
! perturbative approach to build psi_postsvd
END_DOC
read_wf = .True.
TOUCH read_wf
PROVIDE N_int
call run()
end
subroutine run
USE OMP_LIB
implicit none
integer(bit_kind) :: det1(N_int,2), det2(N_int,2)
integer :: degree, i_state
integer :: i, j, k, l, m, n
double precision :: x, y, h12
double precision, allocatable :: Uref(:,:), Dref(:), Vtref(:,:), Aref(:,:), Vref(:,:)
integer :: rank_max
double precision :: E0, overlop, Ept2
double precision, allocatable :: H0(:,:)
double precision, allocatable :: eigvec0(:,:), eigval0(:), coeff_psi(:), coeff_tmp(:)
integer :: ii, ia, ib
double precision, allocatable :: Hdiag(:), Hkl_save(:,:), Hkl_1d(:), Hkl_tmp(:,:), Hdiag_tmp(:)
integer :: na_new, nb_new, ind_new, ind_gs
double precision :: ctmp, coeff_new
double precision, allocatable :: epsil(:), epsil_energ(:), check_ov(:)
double precision, allocatable :: Uezfio(:,:,:), Dezfio(:,:), Vezfio(:,:,:)
integer :: ibeg_alpha, ibeg_beta, iend_alpha, iend_beta
integer :: n_toselect, na_max, nb_max
integer, allocatable :: numalpha_toselect(:), numbeta_toselect(:)
integer :: cantor_pairing_ij, cantor_pairing_new
integer, allocatable :: cantor_pairing(:), cantor_pairing_tmp(:)
double precision :: t_beg, t_end
integer(kind=8) :: W_tbeg, W_tend, W_tbeg_it, W_tend_it, W_ir
real(kind=8) :: W_tot_time, W_tot_time_it
integer :: nb_taches
!$OMP PARALLEL
nb_taches = OMP_GET_NUM_THREADS()
!$OMP END PARALLEL
call SYSTEM_CLOCK(COUNT=W_tbeg, COUNT_RATE=W_ir)
i_state = 1
det1(:,1) = psi_det_alpha_unique(:,1)
det2(:,1) = psi_det_alpha_unique(:,1)
det1(:,2) = psi_det_beta_unique(:,1)
det2(:,2) = psi_det_beta_unique(:,1)
call get_excitation_degree_spin(det1(1,1),det2(1,1),degree,N_int)
call get_excitation_degree(det1,det2,degree,N_int)
call i_H_j(det1, det2, N_int, h12)
! ---------------------------------------------------------------------------------------
! construct the initial CISD matrix
print *, ' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~'
print *, ' CISD matrix:', n_det_alpha_unique,'x',n_det_beta_unique
print *, ' N det :', N_det
print *, ' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~'
allocate( Aref(n_det_alpha_unique,n_det_beta_unique) )
Aref(:,:) = 0.d0
do k = 1, N_det
i = psi_bilinear_matrix_rows(k)
j = psi_bilinear_matrix_columns(k)
Aref(i,j) = psi_bilinear_matrix_values(k,i_state)
enddo
! ---------------------------------------------------------------------------------------
! ---------------------------------------------------------------------------------------
! perform a Full SVD
allocate( Uref(n_det_alpha_unique,n_det_alpha_unique) )
allocate( Dref(min(n_det_alpha_unique,n_det_beta_unique)) )
allocate( Vtref(n_det_beta_unique,n_det_beta_unique) )
call cpu_time(t_beg)
call svd_s(Aref, size(Aref,1), Uref, size(Uref,1), Dref, Vtref &
, size(Vtref,1), n_det_alpha_unique, n_det_beta_unique)
call cpu_time(t_end)
print *, " SVD is performed after (min)", (t_end-t_beg)/60.
deallocate( Aref , Dref )
allocate( Vref(n_det_beta_unique,n_det_beta_unique) )
do l = 1, n_det_beta_unique
do i = 1, n_det_beta_unique
Vref(i,l) = Vtref(l,i)
enddo
enddo
deallocate( Vtref )
ibeg_alpha = 1
iend_alpha = n_det_alpha_unique
na_max = iend_alpha - ibeg_alpha + 1
ibeg_beta = 1
iend_beta = n_det_beta_unique
nb_max = iend_beta - ibeg_beta + 1
n_toselect = na_max * nb_max
print *, ' na_max = ', na_max
print *, ' nb_max = ', nb_max
print *, ' n_toselect = ', n_toselect
allocate( numalpha_toselect(n_toselect) , numbeta_toselect(n_toselect) )
k = 0
do i = ibeg_alpha, iend_alpha
do j = ibeg_beta, iend_beta
k = k + 1
numalpha_toselect(k) = i
numbeta_toselect (k) = j
enddo
enddo
if( k.ne.n_toselect ) then
print *, " error in numbering"
stop
endif
allocate( Hdiag(n_toselect) )
! get < u_k v_l | H | u_k v_l > for all vectors
call const_Hdiag(na_max, nb_max, n_toselect, Uref, Vref, numalpha_toselect, numbeta_toselect, Hdiag)
open(UNIT=11, FILE="klHkl_v1.dat", ACTION="WRITE")
do i = 1, n_toselect
write(11, '(2(I5,2X), 5X, E15.7)') numalpha_toselect(i), numbeta_toselect(i), Hdiag(i)
enddo
close(11)
deallocate( Uref, Vref )
deallocate( numalpha_toselect, numbeta_toselect, Hdiag )
! ***************************************************************************************************
! save to ezfion
!allocate( Uezfio(n_det_alpha_unique,rank0,1), Dezfio(rank0,1), Vezfio(n_det_beta_unique,rank0,1) )
!do l = 1, rank0
! Dezfio(l,1) = coeff_psi(l)
! Uezfio(:,l,1) = U0(:,l)
! Vezfio(:,l,1) = V0(:,l)
!enddo
!call ezfio_set_spindeterminants_n_det(N_det)
!call ezfio_set_spindeterminants_n_states(N_states)
!call ezfio_set_spindeterminants_n_det_alpha(n_det_alpha_unique)
!call ezfio_set_spindeterminants_n_det_beta(n_det_beta_unique)
!call ezfio_set_spindeterminants_psi_coef_matrix_rows(psi_bilinear_matrix_rows)
!call ezfio_set_spindeterminants_psi_coef_matrix_columns(psi_bilinear_matrix_columns)
!call ezfio_set_spindeterminants_psi_coef_matrix_values(psi_bilinear_matrix_values)
!call ezfio_set_spindeterminants_n_svd_coefs(rank0)
!call ezfio_set_spindeterminants_psi_svd_alpha(Uezfio)
!call ezfio_set_spindeterminants_psi_svd_beta(Vezfio )
!call ezfio_set_spindeterminants_psi_svd_coefs(Dezfio)
!deallocate( Uezfio, Dezfio, Vezfio )
! ***************************************************************************************************
call SYSTEM_CLOCK(COUNT=W_tend, COUNT_RATE=W_ir)
W_tot_time = real(W_tend - W_tbeg, kind=8) / real(W_ir, kind=8)
print *, ' ___________________________________________________________________'
print *, ' '
print *, " Execution avec ", nb_taches, " threads"
print *, " total elapsed time (min) = ", W_tot_time/60.d0
print *, ' ___________________________________________________________________'
end
subroutine const_Hdiag(na_max, nb_max, n_toselect, Uref, Vref, numalpha_toselect, numbeta_toselect, Hdiag)
implicit none
integer, intent(in) :: n_toselect, na_max, nb_max
integer, intent(in) :: numalpha_toselect(n_toselect), numbeta_toselect(n_toselect)
double precision, intent(in) :: Uref(n_det_alpha_unique,n_det_alpha_unique)
double precision, intent(in) :: Vref(n_det_beta_unique ,n_det_beta_unique)
double precision, intent(out) :: Hdiag(n_toselect)
integer(bit_kind) :: det1(N_int,2)
integer(bit_kind) :: det2(N_int,2)
integer :: degree, na, nb
integer :: i, j, k, l, ii, jj, m, n
double precision :: h12, xtmp
double precision, allocatable :: Hmat_diag(:,:), Vt(:,:), bl1_tmp(:,:,:)
double precision, allocatable :: Ut(:,:), tmp0(:,:,:) , Hmat_diag_tmp(:,:)
double precision :: t1, t2, t3, t4
print *, ""
print *, " start const_Hdiag"
call wall_time(t1)
na = n_det_alpha_unique
nb = n_det_beta_unique
allocate(Hmat_diag(na_max,nb_max))
Hmat_diag = 0.d0
allocate( bl1_tmp(na,na,nb_max) )
bl1_tmp = 0.d0
allocate( Vt(nb_max,nb) )
do i = 1, nb
do n = 1, nb_max
Vt(n,i) = Vref(i,n)
enddo
enddo
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(i,j,k,l,n,h12,det1,det2,degree) &
!$OMP SHARED(na,nb,psi_det_alpha_unique,psi_det_beta_unique, &
!$OMP N_int,nb_max,Vt,bl1_tmp)
!$OMP DO
do l = 1, nb
det2(:,2) = psi_det_beta_unique(:,l)
do j = 1, nb
det1(:,2) = psi_det_beta_unique(:,j)
call get_excitation_degree_spin(det1(1,2),det2(1,2),degree,N_int)
if(degree .gt. 2) cycle
do k = 1, na
det2(:,1) = psi_det_alpha_unique(:,k)
do i = 1, na
det1(:,1) = psi_det_alpha_unique(:,i)
call get_excitation_degree(det1,det2,degree,N_int)
if(degree .gt. 2) cycle
call i_H_j(det1, det2, N_int, h12)
if( h12 .eq. 0.d0) cycle
!$OMP CRITICAL
do n = 1, nb_max
bl1_tmp(i,k,n) += h12 * Vt(n,j) * Vt(n,l)
enddo
!$OMP END CRITICAL
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
deallocate(Vt)
call wall_time(t2)
print *, " end bl1_tmp after (min) ", (t2-t1)/60.
allocate( Ut(na,na_max) )
Ut(1:na,1:na_max) = Uref(1:na,1:na_max)
allocate( tmp0(na,nb_max,na_max) )
call DGEMM('T', 'N', na*nb_max, na_max, na, 1.d0, &
bl1_tmp, size(bl1_tmp,1), Ut, size(Ut,1), &
0.d0, tmp0, size(tmp0,1)*size(tmp0,2) )
deallocate( bl1_tmp )
call wall_time(t3)
print *, " end DGEMM after (min) ", (t3-t2)/60.
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(k,m,n,Hmat_diag_tmp) &
!$OMP SHARED(na,na_max,nb_max,Ut,tmp0,Hmat_diag)
allocate( Hmat_diag_tmp(na_max,nb_max) )
Hmat_diag_tmp = 0.d0
!$OMP DO
do n = 1, nb_max
do m = 1, na_max
do k = 1, na
Hmat_diag_tmp(m,n) += tmp0(k,n,m) * Ut(k,m)
enddo
enddo
enddo
!$OMP END DO
!$OMP CRITICAL
do n = 1, nb_max
do m = 1, na_max
Hmat_diag(m,n) += Hmat_diag_tmp(m,n)
enddo
enddo
!$OMP END CRITICAL
deallocate( Hmat_diag_tmp )
!$OMP END PARALLEL
deallocate( tmp0 , Ut )
Hdiag(:) = 0.d0
do m = 1, n_toselect
ii = numalpha_toselect(m)
jj = numbeta_toselect (m)
Hdiag(m) = Hmat_diag(ii,jj)
enddo
deallocate( Hmat_diag )
call wall_time(t4)
print *, " end const_Hdiag after (min) ", (t4-t3)/60.
print *, ""
print *, " total time (min) ", (t4-t1)/60.
print *, ""
return
end subroutine const_Hdiag

View File

@ -0,0 +1,365 @@
program kl_H_kl_v2
implicit none
BEGIN_DOC
! perturbative approach to build psi_postsvd
END_DOC
read_wf = .True.
TOUCH read_wf
PROVIDE N_int
call run()
end
subroutine run
USE OMP_LIB
implicit none
integer(bit_kind) :: det1(N_int,2), det2(N_int,2)
integer :: degree, i_state
integer :: i, j, k, l, m, n
double precision :: x, y, h12
double precision, allocatable :: Uref(:,:), Dref(:), Vtref(:,:), Aref(:,:), Vref(:,:)
integer :: rank_max
double precision :: E0, overlop, Ept2
double precision, allocatable :: H0(:,:)
double precision, allocatable :: eigvec0(:,:), eigval0(:), coeff_psi(:), coeff_tmp(:)
integer :: ii, ia, ib
double precision, allocatable :: Hdiag(:), Hkl_save(:,:), Hkl_1d(:), Hkl_tmp(:,:), Hdiag_tmp(:)
integer :: na_new, nb_new, ind_new, ind_gs
double precision :: ctmp, coeff_new
double precision, allocatable :: epsil(:), epsil_energ(:), check_ov(:)
double precision, allocatable :: Uezfio(:,:,:), Dezfio(:,:), Vezfio(:,:,:)
integer :: ibeg_alpha, ibeg_beta, iend_alpha, iend_beta
integer :: n_toselect, na_max, nb_max
integer, allocatable :: numalpha_toselect(:), numbeta_toselect(:)
integer :: cantor_pairing_ij, cantor_pairing_new
integer, allocatable :: cantor_pairing(:), cantor_pairing_tmp(:)
double precision :: t_beg, t_end
integer(kind=8) :: W_tbeg, W_tend, W_tbeg_it, W_tend_it, W_ir
real(kind=8) :: W_tot_time, W_tot_time_it
integer :: nb_taches
!$OMP PARALLEL
nb_taches = OMP_GET_NUM_THREADS()
!$OMP END PARALLEL
call SYSTEM_CLOCK(COUNT=W_tbeg, COUNT_RATE=W_ir)
i_state = 1
det1(:,1) = psi_det_alpha_unique(:,1)
det2(:,1) = psi_det_alpha_unique(:,1)
det1(:,2) = psi_det_beta_unique(:,1)
det2(:,2) = psi_det_beta_unique(:,1)
call get_excitation_degree_spin(det1(1,1),det2(1,1),degree,N_int)
call get_excitation_degree(det1,det2,degree,N_int)
call i_H_j(det1, det2, N_int, h12)
! ---------------------------------------------------------------------------------------
! construct the initial CISD matrix
print *, ' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~'
print *, ' CISD matrix:', n_det_alpha_unique,'x',n_det_beta_unique
print *, ' N det :', N_det
print *, ' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~'
allocate( Aref(n_det_alpha_unique,n_det_beta_unique) )
Aref(:,:) = 0.d0
do k = 1, N_det
i = psi_bilinear_matrix_rows(k)
j = psi_bilinear_matrix_columns(k)
Aref(i,j) = psi_bilinear_matrix_values(k,i_state)
enddo
! ---------------------------------------------------------------------------------------
! ---------------------------------------------------------------------------------------
! perform a Full SVD
allocate( Uref(n_det_alpha_unique,n_det_alpha_unique) )
allocate( Dref(min(n_det_alpha_unique,n_det_beta_unique)) )
allocate( Vtref(n_det_beta_unique,n_det_beta_unique) )
call cpu_time(t_beg)
call svd_s(Aref, size(Aref,1), Uref, size(Uref,1), Dref, Vtref &
, size(Vtref,1), n_det_alpha_unique, n_det_beta_unique)
call cpu_time(t_end)
print *, " SVD is performed after (min)", (t_end-t_beg)/60.
deallocate( Aref , Dref )
allocate( Vref(n_det_beta_unique,n_det_beta_unique) )
do l = 1, n_det_beta_unique
do i = 1, n_det_beta_unique
Vref(i,l) = Vtref(l,i)
enddo
enddo
deallocate( Vtref )
ibeg_alpha = 1
iend_alpha = n_det_alpha_unique
na_max = iend_alpha - ibeg_alpha + 1
ibeg_beta = 1
iend_beta = n_det_beta_unique
nb_max = iend_beta - ibeg_beta + 1
n_toselect = na_max * nb_max
print *, ' na_max = ', na_max
print *, ' nb_max = ', nb_max
print *, ' n_toselect = ', n_toselect
allocate( numalpha_toselect(n_toselect) , numbeta_toselect(n_toselect) )
k = 0
do i = ibeg_alpha, iend_alpha
do j = ibeg_beta, iend_beta
k = k + 1
numalpha_toselect(k) = i
numbeta_toselect (k) = j
enddo
enddo
if( k.ne.n_toselect ) then
print *, " error in numbering"
stop
endif
allocate( Hdiag(n_toselect) )
! get < u_k v_l | H | u_k v_l > for all vectors
call const_Hdiag(na_max, nb_max, n_toselect, Uref, Vref, numalpha_toselect, numbeta_toselect, Hdiag)
open( UNIT=11, FILE="klHkl_v2.dat", ACTION="WRITE")
do i = 1, n_toselect
write(11, '(2(I5,2X), 5X, E15.7)') numalpha_toselect(i), numbeta_toselect(i), Hdiag(i)
enddo
close(11)
deallocate( Uref, Vref )
deallocate( numalpha_toselect, numbeta_toselect, Hdiag )
! ***************************************************************************************************
! save to ezfion
!allocate( Uezfio(n_det_alpha_unique,rank0,1), Dezfio(rank0,1), Vezfio(n_det_beta_unique,rank0,1) )
!do l = 1, rank0
! Dezfio(l,1) = coeff_psi(l)
! Uezfio(:,l,1) = U0(:,l)
! Vezfio(:,l,1) = V0(:,l)
!enddo
!call ezfio_set_spindeterminants_n_det(N_det)
!call ezfio_set_spindeterminants_n_states(N_states)
!call ezfio_set_spindeterminants_n_det_alpha(n_det_alpha_unique)
!call ezfio_set_spindeterminants_n_det_beta(n_det_beta_unique)
!call ezfio_set_spindeterminants_psi_coef_matrix_rows(psi_bilinear_matrix_rows)
!call ezfio_set_spindeterminants_psi_coef_matrix_columns(psi_bilinear_matrix_columns)
!call ezfio_set_spindeterminants_psi_coef_matrix_values(psi_bilinear_matrix_values)
!call ezfio_set_spindeterminants_n_svd_coefs(rank0)
!call ezfio_set_spindeterminants_psi_svd_alpha(Uezfio)
!call ezfio_set_spindeterminants_psi_svd_beta(Vezfio )
!call ezfio_set_spindeterminants_psi_svd_coefs(Dezfio)
!deallocate( Uezfio, Dezfio, Vezfio )
! ***************************************************************************************************
call SYSTEM_CLOCK(COUNT=W_tend, COUNT_RATE=W_ir)
W_tot_time = real(W_tend - W_tbeg, kind=8) / real(W_ir, kind=8)
print *, ' ___________________________________________________________________'
print *, ' '
print *, " Execution avec ", nb_taches, " threads"
print *, " total elapsed time (min) = ", W_tot_time/60.d0
print *, ' ___________________________________________________________________'
end
subroutine const_Hdiag(na_max, nb_max, n_toselect, Uref, Vref, numalpha_toselect, numbeta_toselect, Hdiag)
implicit none
integer, intent(in) :: n_toselect, na_max, nb_max
integer, intent(in) :: numalpha_toselect(n_toselect), numbeta_toselect(n_toselect)
double precision, intent(in) :: Uref(n_det_alpha_unique,n_det_alpha_unique)
double precision, intent(in) :: Vref(n_det_beta_unique ,n_det_beta_unique)
double precision, intent(out) :: Hdiag(n_toselect)
integer(bit_kind) :: det1(N_int,2)
integer(bit_kind) :: det2(N_int,2)
integer :: degree, na, nb
integer :: i, j, k, l, ii, jj, m, n
double precision :: h12, xtmp
double precision, allocatable :: Hmat_diag(:,:), Vt(:,:), bl1_tmp(:,:,:)
double precision, allocatable :: Ut(:,:), tmp0(:,:,:) , Hmat_diag_tmp(:,:)
double precision :: t1, t2, t3, t4
print *, ""
print *, " start const_Hdiag"
call wall_time(t1)
na = n_det_alpha_unique
nb = n_det_beta_unique
allocate(Hmat_diag(na_max,nb_max))
Hmat_diag = 0.d0
allocate( bl1_tmp(na,na,nb_max) )
bl1_tmp = 0.d0
allocate( Vt(nb_max,nb) )
do i = 1, nb
do n = 1, nb_max
Vt(n,i) = Vref(i,n)
enddo
enddo
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(i,j,k,l,n,h12,det1,det2,degree,tmp0) &
!$OMP SHARED(na,nb,psi_det_alpha_unique,psi_det_beta_unique, &
!$OMP N_int,nb_max,Vt,bl1_tmp)
allocate( tmp0(na,na,nb_max) )
tmp0 = 0.d0
!$OMP DO
do l = 1, nb
det2(:,2) = psi_det_beta_unique(:,l)
do j = 1, nb
det1(:,2) = psi_det_beta_unique(:,j)
call get_excitation_degree_spin(det1(1,2),det2(1,2),degree,N_int)
if(degree .gt. 2) cycle
do k = 1, na
det2(:,1) = psi_det_alpha_unique(:,k)
do i = 1, na
det1(:,1) = psi_det_alpha_unique(:,i)
call get_excitation_degree(det1,det2,degree,N_int)
if(degree .gt. 2) cycle
call i_H_j(det1, det2, N_int, h12)
if( h12 .eq. 0.d0) cycle
do n = 1, nb_max
tmp0(i,k,n) += h12 * Vt(n,j) * Vt(n,l)
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP CRITICAL
do n = 1, nb_max
do k = 1, na
do i = 1, na
bl1_tmp(i,k,n) += tmp0(i,k,n)
enddo
enddo
enddo
!$OMP END CRITICAL
deallocate( tmp0 )
!$OMP END PARALLEL
deallocate(Vt)
call wall_time(t2)
print *, " end bl1_tmp after (min) ", (t2-t1)/60.
allocate( Ut(na,na_max) )
Ut(1:na,1:na_max) = Uref(1:na,1:na_max)
allocate( tmp0(na,nb_max,na_max) )
call DGEMM('T', 'N', na*nb_max, na_max, na, 1.d0, &
bl1_tmp, size(bl1_tmp,1), Ut, size(Ut,1), &
0.d0, tmp0, size(tmp0,1)*size(tmp0,2) )
deallocate( bl1_tmp )
call wall_time(t3)
print *, " end DGEMM after (min) ", (t3-t2)/60.
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(k,m,n,Hmat_diag_tmp) &
!$OMP SHARED(na,na_max,nb_max,Ut,tmp0,Hmat_diag)
allocate( Hmat_diag_tmp(na_max,nb_max) )
Hmat_diag_tmp = 0.d0
!$OMP DO
do n = 1, nb_max
do m = 1, na_max
do k = 1, na
Hmat_diag_tmp(m,n) += tmp0(k,n,m) * Ut(k,m)
enddo
enddo
enddo
!$OMP END DO
!$OMP CRITICAL
do n = 1, nb_max
do m = 1, na_max
Hmat_diag(m,n) += Hmat_diag_tmp(m,n)
enddo
enddo
!$OMP END CRITICAL
deallocate( Hmat_diag_tmp )
!$OMP END PARALLEL
deallocate( tmp0 , Ut )
Hdiag(:) = 0.d0
do m = 1, n_toselect
ii = numalpha_toselect(m)
jj = numbeta_toselect (m)
Hdiag(m) = Hmat_diag(ii,jj)
enddo
deallocate( Hmat_diag )
call wall_time(t4)
print *, " end const_Hdiag after (min) ", (t4-t3)/60.
print *, ""
print *, " total time (min) ", (t4-t1)/60.
print *, ""
return
end subroutine const_Hdiag

View File

@ -0,0 +1,197 @@
subroutine svd_s(A, LDA, U, LDU, D, Vt, LDVt, m, n)
implicit none
BEGIN_DOC
! !!!
! DGESVD computes the singular value decomposition (SVD) of a real
! M-by-N matrix A, optionally computing the left and/or right singular
! vectors. The SVD is written:
! A = U * SIGMA * transpose(V)
! where SIGMA is an M-by-N matrix which is zero except for its
! min(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and
! V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA
! are the singular values of A; they are real and non-negative, and
! are returned in descending order. The first min(m,n) columns of
! U and V are the left and right singular vectors of A.
!
! Note that the routine returns V**T, not V.
! !!!
END_DOC
integer, intent(in) :: LDA, LDU, LDVt, m, n
double precision, intent(in) :: A(LDA,n)
double precision, intent(out) :: U(LDU,m), Vt(LDVt,n), D(min(m,n))
double precision,allocatable :: work(:), A_tmp(:,:)
integer :: info, lwork, i, j, k
allocate (A_tmp(LDA,n))
do k=1,n
do i=1,m
!A_tmp(i,k) = A(i,k) + 1d-16
A_tmp(i,k) = A(i,k)
enddo
enddo
! Find optimal size for temp arrays
allocate(work(1))
lwork = -1
! 'A': all M columns of U are returned in array U
! 'A': all N rows of V**T are returned in the array VT
call dgesvd('A', 'A', m, n, A_tmp, LDA, D, U, LDU, Vt, LDVt, work, lwork, info)
! /!\ int(WORK(1)) becomes negative when WORK(1) > 2147483648
if( info.ne.0 ) then
print *, ' problem in first call DGESVD !!!!'
print *, ' info = ', info
print *, ' < 0 : if INFO = -i, the i-th argument had an illegal value.'
print *, ' > 0 : if DBDSQR did not converge, INFO specifies how many '
print *, ' superdiagonals of an intermediate bidiagonal form B '
print *, ' did not converge to zero. See the description of WORK'
print *, ' above for details. '
stop
endif
lwork = max(int(work(1)), 5*MIN(M,N))
deallocate(work)
allocate(work(lwork))
call dgesvd('A', 'A', m, n, A_tmp, LDA, D, U, LDU, Vt, LDVt, work, lwork, info)
if( info.ne.0 ) then
print *, ' problem in second call DGESVD !!!!'
print *, ' info = ', info
print *, ' < 0 : if INFO = -i, the i-th argument had an illegal value.'
print *, ' > 0 : if DBDSQR did not converge, INFO specifies how many '
print *, ' superdiagonals of an intermediate bidiagonal form B '
print *, ' did not converge to zero. See the description of WORK'
print *, ' above for details. '
stop
endif
deallocate(A_tmp,work)
!do j=1, m
! do i=1, LDU
! if (dabs(U(i,j)) < 1.d-14) U(i,j) = 0.d0
! enddo
!enddo
!do j = 1, n
! do i = 1, LDVt
! if (dabs(Vt(i,j)) < 1.d-14) Vt(i,j) = 0.d0
! enddo
!enddo
end
subroutine svd_s2(A, LDA, U, LDU, D, Vt, LDVt, m, n)
implicit none
integer, intent(in) :: LDA, LDU, LDVt, m, n
double precision, intent(in) :: A(LDA,n)
double precision, intent(out) :: U(LDU,min(m,n)), Vt(LDVt,n), D(min(m,n))
double precision,allocatable :: work(:), A_tmp(:,:)
integer :: info, lwork, i, j, k
allocate (A_tmp(LDA,n))
do k=1,n
do i=1,m
A_tmp(i,k) = A(i,k)
enddo
enddo
! Find optimal size for temp arrays
allocate(work(1))
lwork = -1
! 'A': all M columns of U are returned in array U
! 'A': all N rows of V**T are returned in the array VT
call dgesvd('A', 'S', m, n, A_tmp, LDA, D, U, LDU, Vt, LDVt, work, lwork, info)
! /!\ int(WORK(1)) becomes negative when WORK(1) > 2147483648
if( info.ne.0 ) then
print *, ' problem in first call DGESVD !!!!'
stop
endif
lwork = max(int(work(1)), 5*MIN(M,N))
deallocate(work)
allocate(work(lwork))
call dgesvd('A', 'S', m, n, A_tmp, LDA, D, U, LDU, Vt, LDVt, work, lwork, info)
if( info.ne.0 ) then
print *, ' problem in second call DGESVD !!!!'
stop
endif
deallocate(A_tmp,work)
do j=1, min(m,n)
do i=1, m
if (dabs(U(i,j)) < 1.d-14) U(i,j) = 0.d0
enddo
enddo
do j = 1, n
do i = 1, LDVt
if (dabs(Vt(i,j)) < 1.d-14) Vt(i,j) = 0.d0
enddo
enddo
end
subroutine my_ortho_qr(A,LDA,m,n)
implicit none
BEGIN_DOC
! Orthogonalization using Q.R factorization
!
! A : matrix to orthogonalize
!
! LDA : leftmost dimension of A
!
! m : Number of rows of A
!
! n : Number of columns of A
!
END_DOC
integer, intent(in) :: m, n, LDA
double precision, intent(inout) :: A(LDA,n)
integer :: LWORK, INFO, nTAU, ii, jj
double precision, allocatable :: TAU(:), WORK(:)
double precision :: Adorgqr(LDA,n)
allocate (TAU(min(m,n)), WORK(1))
LWORK=-1
call dgeqrf( m, n, A, LDA, TAU, WORK, LWORK, INFO )
! /!\ int(WORK(1)) becomes negative when WORK(1) > 2147483648
LWORK=max(n,int(WORK(1)))
deallocate(WORK)
allocate(WORK(LWORK))
call dgeqrf(m, n, A, LDA, TAU, WORK, LWORK, INFO )
if(INFO.ne.0 ) then
print*, 'problem in DGEQRF'
endif
nTAU = size(TAU)
do jj = 1, n
do ii = 1, LDA
Adorgqr(ii,jj) = A(ii,jj)
enddo
enddo
LWORK=-1
call dorgqr(m, n, nTAU, Adorgqr, LDA, TAU, WORK, LWORK, INFO)
! /!\ int(WORK(1)) becomes negative when WORK(1) > 2147483648
LWORK=max(n,int(WORK(1)))
deallocate(WORK)
allocate(WORK(LWORK))
call dorgqr(m, n, nTAU, A, LDA, TAU, WORK, LWORK, INFO)
if(INFO.ne.0 ) then
print*, 'problem in DORGQR'
endif
deallocate(WORK,TAU)
end

143
devel/svdwf/perform_RSVD.py Normal file
View File

@ -0,0 +1,143 @@
#!/usr/bin/env python3
import os, sys
#QP_PATH=os.environ["QMCCHEM_PATH"]
#sys.path.insert(0,QMCCHEM_PATH+"/EZFIO/Python/")
import scipy
from scipy import linalg
from ezfio import ezfio
from datetime import datetime
import numpy as np
import time
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
def get_Aref():
Aref = np.zeros( (n_alpha, n_beta) )
for k in range(n_det):
i = A_rows[k] - 1
j = A_cols[k] - 1
Aref[i,j] = A_vals[0][k]
return( Aref )
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
def powit_RSVD(X, n_TSVD, nb_powit, nb_oversamp):
print(" --- begin powit_RSVD --- ")
print(" n_TSVD = {}".format(n_TSVD))
print(" pow it = {} & nb oversampling = {}".
format(nb_powit,nb_oversamp))
G = np.random.randn(X.shape[1], n_TSVD+nb_oversamp)
Q = QR_fact( np.dot(X,G) )
for i in range(nb_powit):
ti = time.time()
print(" start pow it = {}".format(i))
Q = QR_fact( np.dot(X.T,Q) )
Q = QR_fact( np.dot(X,Q) )
tf = time.time()
dt = (tf-ti)/60.
print(" end pow it = {} after {} min".format(i,dt))
Y = np.dot(Q.T,X)
U, S, VT = np.linalg.svd(Y, full_matrices=1)
U = np.dot(Q,U)
print( " --- end powit_RSVD --- \n")
return U, S, VT
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
def QR_fact(X):
Q, _ = linalg.qr(X, mode="full")
#Q,R = np.linalg.qr(X, mode="complete")
#D = np.diag( np.sign( np.diag(R) ) )
Qunique = Q #np.dot(Q,D)
#Runique = np.dot(D,R)
return(Qunique)
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
def TSVD_save_EZFIO():
U_toEZFIO = np.zeros( ( 1, U.shape[1], U.shape[0] ) )
V_toEZFIO = np.zeros( ( 1, V.shape[1], V.shape[0] ) )
U_toEZFIO[0,:,:] = U_TSVD.T
V_toEZFIO[0,:,:] = V_TSVD.T
ezfio.set_spindeterminants_n_svd_coefs( n_TSVD )
ezfio.set_spindeterminants_psi_svd_alpha( U_toEZFIO )
ezfio.set_spindeterminants_psi_svd_beta ( V_toEZFIO )
ezfio.set_spindeterminants_psi_svd_coefs( S_RSVD )
print(' SVD vectors & coeff are saved to EZFIO ')
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
if __name__ == "__main__":
print("")
print(" Today's date:", datetime.now() )
# EZFIO file
#EZFIO_file = "/home/aammar/qp2/src/svdwf/h2o_work/FN_test/cc_pCVDZ/h2o_dz"
EZFIO_file = "/home/aammar/qp2/src/svdwf/h2o_work/FN_test/cipsi_calcul/h2o_dz_fci"
ezfio.set_file(EZFIO_file)
print(" EZFIO = {}\n".format(EZFIO_file))
#read_wf = True
#ezfio.read_wf = True
#TOUCH read_wf
n_det = ezfio.get_spindeterminants_n_det()
print(' n_det = {}'.format(n_det))
n_alpha = ezfio.get_spindeterminants_n_det_alpha()
n_beta = ezfio.get_spindeterminants_n_det_beta()
print(' matrix dimensions = {} x {} = {} \n'.format(n_alpha, n_beta, n_alpha*n_beta))
A_rows = np.array(ezfio.get_spindeterminants_psi_coef_matrix_rows())
A_cols = np.array(ezfio.get_spindeterminants_psi_coef_matrix_columns())
A_vals = np.array(ezfio.get_spindeterminants_psi_coef_matrix_values())
Aref = get_Aref()
A_norm = np.linalg.norm(Aref, ord='fro')
npow = 15
nb_oversamp = 10
n_TSVD = 100 #min(n_alpha,n_beta)
t_beg = time.time()
U, S_RSVD, Vt = powit_RSVD(Aref, n_TSVD, npow, nb_oversamp)
print(' powit_RSVD time = {}\n'.format((time.time()-t_beg)/60.))
S_mat = np.zeros((n_alpha,n_beta))
for i in range(n_TSVD):
S_mat[i,i] = S_RSVD[i]
err_SVD = 100. * np.linalg.norm( Aref - np.dot(U,np.dot(S_mat,Vt)), ord="fro") / A_norm
print(' powit_RSVD error (%) = {} \n'.format(err_SVD))
#______________________________________________________________________________________________________________________

View File

@ -0,0 +1,527 @@
program psiSVD_naiv1by1_v1
implicit none
BEGIN_DOC
! perturbative approach to build psi_postsvd
END_DOC
read_wf = .True.
TOUCH read_wf
PROVIDE N_int
call run()
end
subroutine run
USE OMP_LIB
implicit none
integer(bit_kind) :: det1(N_int,2), det2(N_int,2)
integer :: degree, i_state
integer :: i, j, k, l, m, n
double precision :: x, y, h12
double precision, allocatable :: Uref(:,:), Dref(:), Vtref(:,:), Aref(:,:), Vref(:,:)
integer :: rank_max
double precision :: E0, overlop, Ept2, Em, norm
double precision, allocatable :: H0(:,:)
double precision, allocatable :: eigvec0(:,:), eigval0(:), coeff_psi(:), coeff_tmp(:)
integer :: ii, jj, ia, ib, ja, jb
double precision, allocatable :: Hdiag(:), H0_1d(:), H0_tmp(:,:)
integer :: na_new, nb_new, ind_new, ind_gs
double precision :: ctmp, coeff_new
double precision, allocatable :: epsil(:), epsil_energ(:), check_ov(:)
double precision, allocatable :: Uezfio(:,:,:), Dezfio(:,:), Vezfio(:,:,:)
integer :: n_selected, n_toselect, n_tmp, na_max, nb_max
integer, allocatable :: numalpha_selected(:), numbeta_selected(:)
integer, allocatable :: numalpha_tmp(:), numbeta_tmp(:)
double precision :: t_beg, t_end
integer(kind=8) :: W_tbeg, W_tend, W_tbeg_it, W_tend_it, W_ir
real(kind=8) :: W_tot_time, W_tot_time_it
integer :: nb_taches
!$OMP PARALLEL
nb_taches = OMP_GET_NUM_THREADS()
!$OMP END PARALLEL
call SYSTEM_CLOCK(COUNT=W_tbeg, COUNT_RATE=W_ir)
i_state = 1
det1(:,1) = psi_det_alpha_unique(:,1)
det2(:,1) = psi_det_alpha_unique(:,1)
det1(:,2) = psi_det_beta_unique(:,1)
det2(:,2) = psi_det_beta_unique(:,1)
call get_excitation_degree_spin(det1(1,1),det2(1,1),degree,N_int)
call get_excitation_degree(det1,det2,degree,N_int)
call i_H_j(det1, det2, N_int, h12)
! ---------------------------------------------------------------------------------------
! construct the initial CISD matrix
print *, ' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~'
print *, ' CISD matrix:', n_det_alpha_unique,'x',n_det_beta_unique
print *, ' N det :', N_det
print *, ' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~'
allocate( Aref(n_det_alpha_unique,n_det_beta_unique) )
Aref(:,:) = 0.d0
do k = 1, N_det
i = psi_bilinear_matrix_rows(k)
j = psi_bilinear_matrix_columns(k)
Aref(i,j) = psi_bilinear_matrix_values(k,i_state)
enddo
! ---------------------------------------------------------------------------------------
! ---------------------------------------------------------------------------------------
! perform a Full SVD
allocate( Uref(n_det_alpha_unique,n_det_alpha_unique) )
allocate( Dref(min(n_det_alpha_unique,n_det_beta_unique)) )
allocate( Vtref(n_det_beta_unique,n_det_beta_unique) )
call cpu_time(t_beg)
call svd_s(Aref, size(Aref,1), Uref, size(Uref,1), Dref, Vtref &
, size(Vtref,1), n_det_alpha_unique, n_det_beta_unique)
call cpu_time(t_end)
print *, " SVD is performed after (min)", (t_end-t_beg)/60.
allocate( Vref(n_det_beta_unique,n_det_beta_unique) )
do l = 1, n_det_beta_unique
do i = 1, n_det_beta_unique
Vref(i,l) = Vtref(l,i)
enddo
enddo
deallocate( Vtref )
deallocate( Aref )
! ---------------------------------------------------------------------------------------
! *** PARAMETERS *** !
na_max = n_det_alpha_unique
nb_max = n_det_beta_unique
! *** ***** *** !
print *, ' na_max = ', na_max
print *, ' nb_max = ', nb_max
! ---------------------------------------------------------------------------------------
! initial wavefunction: psi_0
n_selected = 1
allocate( numalpha_selected(n_selected) , numbeta_selected(n_selected) )
numalpha_selected(1) = 1
numbeta_selected (1) = 1
! ---------------------------------------------------------------------------------------
! ---------------------------------------------------------------------------------------
! construnc the initial basis to select phi_1 from the FSVD
n_toselect = min(na_max,nb_max) - n_selected
print *, ' toselect = ', n_toselect
print *, ' to trun = ', n_det_alpha_unique*n_det_beta_unique - na_max*nb_max
! ---------------------------------------------------------------------------------------
! ---------------------------------------------------------------------------------------
! read < u_k v_l | H | u_k v_l > for all vectors
allocate( Hdiag(n_toselect) , H0(n_selected,n_selected) )
n_tmp = n_det_alpha_unique * n_det_beta_unique - 1
open( unit=11, FILE="klHkl_v1.dat", ACTION="READ")
!open( unit=11, FILE="klHkl_v2.dat", ACTION="READ")
read(11,*) i, i, E0
H0(1,1) = E0
do i = 1, n_tmp
read(11,*) ia, ib, ctmp
if( ia .eq. ib ) then
ii = ia - 1
Hdiag(ii) = ctmp
!print *, ia, ib , Hdiag(ia-1)
endif
enddo
close(11)
! ---------------------------------------------------------------------------------------
E0 = E0 + nuclear_repulsion
Em = E0
print*, ' space dimen = ', n_selected
print*, ' ground state Em = ', Em
print*, ' ground state E0 = ', E0
na_new = 1
nb_new = 1
ind_new = 0
!________________________________________________________________________________________________________
!
! increase the size of psi0 iteratively
!________________________________________________________________________________________________________
! *** PARAMETERS *** !
rank_max = min( na_max , nb_max ) - 1
! *** ***** *** !
if( rank_max .gt. n_toselect ) then
print *, " rank_max should be less then n_toselect"
stop
endif
do while( n_selected .lt. rank_max )
call SYSTEM_CLOCK(COUNT=W_tbeg_it, COUNT_RATE=W_ir)
print*, ' '
print*, ' new iteration '
if( n_toselect .lt. 1 ) then
print*, ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ '
print*, ' no more vectors to construct a new basis '
print*, ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ '
stop
else
! ---------------------------------------------------------------------------------------
! select a new vector
na_new += 1
nb_new += 1
ind_new += 1
print *, ' best vector', na_new, nb_new
! < psi_old | H | delta_psi >
allocate( H0_1d(n_selected) )
call const_H0_1d(na_new, nb_new, na_max, nb_max, n_selected, Uref, Vref, numalpha_selected, numbeta_selected, H0_1d)
! ---------------------------------------------------------------------------------------
! ---------------------------------------------------------------------------------------
! new psi
allocate( numalpha_tmp(n_selected), numbeta_tmp(n_selected) )
allocate( H0_tmp(n_selected,n_selected) )
numalpha_tmp(:) = numalpha_selected(:)
numbeta_tmp (:) = numbeta_selected (:)
H0_tmp (:,:) = H0 (:,:)
deallocate( numalpha_selected, numbeta_selected, H0 )
n_tmp = n_selected
n_selected = n_selected + 1
allocate( numalpha_selected(n_selected) , numbeta_selected(n_selected) )
allocate( H0(n_selected,n_selected) )
H0(:,:) = 0.d0
do l = 1, n_tmp
numalpha_selected(l) = numalpha_tmp(l)
numbeta_selected (l) = numbeta_tmp (l)
enddo
H0(1:n_tmp,1:n_tmp) = H0_tmp(1:n_tmp,1:n_tmp)
deallocate( numalpha_tmp, numbeta_tmp, H0_tmp )
numalpha_selected(n_selected) = na_new
numbeta_selected (n_selected) = nb_new
H0(1:n_tmp,n_selected) = H0_1d(1:n_tmp)
H0(n_selected,1:n_tmp) = H0_1d(1:n_tmp)
deallocate( H0_1d )
H0(n_selected,n_selected) = Hdiag(ind_new)
! ---------------------------------------------------------------------------------------
! ---------------------------------------------------------------------------------------
! energy without diag
! < psi | psi >
norm = 0.d0
do j = 1, n_selected
ja = numalpha_selected(j)
jb = numbeta_selected (j)
if(ja.eq.jb) norm = norm + Dref(ja)*Dref(jb)
enddo
! < psi | H | psi >
Em = 0.d0
do j = 1, n_selected
ja = numalpha_selected(j)
jb = numbeta_selected (j)
if(ja.eq.jb) then
do i = 1, n_selected
ia = numalpha_selected(i)
ib = numbeta_selected (i)
if(ia.eq.ib) Em = Em + Dref(ja) * H0(j,i) * Dref(ia)
enddo
endif
enddo
! Em = < psi | H | psi > / < psi | psi >
Em = Em / norm + nuclear_repulsion
! ---------------------------------------------------------------------------------------
! ---------------------------------------------------------------------------------------
! energy with diag
allocate( eigvec0(n_selected,n_selected), eigval0(n_selected) )
call lapack_diag(eigval0, eigvec0, H0, n_selected, n_selected)
! get the postsvd ground state
allocate( check_ov(n_selected) )
do l = 1, n_selected
overlop = 0.d0
do i = 1, n_selected
ia = numalpha_selected(i)
ib = numbeta_selected (i)
if( ia .eq. ib ) overlop = overlop + eigvec0(i,l) * Dref(ia)
enddo
check_ov(l) = dabs(overlop)
enddo
ind_gs = MAXLOC( check_ov, DIM=1 )
overlop = check_ov(ind_gs)
E0 = eigval0(ind_gs)+nuclear_repulsion
coeff_psi(:) = eigvec0(:,ind_gs)
deallocate( check_ov, eigval0, eigvec0 )
! ---------------------------------------------------------------------------------------
print*, ' space dimen = ', n_selected
print*, ' E bef diag = ', Em
print*, ' E aft diag = ', E0
print*, ' overlop = ', overlop
print*, ' index = ', ind_gs
write(211, '( 3(I5,3X), 4(F15.8,3X) )') n_selected, na_new, nb_new, Em, E0, overlop
! ---------------------------------------------------------------------------------------
! remove selected pair | na_new nb_new >
n_toselect = n_toselect - 1
print*, ' rank to select = ', n_toselect
! ---------------------------------------------------------------------------------------
endif
call SYSTEM_CLOCK(COUNT=W_tend_it, COUNT_RATE=W_ir)
W_tot_time_it = real(W_tend_it-W_tbeg_it, kind=8) / real(W_ir, kind=8)
print*, " "
print*, " elapsed time (min) = ", W_tot_time_it/60.d0
end do
!________________________________________________________________________________________________________
!________________________________________________________________________________________________________
! ***************************************************************************************************
! save to ezfion
!allocate( Uezfio(n_det_alpha_unique,rank0,1), Dezfio(rank0,1), Vezfio(n_det_beta_unique,rank0,1) )
!do l = 1, rank0
! Dezfio(l,1) = coeff_psi(l)
! Uezfio(:,l,1) = U0(:,l)
! Vezfio(:,l,1) = V0(:,l)
!enddo
!call ezfio_set_spindeterminants_n_det(N_det)
!call ezfio_set_spindeterminants_n_states(N_states)
!call ezfio_set_spindeterminants_n_det_alpha(n_det_alpha_unique)
!call ezfio_set_spindeterminants_n_det_beta(n_det_beta_unique)
!call ezfio_set_spindeterminants_psi_coef_matrix_rows(psi_bilinear_matrix_rows)
!call ezfio_set_spindeterminants_psi_coef_matrix_columns(psi_bilinear_matrix_columns)
!call ezfio_set_spindeterminants_psi_coef_matrix_values(psi_bilinear_matrix_values)
!call ezfio_set_spindeterminants_n_svd_coefs(rank0)
!call ezfio_set_spindeterminants_psi_svd_alpha(Uezfio)
!call ezfio_set_spindeterminants_psi_svd_beta(Vezfio )
!call ezfio_set_spindeterminants_psi_svd_coefs(Dezfio)
!deallocate( Uezfio, Dezfio, Vezfio )
! ***************************************************************************************************
call SYSTEM_CLOCK(COUNT=W_tend, COUNT_RATE=W_ir)
W_tot_time = real(W_tend - W_tbeg, kind=8) / real(W_ir, kind=8)
print *, ' ___________________________________________________________________'
print *, ' '
print *, " Execution avec ", nb_taches, " threads"
print *, " total elapsed time (min) = ", W_tot_time/60.d0
print *, ' ___________________________________________________________________'
deallocate( Dref )
deallocate( Uref, Vref )
deallocate( coeff_psi )
deallocate( numalpha_selected, numbeta_selected )
deallocate( H0, Hdiag )
end
subroutine const_H0_1d(na_new, nb_new, na_max, nb_max, n_selected, Uref, Vref, numalpha_selected, numbeta_selected, H0_1d)
implicit none
integer, intent(in) :: na_new, nb_new, na_max, nb_max, n_selected
integer, intent(in) :: numalpha_selected(n_selected), numbeta_selected(n_selected)
double precision, intent(in) :: Uref(n_det_alpha_unique,n_det_alpha_unique)
double precision, intent(in) :: Vref(n_det_beta_unique ,n_det_beta_unique)
double precision, intent(out) :: H0_1d(n_selected)
integer(bit_kind) :: det1(N_int,2)
integer(bit_kind) :: det2(N_int,2)
integer :: degree, na, nb
integer :: i, j, k, l, ii, jj, m
double precision :: h12
double precision, allocatable :: Hmat_kl(:,:), tmp1(:,:), tmp2(:,:)
double precision, allocatable :: U1d(:), V1d(:)
double precision, allocatable :: Utmp(:,:), Vtmp(:,:)
double precision :: ti, tf
print *, ""
print *, " start const_H0_1d"
call wall_time(ti)
na = n_det_alpha_unique
nb = n_det_beta_unique
allocate( U1d(na) , V1d(nb) )
U1d(1:na) = Uref(1:na,na_new)
V1d(1:nb) = Vref(1:nb,nb_new)
allocate( tmp1(na,nb) )
tmp1 = 0.d0
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(i,j,k,l,h12,det1,det2,degree,tmp2) &
!$OMP SHARED(na,nb,psi_det_alpha_unique,psi_det_beta_unique, &
!$OMP N_int,U1d,V1d,tmp1)
allocate( tmp2(na,nb) )
tmp2 = 0.d0
!$OMP DO
do l = 1, nb
det2(:,2) = psi_det_beta_unique(:,l)
do j = 1, nb
det1(:,2) = psi_det_beta_unique(:,j)
call get_excitation_degree_spin(det1(1,2),det2(1,2),degree,N_int)
if(degree .gt. 2) cycle
do k = 1, na
det2(:,1) = psi_det_alpha_unique(:,k)
do i = 1, na
det1(:,1) = psi_det_alpha_unique(:,i)
call get_excitation_degree(det1,det2,degree,N_int)
if(degree .gt. 2) cycle
call i_H_j(det1, det2, N_int, h12)
if( h12 .eq. 0.d0) cycle
tmp2(i,j) += h12 * U1d(k) * V1d(l)
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP CRITICAL
do j = 1, nb
do i = 1, na
tmp1(i,j) += tmp2(i,j)
enddo
enddo
!$OMP END CRITICAL
deallocate( tmp2 )
!$OMP END PARALLEL
deallocate( U1d , V1d )
! tmp2(j,m) = sum_i tmp1(i,j) x Uref(i,m)
allocate( Utmp(na,na_max) )
Utmp(1:na,1:na_max) = Uref(1:na,1:na_max)
allocate( tmp2(nb,na_max) )
call DGEMM('T', 'N', nb, na_max, na, 1.d0, &
tmp1, size(tmp1,1), Utmp, size(Utmp,1), &
0.d0, tmp2, size(tmp2,1) )
deallocate( tmp1 )
deallocate( Utmp )
! Hmat_kl(m,n) = sum_j tmp2(j,m) x Vref(j,n)
allocate( Vtmp(nb,nb_max) )
Vtmp(1:nb,1:nb_max) = Vref(1:nb,1:nb_max)
allocate( Hmat_kl(na_max,nb_max) )
call DGEMM('T', 'N', na_max, nb_max, nb, 1.d0, &
tmp2, size(tmp2,1), Vtmp, size(Vtmp,1), &
0.d0, Hmat_kl, size(Hmat_kl,1) )
deallocate( tmp2 )
deallocate( Vtmp )
do m = 1, n_selected
ii = numalpha_selected(m)
jj = numbeta_selected (m)
H0_1d(m) = Hmat_kl(ii,jj)
enddo
deallocate( Hmat_kl )
call wall_time(tf)
print *, " end const_H0_1d after (min) ", (tf-ti)/60.
print *, ""
return
end subroutine const_H0_1d

View File

@ -0,0 +1,358 @@
program psiSVD_naivBbyB_v0
implicit none
BEGIN_DOC
! perturbative approach to build psi_postsvd
END_DOC
read_wf = .True.
TOUCH read_wf
PROVIDE N_int
call run()
end
subroutine run
USE OMP_LIB
implicit none
integer(bit_kind) :: det1(N_int,2), det2(N_int,2)
integer :: degree, i_state
integer :: i, j, k, l, m, n
double precision :: x, y, h12
double precision, allocatable :: Uref(:,:), Dref(:), Vtref(:,:), Aref(:,:), Vref(:,:)
integer :: rank_max, n_TSVD, n_selected
double precision :: E0, overlop
double precision, allocatable :: H0(:,:)
double precision, allocatable :: eigvec0(:,:), eigval0(:)
integer, allocatable :: numalpha_selected(:), numbeta_selected(:)
integer :: ii
integer :: na_new, nb_new, ind_new, ind_gs
double precision, allocatable :: epsil(:), epsil_energ(:), check_ov(:)
double precision, allocatable :: Uezfio(:,:,:), Dezfio(:,:), Vezfio(:,:,:)
integer(kind=8) :: W_tbeg, W_tend, W_tbeg_it, W_tend_it, W_ir
real(kind=8) :: W_tot_time, W_tot_time_it
integer :: nb_taches
!$OMP PARALLEL
nb_taches = OMP_GET_NUM_THREADS()
!$OMP END PARALLEL
call SYSTEM_CLOCK(COUNT=W_tbeg, COUNT_RATE=W_ir)
i_state = 1
det1(:,1) = psi_det_alpha_unique(:,1)
det2(:,1) = psi_det_alpha_unique(:,1)
det1(:,2) = psi_det_beta_unique(:,1)
det2(:,2) = psi_det_beta_unique(:,1)
call get_excitation_degree_spin(det1(1,1),det2(1,1),degree,N_int)
call get_excitation_degree(det1,det2,degree,N_int)
call i_H_j(det1, det2, N_int, h12)
! ---------------------------------------------------------------------------------------
! construct the initial CISD matrix
print *, ' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~'
print *, ' CI matrix:', n_det_alpha_unique,'x',n_det_beta_unique
print *, ' N det :', N_det
print *, ' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~'
allocate( Aref(n_det_alpha_unique,n_det_beta_unique) )
Aref(:,:) = 0.d0
do k = 1, N_det
i = psi_bilinear_matrix_rows(k)
j = psi_bilinear_matrix_columns(k)
Aref(i,j) = psi_bilinear_matrix_values(k,i_state)
enddo
! ---------------------------------------------------------------------------------------
! ---------------------------------------------------------------------------------------
! perform a Full SVD
allocate( Uref(n_det_alpha_unique,n_det_alpha_unique) )
allocate( Dref(min(n_det_alpha_unique,n_det_beta_unique)) )
allocate( Vtref(n_det_beta_unique,n_det_beta_unique) )
call svd_s(Aref, size(Aref,1), Uref, size(Uref,1), Dref, Vtref &
, size(Vtref,1), n_det_alpha_unique, n_det_beta_unique)
allocate( Vref(n_det_beta_unique,n_det_beta_unique) )
do l = 1, n_det_beta_unique
do i = 1, n_det_beta_unique
Vref(i,l) = Vtref(l,i)
enddo
enddo
deallocate( Vtref )
deallocate( Aref )
! ---------------------------------------------------------------------------------------
! ---------------------------------------------------------------------------------------
! initial wavefunction: psi_0
n_TSVD = 1
n_selected = 1
allocate( numalpha_selected(n_selected) , numbeta_selected(n_selected) )
numalpha_selected(1) = 1
numbeta_selected (1) = 1
! get E0 = < psi_0 | H | psi_0 >
allocate( H0(n_selected,n_selected) )
call const_psiHpsi(n_TSVD, n_selected, Uref, Vref, numalpha_selected, numbeta_selected, H0)
E0 = H0(1,1) + nuclear_repulsion
print*, ' ground state E0 = ', E0
deallocate( H0 )
! ---------------------------------------------------------------------------------------
!________________________________________________________________________________________________________
!
! increase the size of psi0 iteratively
!________________________________________________________________________________________________________
rank_max = n_det_alpha_unique*n_det_beta_unique ! 15*15
do while( n_selected .lt. rank_max )
call SYSTEM_CLOCK(COUNT=W_tbeg_it, COUNT_RATE=W_ir)
print*, ' '
print*, ' new iteration '
deallocate( numalpha_selected, numbeta_selected )
n_TSVD = n_TSVD + 1
n_selected = n_TSVD * n_TSVD
allocate( numalpha_selected(n_selected) , numbeta_selected(n_selected) )
l = 0
do i = 1, n_TSVD
do j = 1, n_TSVD
l = l + 1
numalpha_selected(l) = i
numbeta_selected (l) = j
enddo
enddo
if( l.ne.n_selected) then
print *, "error in numbering"
stop
endif
! construct and diagonalise the hamiltonian < psi_selected | H | psi_selected >
allocate( H0(n_selected,n_selected) )
call const_psiHpsi(n_TSVD, n_selected, Uref, Vref, numalpha_selected, numbeta_selected, H0)
allocate( eigvec0(n_selected,n_selected), eigval0(n_selected) )
call lapack_diag(eigval0, eigvec0, H0, n_selected, n_selected)
! get the postsvd ground state
allocate( check_ov(n_selected) )
do l = 1, n_selected
overlop = 0.d0
do i = 1, n_TSVD
ii = i + (i-1)*n_TSVD
overlop = overlop + eigvec0(ii,l) * Dref(i)
enddo
check_ov(l) = dabs(overlop)
enddo
ind_gs = MAXLOC( check_ov, DIM=1 )
overlop = check_ov(ind_gs)
E0 = eigval0(ind_gs)+nuclear_repulsion
print*, ' space dimen = ', n_selected
print*, ' diag energy = ', E0
print*, ' overlop = ', overlop
deallocate( H0 )
deallocate( check_ov, eigval0, eigvec0 )
! ---------------------------------------------------------------------------------------
write(220, *) n_selected, E0
call SYSTEM_CLOCK(COUNT=W_tend_it, COUNT_RATE=W_ir)
W_tot_time_it = real(W_tend_it-W_tbeg_it, kind=8) / real(W_ir, kind=8)
print*, " "
print*, " elapsed time (min) = ", W_tot_time_it/60.d0
end do
!________________________________________________________________________________________________________
!________________________________________________________________________________________________________
deallocate( Dref )
deallocate( Uref, Vref )
! ***************************************************************************************************
! save to ezfion
!allocate( Uezfio(n_det_alpha_unique,rank0,1), Dezfio(rank0,1), Vezfio(n_det_beta_unique,rank0,1) )
!do l = 1, rank0
! Dezfio(l,1) = coeff_psi(l)
! Uezfio(:,l,1) = U0(:,l)
! Vezfio(:,l,1) = V0(:,l)
!enddo
!call ezfio_set_spindeterminants_n_det(N_det)
!call ezfio_set_spindeterminants_n_states(N_states)
!call ezfio_set_spindeterminants_n_det_alpha(n_det_alpha_unique)
!call ezfio_set_spindeterminants_n_det_beta(n_det_beta_unique)
!call ezfio_set_spindeterminants_psi_coef_matrix_rows(psi_bilinear_matrix_rows)
!call ezfio_set_spindeterminants_psi_coef_matrix_columns(psi_bilinear_matrix_columns)
!call ezfio_set_spindeterminants_psi_coef_matrix_values(psi_bilinear_matrix_values)
!call ezfio_set_spindeterminants_n_svd_coefs(rank0)
!call ezfio_set_spindeterminants_psi_svd_alpha(Uezfio)
!call ezfio_set_spindeterminants_psi_svd_beta(Vezfio )
!call ezfio_set_spindeterminants_psi_svd_coefs(Dezfio)
!deallocate( Uezfio, Dezfio, Vezfio )
! ***************************************************************************************************
call SYSTEM_CLOCK(COUNT=W_tend, COUNT_RATE=W_ir)
W_tot_time = real(W_tend - W_tbeg, kind=8) / real(W_ir, kind=8)
print *, ' ___________________________________________________________________'
print *, ' '
print *, " Execution avec ", nb_taches, " threads"
print *, " total elapsed time (min) = ", W_tot_time/60.d0
print *, ' ___________________________________________________________________'
end
subroutine const_psiHpsi(n_TSVD, n_selected, Uref, Vref, numalpha_selected, numbeta_selected, H0)
implicit none
integer, intent(in) :: n_TSVD, n_selected
integer, intent(in) :: numalpha_selected(n_selected), numbeta_selected(n_selected)
double precision, intent(in) :: Uref(n_det_alpha_unique,n_det_alpha_unique)
double precision, intent(in) :: Vref(n_det_beta_unique ,n_det_beta_unique)
double precision, intent(out) :: H0(n_selected,n_selected)
integer(bit_kind) :: det1(N_int,2)
integer(bit_kind) :: det2(N_int,2)
integer :: degree, na, nb
integer :: i, j, k, l
integer :: iin, jjn, iim, jjm, n, m
double precision :: h12, x
double precision, allocatable :: Utmp(:,:), Vtmp(:,:)
double precision, allocatable :: tmp1(:,:,:,:), tmp2(:,:,:,:)
na = n_det_alpha_unique
nb = n_det_beta_unique
H0(:,:) = 0.d0
allocate( tmp1(nb,nb,n_TSVD,n_TSVD) )
tmp1(:,:,:,:) = 0.d0
allocate( Utmp(n_TSVD,na) )
do i = 1, na
do iin = 1, n_TSVD
Utmp(iin,i) = Uref(i,iin)
enddo
enddo
do l = 1, nb
do j = 1, nb
det2(:,2) = psi_det_beta_unique(:,l)
det1(:,2) = psi_det_beta_unique(:,j)
call get_excitation_degree_spin(det1(1,2),det2(1,2),degree,N_int)
if(degree .gt. 2) cycle
do k = 1, na
det2(:,1) = psi_det_alpha_unique(:,k)
do i = 1, na
det1(:,1) = psi_det_alpha_unique(:,i)
call get_excitation_degree(det1,det2,degree,N_int)
if(degree .gt. 2) cycle
call i_H_j(det1, det2, N_int, h12)
if( h12 .eq. 0.d0) cycle
do iin = 1, n_TSVD
x = Utmp(iin,i) * h12
if( x == 0.d0 ) cycle
do iim = 1, n_TSVD
tmp1(j,l,iim,iin) += Utmp(iim,k) * x
enddo
enddo
enddo
enddo
enddo
enddo
deallocate( Utmp )
allocate( Vtmp(nb,n_TSVD) )
do iin = 1, n_TSVD
do i = 1, nb
Vtmp(i,iin) = Vref(i,iin)
enddo
enddo
allocate( tmp2(nb,n_TSVD,n_TSVD,n_TSVD) )
call DGEMM('T','N', nb*n_TSVD*n_TSVD, n_TSVD, nb, 1.d0 &
, tmp1, size(tmp1,1) &
, Vtmp, size(Vtmp,1) &
, 0.d0, tmp2, size(tmp2,1)*size(tmp2,2)*size(tmp2,3) )
deallocate(tmp1)
allocate( tmp1(n_TSVD,n_TSVD,n_TSVD,n_TSVD) )
call DGEMM('T','N', n_TSVD*n_TSVD*n_TSVD, n_TSVD, nb, 1.d0 &
, tmp2, size(tmp2,1) &
, Vtmp, size(Vtmp,1) &
, 0.d0, tmp1, size(tmp1,1)*size(tmp1,2)*size(tmp1,3) )
deallocate( tmp2, Vtmp )
do n = 1, n_selected
iin = numalpha_selected(n)
jjn = numbeta_selected (n)
do m = 1, n_selected
iim = numalpha_selected(m)
jjm = numbeta_selected (m)
H0(m,n) = tmp1(iin,iim,jjn,jjm)
enddo
enddo
deallocate( tmp1 )
return
end subroutine const_psiHpsi

View File

@ -0,0 +1,383 @@
program psiSVD_naivBbyB_v1
implicit none
BEGIN_DOC
! perturbative approach to build psi_postsvd
END_DOC
read_wf = .True.
TOUCH read_wf
PROVIDE N_int
call run()
end
subroutine run
USE OMP_LIB
implicit none
integer(bit_kind) :: det1(N_int,2), det2(N_int,2)
integer :: degree, i_state
integer :: i, j, k, l, m, n
double precision :: x, y, h12
double precision, allocatable :: Uref(:,:), Dref(:), Vtref(:,:), Aref(:,:), Vref(:,:)
integer :: rank_max, n_TSVD, n_selected
double precision :: E0, overlop
double precision, allocatable :: H0(:,:)
double precision, allocatable :: eigvec0(:,:), eigval0(:)
integer, allocatable :: numalpha_selected(:), numbeta_selected(:)
integer :: ii
integer :: na_new, nb_new, ind_new, ind_gs
double precision, allocatable :: epsil(:), epsil_energ(:), check_ov(:)
double precision, allocatable :: Uezfio(:,:,:), Dezfio(:,:), Vezfio(:,:,:)
integer(kind=8) :: W_tbeg, W_tend, W_tbeg_it, W_tend_it, W_ir
real(kind=8) :: W_tot_time, W_tot_time_it
integer :: nb_taches
!$OMP PARALLEL
nb_taches = OMP_GET_NUM_THREADS()
!$OMP END PARALLEL
call SYSTEM_CLOCK(COUNT=W_tbeg, COUNT_RATE=W_ir)
i_state = 1
det1(:,1) = psi_det_alpha_unique(:,1)
det2(:,1) = psi_det_alpha_unique(:,1)
det1(:,2) = psi_det_beta_unique(:,1)
det2(:,2) = psi_det_beta_unique(:,1)
call get_excitation_degree_spin(det1(1,1),det2(1,1),degree,N_int)
call get_excitation_degree(det1,det2,degree,N_int)
call i_H_j(det1, det2, N_int, h12)
! ---------------------------------------------------------------------------------------
! construct the initial CISD matrix
print *, ' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~'
print *, ' CI matrix:', n_det_alpha_unique,'x',n_det_beta_unique
print *, ' N det :', N_det
print *, ' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~'
allocate( Aref(n_det_alpha_unique,n_det_beta_unique) )
Aref(:,:) = 0.d0
do k = 1, N_det
i = psi_bilinear_matrix_rows(k)
j = psi_bilinear_matrix_columns(k)
Aref(i,j) = psi_bilinear_matrix_values(k,i_state)
enddo
! ---------------------------------------------------------------------------------------
! ---------------------------------------------------------------------------------------
! perform a Full SVD
allocate( Uref(n_det_alpha_unique,n_det_alpha_unique) )
allocate( Dref(min(n_det_alpha_unique,n_det_beta_unique)) )
allocate( Vtref(n_det_beta_unique,n_det_beta_unique) )
call svd_s(Aref, size(Aref,1), Uref, size(Uref,1), Dref, Vtref &
, size(Vtref,1), n_det_alpha_unique, n_det_beta_unique)
allocate( Vref(n_det_beta_unique,n_det_beta_unique) )
do l = 1, n_det_beta_unique
do i = 1, n_det_beta_unique
Vref(i,l) = Vtref(l,i)
enddo
enddo
deallocate( Vtref )
deallocate( Aref )
! ---------------------------------------------------------------------------------------
! ---------------------------------------------------------------------------------------
! initial wavefunction: psi_0
n_TSVD = 1
n_selected = 1
allocate( numalpha_selected(n_selected) , numbeta_selected(n_selected) )
numalpha_selected(1) = 1
numbeta_selected (1) = 1
! get E0 = < psi_0 | H | psi_0 >
allocate( H0(n_selected,n_selected) )
call const_psiHpsi(n_TSVD, n_selected, Uref, Vref, numalpha_selected, numbeta_selected, H0)
E0 = H0(1,1) + nuclear_repulsion
print*, ' ground state E0 = ', E0
deallocate( H0 )
! ---------------------------------------------------------------------------------------
!________________________________________________________________________________________________________
!
! increase the size of psi0 iteratively
!________________________________________________________________________________________________________
rank_max = n_det_alpha_unique*n_det_beta_unique ! 15*15
do while( n_selected .lt. rank_max )
call SYSTEM_CLOCK(COUNT=W_tbeg_it, COUNT_RATE=W_ir)
print*, ' '
print*, ' new iteration '
deallocate( numalpha_selected, numbeta_selected )
n_TSVD = n_TSVD + 1
n_selected = n_TSVD * n_TSVD
allocate( numalpha_selected(n_selected) , numbeta_selected(n_selected) )
l = 0
do i = 1, n_TSVD
do j = 1, n_TSVD
l = l + 1
numalpha_selected(l) = i
numbeta_selected (l) = j
enddo
enddo
if( l.ne.n_selected) then
print *, "error in numbering"
stop
endif
! construct and diagonalise the hamiltonian < psi_selected | H | psi_selected >
allocate( H0(n_selected,n_selected) )
call const_psiHpsi(n_TSVD, n_selected, Uref, Vref, numalpha_selected, numbeta_selected, H0)
allocate( eigvec0(n_selected,n_selected), eigval0(n_selected) )
call lapack_diag(eigval0, eigvec0, H0, n_selected, n_selected)
! get the postsvd ground state
allocate( check_ov(n_selected) )
do l = 1, n_selected
overlop = 0.d0
do i = 1, n_TSVD
ii = i + (i-1)*n_TSVD
overlop = overlop + eigvec0(ii,l) * Dref(i)
enddo
check_ov(l) = dabs(overlop)
enddo
ind_gs = MAXLOC( check_ov, DIM=1 )
overlop = check_ov(ind_gs)
E0 = eigval0(ind_gs)+nuclear_repulsion
print*, ' space dimen = ', n_selected
print*, ' diag energy = ', E0
print*, ' overlop = ', overlop
deallocate( H0 )
deallocate( check_ov, eigval0, eigvec0 )
! ---------------------------------------------------------------------------------------
write(221, *) n_selected, E0
call SYSTEM_CLOCK(COUNT=W_tend_it, COUNT_RATE=W_ir)
W_tot_time_it = real(W_tend_it-W_tbeg_it, kind=8) / real(W_ir, kind=8)
print*, " "
print*, " elapsed time (min) = ", W_tot_time_it/60.d0
end do
!________________________________________________________________________________________________________
!________________________________________________________________________________________________________
deallocate( Dref )
deallocate( Uref, Vref )
! ***************************************************************************************************
! save to ezfion
!allocate( Uezfio(n_det_alpha_unique,rank0,1), Dezfio(rank0,1), Vezfio(n_det_beta_unique,rank0,1) )
!do l = 1, rank0
! Dezfio(l,1) = coeff_psi(l)
! Uezfio(:,l,1) = U0(:,l)
! Vezfio(:,l,1) = V0(:,l)
!enddo
!call ezfio_set_spindeterminants_n_det(N_det)
!call ezfio_set_spindeterminants_n_states(N_states)
!call ezfio_set_spindeterminants_n_det_alpha(n_det_alpha_unique)
!call ezfio_set_spindeterminants_n_det_beta(n_det_beta_unique)
!call ezfio_set_spindeterminants_psi_coef_matrix_rows(psi_bilinear_matrix_rows)
!call ezfio_set_spindeterminants_psi_coef_matrix_columns(psi_bilinear_matrix_columns)
!call ezfio_set_spindeterminants_psi_coef_matrix_values(psi_bilinear_matrix_values)
!call ezfio_set_spindeterminants_n_svd_coefs(rank0)
!call ezfio_set_spindeterminants_psi_svd_alpha(Uezfio)
!call ezfio_set_spindeterminants_psi_svd_beta(Vezfio )
!call ezfio_set_spindeterminants_psi_svd_coefs(Dezfio)
!deallocate( Uezfio, Dezfio, Vezfio )
! ***************************************************************************************************
call SYSTEM_CLOCK(COUNT=W_tend, COUNT_RATE=W_ir)
W_tot_time = real(W_tend - W_tbeg, kind=8) / real(W_ir, kind=8)
print *, ' ___________________________________________________________________'
print *, ' '
print *, " Execution avec ", nb_taches, " threads"
print *, " total elapsed time (min) = ", W_tot_time/60.d0
print *, ' ___________________________________________________________________'
end
subroutine const_psiHpsi(n_TSVD, n_selected, Uref, Vref, numalpha_selected, numbeta_selected, H0)
implicit none
integer, intent(in) :: n_TSVD, n_selected
integer, intent(in) :: numalpha_selected(n_selected), numbeta_selected(n_selected)
double precision, intent(in) :: Uref(n_det_alpha_unique,n_det_alpha_unique)
double precision, intent(in) :: Vref(n_det_beta_unique ,n_det_beta_unique)
double precision, intent(out) :: H0(n_selected,n_selected)
integer(bit_kind) :: det1(N_int,2)
integer(bit_kind) :: det2(N_int,2)
integer :: degree, na, nb
integer :: i, j, k, l
integer :: iin, jjn, iim, jjm, n, m
double precision :: h12, x
double precision, allocatable :: Utmp(:,:), Vtmp(:,:)
double precision, allocatable :: tmp1(:,:,:,:), tmp2(:,:,:,:)
na = n_det_alpha_unique
nb = n_det_beta_unique
H0(:,:) = 0.d0
allocate( tmp1(nb,nb,n_TSVD,n_TSVD) )
tmp1(:,:,:,:) = 0.d0
allocate( Utmp(n_TSVD,na) )
do i = 1, na
do iin = 1, n_TSVD
Utmp(iin,i) = Uref(i,iin)
enddo
enddo
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(iin,iim,i,j,k,l,h12,x,det1,det2,degree,tmp2) &
!$OMP SHARED(na,nb,psi_det_alpha_unique,psi_det_beta_unique, &
!$OMP N_int,n_TSVD,Utmp,tmp1)
allocate( tmp2(nb,nb,n_TSVD,n_TSVD) )
tmp2(:,:,:,:) = 0.d0
!$OMP DO COLLAPSE(2) SCHEDULE(DYNAMIC,8)
do l = 1, nb
do j = 1, nb
det2(:,2) = psi_det_beta_unique(:,l)
det1(:,2) = psi_det_beta_unique(:,j)
call get_excitation_degree_spin(det1(1,2),det2(1,2),degree,N_int)
if(degree .gt. 2) cycle
do k = 1, na
det2(:,1) = psi_det_alpha_unique(:,k)
do i = 1, na
det1(:,1) = psi_det_alpha_unique(:,i)
call get_excitation_degree(det1,det2,degree,N_int)
if(degree .gt. 2) cycle
call i_H_j(det1, det2, N_int, h12)
if( h12 .eq. 0.d0) cycle
do iin = 1, n_TSVD
x = Utmp(iin,i) * h12
if( x == 0.d0 ) cycle
do iim = 1, n_TSVD
tmp2(j,l,iim,iin) += Utmp(iim,k) * x
enddo
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP CRITICAL
do iin = 1, n_TSVD
do iim = 1, n_TSVD
do l = 1, nb
do j = 1, nb
tmp1(j,l,iim,iin) += tmp2(j,l,iim,iin)
enddo
enddo
enddo
enddo
!$OMP END CRITICAL
deallocate( tmp2 )
!$OMP END PARALLEL
deallocate( Utmp )
allocate( Vtmp(nb,n_TSVD) )
do iin = 1, n_TSVD
do i = 1, nb
Vtmp(i,iin) = Vref(i,iin)
enddo
enddo
allocate( tmp2(nb,n_TSVD,n_TSVD,n_TSVD) )
call DGEMM('T','N', nb*n_TSVD*n_TSVD, n_TSVD, nb, 1.d0 &
, tmp1, size(tmp1,1) &
, Vtmp, size(Vtmp,1) &
, 0.d0, tmp2, size(tmp2,1)*size(tmp2,2)*size(tmp2,3) )
deallocate(tmp1)
allocate( tmp1(n_TSVD,n_TSVD,n_TSVD,n_TSVD) )
call DGEMM('T','N', n_TSVD*n_TSVD*n_TSVD, n_TSVD, nb, 1.d0 &
, tmp2, size(tmp2,1) &
, Vtmp, size(Vtmp,1) &
, 0.d0, tmp1, size(tmp1,1)*size(tmp1,2)*size(tmp1,3) )
deallocate( tmp2, Vtmp )
do n = 1, n_selected
iin = numalpha_selected(n)
jjn = numbeta_selected (n)
do m = 1, n_selected
iim = numalpha_selected(m)
jjm = numbeta_selected (m)
H0(m,n) = tmp1(iin,iim,jjn,jjm)
enddo
enddo
deallocate( tmp1 )
return
end subroutine const_psiHpsi

View File

@ -0,0 +1,691 @@
program psiSVD_pt2_v0
implicit none
BEGIN_DOC
! perturbative approach to build psi_postsvd
END_DOC
read_wf = .True.
TOUCH read_wf
PROVIDE N_int
call run()
end
subroutine run
USE OMP_LIB
implicit none
integer(bit_kind) :: det1(N_int,2), det2(N_int,2)
integer :: degree, i_state
integer :: i, j, k, l, m, n
double precision :: x, y, h12
double precision, allocatable :: Uref(:,:), Dref(:), Vtref(:,:), Aref(:,:), Vref(:,:)
integer :: rank_max
double precision :: E0, overlop, Ept2
double precision, allocatable :: H0(:,:)
double precision, allocatable :: eigvec0(:,:), eigval0(:), coeff_psi(:), coeff_tmp(:)
integer :: ii, jj, ia, ib
double precision, allocatable :: Hdiag(:), Hkl_save(:,:), Hkl_1d(:), Hkl_tmp(:,:), Hdiag_tmp(:)
double precision, allocatable :: H0_1d(:), H0_tmp(:,:)
integer :: na_new, nb_new, ind_new, ind_gs
double precision :: ctmp, coeff_new
double precision, allocatable :: epsil(:), epsil_energ(:), check_ov(:)
double precision, allocatable :: Uezfio(:,:,:), Dezfio(:,:), Vezfio(:,:,:)
integer :: n_selected, n_toselect, n_tmp, na_max, nb_max
integer, allocatable :: numalpha_selected(:), numbeta_selected(:)
integer, allocatable :: numalpha_toselect(:), numbeta_toselect(:)
integer, allocatable :: numalpha_tmp(:), numbeta_tmp(:)
integer :: cantor_pairing_ij, cantor_pairing_new
integer, allocatable :: cantor_pairing(:), cantor_pairing_tmp(:)
double precision :: t_beg, t_end
integer(kind=8) :: W_tbeg, W_tend, W_tbeg_it, W_tend_it, W_ir
real(kind=8) :: W_tot_time, W_tot_time_it
integer :: nb_taches
!$OMP PARALLEL
nb_taches = OMP_GET_NUM_THREADS()
!$OMP END PARALLEL
call SYSTEM_CLOCK(COUNT=W_tbeg, COUNT_RATE=W_ir)
i_state = 1
det1(:,1) = psi_det_alpha_unique(:,1)
det2(:,1) = psi_det_alpha_unique(:,1)
det1(:,2) = psi_det_beta_unique(:,1)
det2(:,2) = psi_det_beta_unique(:,1)
call get_excitation_degree_spin(det1(1,1),det2(1,1),degree,N_int)
call get_excitation_degree(det1,det2,degree,N_int)
call i_H_j(det1, det2, N_int, h12)
! ---------------------------------------------------------------------------------------
! construct the initial CISD matrix
print *, ' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~'
print *, ' CISD matrix:', n_det_alpha_unique,'x',n_det_beta_unique
print *, ' N det :', N_det
print *, ' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~'
allocate( Aref(n_det_alpha_unique,n_det_beta_unique) )
Aref(:,:) = 0.d0
do k = 1, N_det
i = psi_bilinear_matrix_rows(k)
j = psi_bilinear_matrix_columns(k)
Aref(i,j) = psi_bilinear_matrix_values(k,i_state)
enddo
! ---------------------------------------------------------------------------------------
! ---------------------------------------------------------------------------------------
! perform a Full SVD
allocate( Uref(n_det_alpha_unique,n_det_alpha_unique) )
allocate( Dref(min(n_det_alpha_unique,n_det_beta_unique)) )
allocate( Vtref(n_det_beta_unique,n_det_beta_unique) )
call cpu_time(t_beg)
call svd_s(Aref, size(Aref,1), Uref, size(Uref,1), Dref, Vtref &
, size(Vtref,1), n_det_alpha_unique, n_det_beta_unique)
call cpu_time(t_end)
print *, " SVD is performed after (min)", (t_end-t_beg)/60.
allocate( Vref(n_det_beta_unique,n_det_beta_unique) )
do l = 1, n_det_beta_unique
do i = 1, n_det_beta_unique
Vref(i,l) = Vtref(l,i)
enddo
enddo
deallocate( Vtref )
deallocate( Aref )
! ---------------------------------------------------------------------------------------
! *** PARAMETERS *** !
na_max = n_det_alpha_unique
nb_max = n_det_beta_unique
! *** ***** *** !
print *, ' na_max = ', na_max
print *, ' nb_max = ', nb_max
! ---------------------------------------------------------------------------------------
! initial wavefunction: psi_0
n_selected = 1
allocate(numalpha_selected(n_selected), numbeta_selected(n_selected), cantor_pairing(n_selected))
numalpha_selected(1) = 1
numbeta_selected (1) = 1
cantor_pairing (1) = 4 !int( 0.5*(1+1)*(1+1+1) ) + 1
allocate( coeff_psi(n_selected) )
coeff_psi(1) = 1.d0
! ---------------------------------------------------------------------------------------
! ---------------------------------------------------------------------------------------
! construnc the initial basis to select phi_1 from the FSVD
n_toselect = na_max * nb_max - n_selected
print *, ' toselect = ', n_toselect
print *, ' to trun = ', n_det_alpha_unique*n_det_beta_unique - na_max*nb_max
allocate( numalpha_toselect(n_toselect) , numbeta_toselect(n_toselect) )
k = 0
do i = 1, na_max
do j = 1, nb_max
cantor_pairing_ij = int( 0.5*(i+j)*(i+j+1) ) + j
if( ANY(cantor_pairing .eq. cantor_pairing_ij) ) cycle
k = k + 1
numalpha_toselect(k) = i
numbeta_toselect (k) = j
enddo
enddo
if( k.ne.n_toselect ) then
print *, " error in chosing vectors toselect"
print *, " n_toselect =", n_toselect
print *, " k =", k
stop
endif
! ---------------------------------------------------------------------------------------
! ---------------------------------------------------------------------------------------
! read < u_k v_l | H | u_k v_l > for all vectors
allocate( Hdiag(n_toselect) , H0(n_selected,n_selected) )
open( unit=11, FILE="klHkl_v0.dat", ACTION="READ")
read(11,*) i, i, E0
H0(1,1) = E0
do i = 1, n_toselect
read(11,*) ia, ib, ctmp
if( (numalpha_toselect(i).ne.ia) .or. (numbeta_toselect(i).ne.ib) ) then
print *, ' error in reading klHkl_v0 '
print *, ia, ib
print *, numalpha_toselect(i), numbeta_toselect(i)
stop
endif
Hdiag(i) = ctmp
enddo
close(11)
! ---------------------------------------------------------------------------------------
E0 = E0 + nuclear_repulsion
print*, ' space dimen = ', n_selected
print*, ' ground state E0 = ', E0
na_new = 1
nb_new = 1
!________________________________________________________________________________________________________
!
! increase the size of psi0 iteratively
!________________________________________________________________________________________________________
! *** PARAMETERS *** !
rank_max = na_max * nb_max
!rank_max = 50 * 50
! *** ***** *** !
if( rank_max .gt. (na_max*nb_max) ) then
print *, " rank_max should be less then na_max x nb_max"
stop
endif
allocate( Hkl_save(n_toselect,n_selected) )
do while( n_selected .lt. rank_max )
call SYSTEM_CLOCK(COUNT=W_tbeg_it, COUNT_RATE=W_ir)
print*, ' '
print*, ' new iteration '
if( n_toselect .lt. 1 ) then
print*, ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ '
print*, ' no more vectors to construct a new basis '
print*, ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ '
stop
else
! ---------------------------------------------------------------------------------------
! select a new vector
allocate( Hkl_1d(n_toselect) )
call const_Hkl_1d(na_new, nb_new, na_max, nb_max, n_toselect, Uref, Vref, numalpha_toselect, numbeta_toselect, Hkl_1d)
Hkl_save(1:n_toselect,n_selected) = Hkl_1d(1:n_toselect)
deallocate( Hkl_1d )
! choose the best vector
allocate( epsil(n_toselect) , epsil_energ(n_toselect) )
do ii = 1, n_toselect
ctmp = 0.d0
do l = 1, n_selected
ctmp = ctmp + coeff_psi(l) * Hkl_save(ii,l)
enddo
epsil(ii) = ctmp * ctmp / ( E0 - (Hdiag(ii)+nuclear_repulsion) )
epsil_energ(ii) = epsil(ii)
epsil(ii) = dabs( epsil(ii) )
enddo
ind_new = MAXLOC( epsil, DIM=1 )
ept2 = epsil_energ(ind_new)
if( ept2 .gt. 0.d0 ) then
print *, ' ept2 > 0 !!!!!!!!!! '
print *, na_new, nb_new, ept2
stop
endif
na_new = numalpha_toselect(ind_new)
nb_new = numbeta_toselect (ind_new)
cantor_pairing_new = int( 0.5 * (na_new+nb_new) * (na_new+nb_new+1) ) + nb_new
print *, ' best vector', na_new, nb_new, ept2
deallocate(epsil,epsil_energ)
! new coefficient
coeff_new = 0.d0
do l = 1, n_selected
coeff_new += coeff_psi(l) * Hkl_save(ind_new,l)
enddo
coeff_new = coeff_new / ( E0 - (Hdiag(ind_new)+nuclear_repulsion) )
print *, ' new coeff = ', coeff_new
! < psi_old | H | delta_psi >
allocate( H0_1d(n_selected) )
call const_H0_1d(na_new, nb_new, na_max, nb_max, n_selected, Uref, Vref, numalpha_selected, numbeta_selected, H0_1d)
! ---------------------------------------------------------------------------------------
! ---------------------------------------------------------------------------------------
! new psi
allocate( numalpha_tmp(n_selected), numbeta_tmp(n_selected), coeff_tmp(n_selected) )
allocate( cantor_pairing_tmp(n_selected) )
allocate( H0_tmp(n_selected,n_selected) )
coeff_tmp (:) = coeff_psi (:)
numalpha_tmp (:) = numalpha_selected(:)
numbeta_tmp (:) = numbeta_selected (:)
cantor_pairing_tmp(:) = cantor_pairing (:)
H0_tmp (:,:) = H0 (:,:)
deallocate( numalpha_selected, numbeta_selected, coeff_psi, cantor_pairing, H0 )
n_tmp = n_selected
n_selected = n_selected + 1
allocate( numalpha_selected(n_selected) , numbeta_selected(n_selected) , coeff_psi(n_selected) )
allocate( cantor_pairing(n_selected) )
allocate( H0(n_selected,n_selected) )
H0(:,:) = 0.d0
do l = 1, n_tmp
coeff_psi (l) = coeff_tmp (l)
numalpha_selected(l) = numalpha_tmp (l)
numbeta_selected (l) = numbeta_tmp (l)
cantor_pairing (l) = cantor_pairing_tmp(l)
enddo
H0(1:n_tmp,1:n_tmp) = H0_tmp(1:n_tmp,1:n_tmp)
deallocate( numalpha_tmp, numbeta_tmp, coeff_tmp, cantor_pairing_tmp, H0_tmp )
coeff_psi (n_selected) = coeff_new
numalpha_selected(n_selected) = na_new
numbeta_selected (n_selected) = nb_new
cantor_pairing (n_selected) = cantor_pairing_new
H0(1:n_tmp,n_selected) = H0_1d(1:n_tmp)
H0(n_selected,1:n_tmp) = H0_1d(1:n_tmp)
deallocate( H0_1d )
H0(n_selected,n_selected) = Hdiag(ind_new)
! ---------------------------------------------------------------------------------------
! ---------------------------------------------------------------------------------------
! new energy
allocate( eigvec0(n_selected,n_selected), eigval0(n_selected) )
call lapack_diag(eigval0, eigvec0, H0, n_selected, n_selected)
! get the postsvd ground state
allocate( check_ov(n_selected) )
do l = 1, n_selected
overlop = 0.d0
do i = 1, n_selected
ia = numalpha_selected(i)
ib = numbeta_selected (i)
if( ia .eq. ib ) overlop = overlop + eigvec0(i,l) * Dref(ia)
!overlop = overlop + eigvec0(i,l) * coeff_psi(i)
enddo
check_ov(l) = dabs(overlop)
enddo
ind_gs = MAXLOC( check_ov, DIM=1 )
overlop = check_ov(ind_gs)
E0 = eigval0(ind_gs)+nuclear_repulsion
coeff_psi(:) = eigvec0(:,ind_gs)
deallocate( check_ov, eigval0, eigvec0 )
print*, ' space dimen = ', n_selected
print*, ' diag energy = ', E0
print*, ' overlop = ', overlop
print*, ' index = ', ind_gs
! ---------------------------------------------------------------------------------------
write(2110, '( 3(I5,3X), 3(F15.8,3X) )') n_selected, na_new, nb_new, ept2, E0, overlop
! ---------------------------------------------------------------------------------------
! remove selected pair | na_new nb_new >
allocate( numalpha_tmp(n_toselect), numbeta_tmp(n_toselect), Hdiag_tmp(n_toselect) )
numalpha_tmp(:) = numalpha_toselect(:)
numbeta_tmp (:) = numbeta_toselect (:)
Hdiag_tmp (:) = Hdiag (:)
ii = n_selected - 1
allocate( Hkl_tmp(n_toselect,ii) )
Hkl_tmp(1:n_toselect,1:ii) = Hkl_save(1:n_toselect,1:ii)
deallocate( numalpha_toselect , numbeta_toselect, Hkl_save, Hdiag )
n_tmp = n_toselect
n_toselect = n_toselect - 1
print*, ' rank to select = ', n_toselect
allocate(numalpha_toselect(n_toselect), numbeta_toselect(n_toselect), Hkl_save(n_toselect,n_selected))
allocate(Hdiag(n_toselect))
Hkl_save = 0.d0
l = 0
do k = 1, n_tmp
ia = numalpha_tmp(k)
ib = numbeta_tmp (k)
cantor_pairing_ij = int( 0.5*(ia+ib)*(ia+ib+1) ) + ib
if( ANY(cantor_pairing .eq. cantor_pairing_ij) ) cycle
l = l + 1
numalpha_toselect(l) = numalpha_tmp(k)
numbeta_toselect (l) = numbeta_tmp (k)
Hdiag (l) = Hdiag_tmp (k)
Hkl_save(l,1:ii) = Hkl_tmp(k,1:ii)
enddo
if( l .ne. n_toselect) then
print *, " error in updating to select vectors"
print *, " l = ", l
print *, " n_toselect = ", n_toselect
stop
endif
deallocate( numalpha_tmp , numbeta_tmp , Hkl_tmp, Hdiag_tmp )
! ---------------------------------------------------------------------------------------
endif
call SYSTEM_CLOCK(COUNT=W_tend_it, COUNT_RATE=W_ir)
W_tot_time_it = real(W_tend_it-W_tbeg_it, kind=8) / real(W_ir, kind=8)
print*, " "
print*, " elapsed time (min) = ", W_tot_time_it/60.d0
end do
!________________________________________________________________________________________________________
!________________________________________________________________________________________________________
! ***************************************************************************************************
! save to ezfion
!allocate( Uezfio(n_det_alpha_unique,rank0,1), Dezfio(rank0,1), Vezfio(n_det_beta_unique,rank0,1) )
!do l = 1, rank0
! Dezfio(l,1) = coeff_psi(l)
! Uezfio(:,l,1) = U0(:,l)
! Vezfio(:,l,1) = V0(:,l)
!enddo
!call ezfio_set_spindeterminants_n_det(N_det)
!call ezfio_set_spindeterminants_n_states(N_states)
!call ezfio_set_spindeterminants_n_det_alpha(n_det_alpha_unique)
!call ezfio_set_spindeterminants_n_det_beta(n_det_beta_unique)
!call ezfio_set_spindeterminants_psi_coef_matrix_rows(psi_bilinear_matrix_rows)
!call ezfio_set_spindeterminants_psi_coef_matrix_columns(psi_bilinear_matrix_columns)
!call ezfio_set_spindeterminants_psi_coef_matrix_values(psi_bilinear_matrix_values)
!call ezfio_set_spindeterminants_n_svd_coefs(rank0)
!call ezfio_set_spindeterminants_psi_svd_alpha(Uezfio)
!call ezfio_set_spindeterminants_psi_svd_beta(Vezfio )
!call ezfio_set_spindeterminants_psi_svd_coefs(Dezfio)
!deallocate( Uezfio, Dezfio, Vezfio )
! ***************************************************************************************************
call SYSTEM_CLOCK(COUNT=W_tend, COUNT_RATE=W_ir)
W_tot_time = real(W_tend - W_tbeg, kind=8) / real(W_ir, kind=8)
print *, ' ___________________________________________________________________'
print *, ' '
print *, " Execution avec ", nb_taches, " threads"
print *, " total elapsed time (min) = ", W_tot_time/60.d0
print *, ' ___________________________________________________________________'
deallocate( Dref )
deallocate( Uref, Vref )
deallocate( psi_coef )
deallocate( numalpha_selected, numbeta_selected, numalpha_toselect, numbeta_toselect )
deallocate( H0, Hdiag, Hkl_save )
end
subroutine const_H0_1d(na_new, nb_new, na_max, nb_max, n_selected, Uref, Vref, numalpha_selected, numbeta_selected, H0_1d)
implicit none
integer, intent(in) :: na_new, nb_new, na_max, nb_max, n_selected
integer, intent(in) :: numalpha_selected(n_selected), numbeta_selected(n_selected)
double precision, intent(in) :: Uref(n_det_alpha_unique,n_det_alpha_unique)
double precision, intent(in) :: Vref(n_det_beta_unique ,n_det_beta_unique)
double precision, intent(out) :: H0_1d(n_selected)
integer(bit_kind) :: det1(N_int,2)
integer(bit_kind) :: det2(N_int,2)
integer :: degree, na, nb
integer :: i, j, k, l, ii, jj, m
double precision :: h12
double precision, allocatable :: Hmat_kl(:,:), tmp1(:,:), tmp2(:,:)
double precision, allocatable :: U1d(:), V1d(:)
double precision, allocatable :: Utmp(:,:), Vtmp(:,:)
double precision :: ti, tf
print *, ""
print *, " start const_H0_1d"
call wall_time(ti)
na = n_det_alpha_unique
nb = n_det_beta_unique
allocate( U1d(na) , V1d(nb) )
U1d(1:na) = Uref(1:na,na_new)
V1d(1:nb) = Vref(1:nb,nb_new)
allocate( tmp1(na,nb) )
tmp1 = 0.d0
do l = 1, nb
det2(:,2) = psi_det_beta_unique(:,l)
do j = 1, nb
det1(:,2) = psi_det_beta_unique(:,j)
call get_excitation_degree_spin(det1(1,2),det2(1,2),degree,N_int)
if(degree .gt. 2) cycle
do k = 1, na
det2(:,1) = psi_det_alpha_unique(:,k)
do i = 1, na
det1(:,1) = psi_det_alpha_unique(:,i)
call get_excitation_degree(det1,det2,degree,N_int)
if(degree .gt. 2) cycle
call i_H_j(det1, det2, N_int, h12)
if( h12 .eq. 0.d0) cycle
tmp1(i,j) += h12 * U1d(k) * V1d(l)
enddo
enddo
enddo
enddo
deallocate( U1d , V1d )
! tmp2(j,m) = sum_i tmp1(i,j) x Uref(i,m)
allocate( Utmp(na,na_max) )
Utmp(1:na,1:na_max) = Uref(1:na,1:na_max)
allocate( tmp2(nb,na_max) )
call DGEMM('T', 'N', nb, na_max, na, 1.d0, &
tmp1, size(tmp1,1), Utmp, size(Utmp,1), &
0.d0, tmp2, size(tmp2,1) )
deallocate( tmp1 )
deallocate( Utmp )
! Hmat_kl(m,n) = sum_j tmp2(j,m) x Vref(j,n)
allocate( Vtmp(nb,nb_max) )
Vtmp(1:nb,1:nb_max) = Vref(1:nb,1:nb_max)
allocate( Hmat_kl(na_max,nb_max) )
call DGEMM('T', 'N', na_max, nb_max, nb, 1.d0, &
tmp2, size(tmp2,1), Vtmp, size(Vtmp,1), &
0.d0, Hmat_kl, size(Hmat_kl,1) )
deallocate( tmp2 )
deallocate( Vtmp )
do m = 1, n_selected
ii = numalpha_selected(m)
jj = numbeta_selected (m)
H0_1d(m) = Hmat_kl(ii,jj)
enddo
deallocate( Hmat_kl )
call wall_time(tf)
print *, " end const_H0_1d after (min) ", (tf-ti)/60.
print *, ""
return
end subroutine const_H0_1d
subroutine const_Hkl_1d(na_new, nb_new, na_max, nb_max, n_toselect, Uref, Vref, numalpha_toselect, numbeta_toselect, Hkl_1d)
implicit none
integer, intent(in) :: na_new, nb_new, na_max, nb_max, n_toselect
integer, intent(in) :: numalpha_toselect(n_toselect), numbeta_toselect(n_toselect)
double precision, intent(in) :: Uref(n_det_alpha_unique,n_det_alpha_unique)
double precision, intent(in) :: Vref(n_det_beta_unique ,n_det_beta_unique)
double precision, intent(out) :: Hkl_1d(n_toselect)
integer(bit_kind) :: det1(N_int,2)
integer(bit_kind) :: det2(N_int,2)
integer :: degree, na, nb
integer :: i, j, k, l, ii, jj, m
double precision :: h12
double precision, allocatable :: Hmat_kl(:,:), tmp1(:,:), tmp2(:,:)
double precision, allocatable :: U1d(:), V1d(:)
double precision, allocatable :: Utmp(:,:), Vtmp(:,:)
double precision :: ti, tf
print *, ""
print *, " start const_Hkl_1d"
call wall_time(ti)
na = n_det_alpha_unique
nb = n_det_beta_unique
allocate( U1d(na) , V1d(nb) )
U1d(1:na) = Uref(1:na,na_new)
V1d(1:nb) = Vref(1:nb,nb_new)
allocate( tmp1(na,nb) )
tmp1 = 0.d0
do l = 1, nb
det2(:,2) = psi_det_beta_unique(:,l)
do j = 1, nb
det1(:,2) = psi_det_beta_unique(:,j)
call get_excitation_degree_spin(det1(1,2),det2(1,2),degree,N_int)
if(degree .gt. 2) cycle
do k = 1, na
det2(:,1) = psi_det_alpha_unique(:,k)
do i = 1, na
det1(:,1) = psi_det_alpha_unique(:,i)
call get_excitation_degree(det1,det2,degree,N_int)
if(degree .gt. 2) cycle
call i_H_j(det1, det2, N_int, h12)
if( h12 .eq. 0.d0) cycle
tmp1(i,j) += h12 * U1d(k) * V1d(l)
enddo
enddo
enddo
enddo
deallocate( U1d , V1d )
! tmp2(j,m) = sum_i tmp1(i,j) x Uref(i,m)
allocate( Utmp(na,na_max) )
Utmp(1:na,1:na_max) = Uref(1:na,1:na_max)
allocate( tmp2(nb,na_max) )
call DGEMM('T', 'N', nb, na_max, na, 1.d0, &
tmp1, size(tmp1,1), Utmp, size(Utmp,1), &
0.d0, tmp2, size(tmp2,1) )
deallocate( tmp1 , Utmp )
! Hmat_kl(m,n) = sum_j tmp2(j,m) x Vref(j,n)
allocate( Vtmp(nb,nb_max) )
Vtmp(1:nb,1:nb_max) = Vref(1:nb,1:nb_max)
allocate( Hmat_kl(na_max,nb_max) )
call DGEMM('T', 'N', na_max, nb_max, nb, 1.d0, &
tmp2, size(tmp2,1), Vtmp, size(Vtmp,1), &
0.d0, Hmat_kl, size(Hmat_kl,1) )
deallocate( tmp2 )
deallocate( Vtmp )
do m = 1, n_toselect
ii = numalpha_toselect(m)
jj = numbeta_toselect (m)
Hkl_1d(m) = Hmat_kl(ii,jj)
enddo
deallocate( Hmat_kl )
call wall_time(tf)
print *, " end const_Hkl_1d after (min) ", (tf-ti)/60.
print *, ""
return
end subroutine const_Hkl_1d

View File

@ -0,0 +1,734 @@
program psiSVD_pt2_v1
implicit none
BEGIN_DOC
! perturbative approach to build psi_postsvd
END_DOC
read_wf = .True.
TOUCH read_wf
PROVIDE N_int
call run()
end
subroutine run
USE OMP_LIB
implicit none
integer(bit_kind) :: det1(N_int,2), det2(N_int,2)
integer :: degree, i_state
integer :: i, j, k, l, m, n
double precision :: x, y, h12
double precision, allocatable :: Uref(:,:), Dref(:), Vtref(:,:), Aref(:,:), Vref(:,:)
integer :: rank_max
double precision :: E0, overlop, Ept2
double precision, allocatable :: H0(:,:)
double precision, allocatable :: eigvec0(:,:), eigval0(:), coeff_psi(:), coeff_tmp(:)
integer :: ii, jj, ia, ib
double precision, allocatable :: Hdiag(:), Hkl_save(:,:), Hkl_1d(:), Hkl_tmp(:,:), Hdiag_tmp(:)
double precision, allocatable :: H0_1d(:), H0_tmp(:,:)
integer :: na_new, nb_new, ind_new, ind_gs
double precision :: ctmp, coeff_new
double precision, allocatable :: epsil(:), epsil_energ(:), check_ov(:)
double precision, allocatable :: Uezfio(:,:,:), Dezfio(:,:), Vezfio(:,:,:)
integer :: n_selected, n_toselect, n_tmp, na_max, nb_max
integer, allocatable :: numalpha_selected(:), numbeta_selected(:)
integer, allocatable :: numalpha_toselect(:), numbeta_toselect(:)
integer, allocatable :: numalpha_tmp(:), numbeta_tmp(:)
integer :: cantor_pairing_ij, cantor_pairing_new
integer, allocatable :: cantor_pairing(:), cantor_pairing_tmp(:)
double precision :: t_beg, t_end
integer(kind=8) :: W_tbeg, W_tend, W_tbeg_it, W_tend_it, W_ir
real(kind=8) :: W_tot_time, W_tot_time_it
integer :: nb_taches
!$OMP PARALLEL
nb_taches = OMP_GET_NUM_THREADS()
!$OMP END PARALLEL
call SYSTEM_CLOCK(COUNT=W_tbeg, COUNT_RATE=W_ir)
i_state = 1
det1(:,1) = psi_det_alpha_unique(:,1)
det2(:,1) = psi_det_alpha_unique(:,1)
det1(:,2) = psi_det_beta_unique(:,1)
det2(:,2) = psi_det_beta_unique(:,1)
call get_excitation_degree_spin(det1(1,1),det2(1,1),degree,N_int)
call get_excitation_degree(det1,det2,degree,N_int)
call i_H_j(det1, det2, N_int, h12)
! ---------------------------------------------------------------------------------------
! construct the initial CISD matrix
print *, ' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~'
print *, ' CISD matrix:', n_det_alpha_unique,'x',n_det_beta_unique
print *, ' N det :', N_det
print *, ' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~'
allocate( Aref(n_det_alpha_unique,n_det_beta_unique) )
Aref(:,:) = 0.d0
do k = 1, N_det
i = psi_bilinear_matrix_rows(k)
j = psi_bilinear_matrix_columns(k)
Aref(i,j) = psi_bilinear_matrix_values(k,i_state)
enddo
! ---------------------------------------------------------------------------------------
! ---------------------------------------------------------------------------------------
! perform a Full SVD
allocate( Uref(n_det_alpha_unique,n_det_alpha_unique) )
allocate( Dref(min(n_det_alpha_unique,n_det_beta_unique)) )
allocate( Vtref(n_det_beta_unique,n_det_beta_unique) )
call cpu_time(t_beg)
call svd_s(Aref, size(Aref,1), Uref, size(Uref,1), Dref, Vtref &
, size(Vtref,1), n_det_alpha_unique, n_det_beta_unique)
call cpu_time(t_end)
print *, " SVD is performed after (min)", (t_end-t_beg)/60.
allocate( Vref(n_det_beta_unique,n_det_beta_unique) )
do l = 1, n_det_beta_unique
do i = 1, n_det_beta_unique
Vref(i,l) = Vtref(l,i)
enddo
enddo
deallocate( Vtref )
deallocate( Aref )
! ---------------------------------------------------------------------------------------
! *** PARAMETERS *** !
na_max = n_det_alpha_unique
nb_max = n_det_beta_unique
! *** ***** *** !
print *, ' na_max = ', na_max
print *, ' nb_max = ', nb_max
! ---------------------------------------------------------------------------------------
! initial wavefunction: psi_0
n_selected = 1
allocate(numalpha_selected(n_selected), numbeta_selected(n_selected), cantor_pairing(n_selected))
numalpha_selected(1) = 1
numbeta_selected (1) = 1
cantor_pairing (1) = 4 !int( 0.5*(1+1)*(1+1+1) ) + 1
allocate( coeff_psi(n_selected) )
coeff_psi(1) = 1.d0
! ---------------------------------------------------------------------------------------
! ---------------------------------------------------------------------------------------
! construnc the initial basis to select phi_1 from the FSVD
n_toselect = na_max * nb_max - n_selected
print *, ' toselect = ', n_toselect
print *, ' to trun = ', n_det_alpha_unique*n_det_beta_unique - na_max*nb_max
allocate( numalpha_toselect(n_toselect) , numbeta_toselect(n_toselect) )
k = 0
do i = 1, na_max
do j = 1, nb_max
cantor_pairing_ij = int( 0.5*(i+j)*(i+j+1) ) + j
if( ANY(cantor_pairing .eq. cantor_pairing_ij) ) cycle
k = k + 1
numalpha_toselect(k) = i
numbeta_toselect (k) = j
enddo
enddo
if( k.ne.n_toselect ) then
print *, " error in chosing vectors toselect"
print *, " n_toselect =", n_toselect
print *, " k =", k
stop
endif
! ---------------------------------------------------------------------------------------
! ---------------------------------------------------------------------------------------
! read < u_k v_l | H | u_k v_l > for all vectors
allocate( Hdiag(n_toselect) , H0(n_selected,n_selected) )
open( unit=11, FILE="klHkl_v1.dat", ACTION="READ")
read(11,*) i, i, E0
H0(1,1) = E0
do i = 1, n_toselect
read(11,*) ia, ib, ctmp
!print *, ' ia , ib :', ia, ib
if( (numalpha_toselect(i).ne.ia) .or. (numbeta_toselect(i).ne.ib) ) then
print *, ' error in reading klHkl_v1 '
print *, ' ia , ib :', ia, ib
print *, numalpha_toselect(i) , numbeta_toselect(i)
stop
endif
Hdiag(i) = ctmp
enddo
close(11)
! ---------------------------------------------------------------------------------------
E0 = E0 + nuclear_repulsion
print*, ' space dimen = ', n_selected
print*, ' ground state E0 = ', E0
na_new = 1
nb_new = 1
!________________________________________________________________________________________________________
!
! increase the size of psi0 iteratively
!________________________________________________________________________________________________________
! *** PARAMETERS *** !
rank_max = na_max * nb_max
! *** ***** *** !
if( rank_max .gt. (na_max*nb_max) ) then
print *, " rank_max should be less then na_max x nb_max"
stop
endif
allocate( Hkl_save(n_toselect,n_selected) )
do while( n_selected .lt. rank_max )
call SYSTEM_CLOCK(COUNT=W_tbeg_it, COUNT_RATE=W_ir)
print*, ' '
print*, ' new iteration '
if( n_toselect .lt. 1 ) then
print*, ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ '
print*, ' no more vectors to construct a new basis '
print*, ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ '
stop
else
! ---------------------------------------------------------------------------------------
! select a new vector
allocate( Hkl_1d(n_toselect) )
call const_Hkl_1d(na_new, nb_new, na_max, nb_max, n_toselect, Uref, Vref, numalpha_toselect, numbeta_toselect, Hkl_1d)
Hkl_save(1:n_toselect,n_selected) = Hkl_1d(1:n_toselect)
deallocate( Hkl_1d )
! choose the best vector
allocate( epsil(n_toselect) , epsil_energ(n_toselect) )
do ii = 1, n_toselect
ctmp = 0.d0
do l = 1, n_selected
ctmp = ctmp + coeff_psi(l) * Hkl_save(ii,l)
enddo
epsil(ii) = ctmp * ctmp / ( E0 - (Hdiag(ii)+nuclear_repulsion) )
epsil_energ(ii) = epsil(ii)
epsil(ii) = dabs( epsil(ii) )
enddo
ind_new = MAXLOC( epsil, DIM=1 )
ept2 = epsil_energ(ind_new)
if( ept2 .gt. 0.d0 ) then
print *, ' ept2 > 0 !!!!!!!!!! '
print *, na_new, nb_new, ept2
stop
endif
na_new = numalpha_toselect(ind_new)
nb_new = numbeta_toselect (ind_new)
cantor_pairing_new = int( 0.5 * (na_new+nb_new) * (na_new+nb_new+1) ) + nb_new
print *, ' ind_new ', ind_new
print *, ' best vector', na_new, nb_new, ept2
deallocate(epsil,epsil_energ)
! new coefficient
coeff_new = 0.d0
do l = 1, n_selected
coeff_new += coeff_psi(l) * Hkl_save(ind_new,l)
enddo
coeff_new = coeff_new / ( E0 - (Hdiag(ind_new)+nuclear_repulsion) )
print *, ' new coeff = ', coeff_new
print *, ' Hdiag = ', Hdiag(ind_new)
! < psi_old | H | delta_psi >
allocate( H0_1d(n_selected) )
call const_H0_1d(na_new, nb_new, na_max, nb_max, n_selected, Uref, Vref, numalpha_selected, numbeta_selected, H0_1d)
! ---------------------------------------------------------------------------------------
! ---------------------------------------------------------------------------------------
! new psi
allocate( numalpha_tmp(n_selected), numbeta_tmp(n_selected), coeff_tmp(n_selected) )
allocate( cantor_pairing_tmp(n_selected) )
allocate( H0_tmp(n_selected,n_selected) )
coeff_tmp (:) = coeff_psi (:)
numalpha_tmp (:) = numalpha_selected(:)
numbeta_tmp (:) = numbeta_selected (:)
cantor_pairing_tmp(:) = cantor_pairing (:)
H0_tmp (:,:) = H0 (:,:)
deallocate( numalpha_selected, numbeta_selected, coeff_psi, cantor_pairing, H0 )
n_tmp = n_selected
n_selected = n_selected + 1
allocate( numalpha_selected(n_selected) , numbeta_selected(n_selected) , coeff_psi(n_selected) )
allocate( cantor_pairing(n_selected) )
allocate( H0(n_selected,n_selected) )
H0(:,:) = 0.d0
do l = 1, n_tmp
coeff_psi (l) = coeff_tmp (l)
numalpha_selected(l) = numalpha_tmp (l)
numbeta_selected (l) = numbeta_tmp (l)
cantor_pairing (l) = cantor_pairing_tmp(l)
enddo
H0(1:n_tmp,1:n_tmp) = H0_tmp(1:n_tmp,1:n_tmp)
deallocate( numalpha_tmp, numbeta_tmp, coeff_tmp, cantor_pairing_tmp, H0_tmp )
coeff_psi (n_selected) = coeff_new
numalpha_selected(n_selected) = na_new
numbeta_selected (n_selected) = nb_new
cantor_pairing (n_selected) = cantor_pairing_new
H0(1:n_tmp,n_selected) = H0_1d(1:n_tmp)
H0(n_selected,1:n_tmp) = H0_1d(1:n_tmp)
deallocate( H0_1d )
H0(n_selected,n_selected) = Hdiag(ind_new)
! ---------------------------------------------------------------------------------------
! ---------------------------------------------------------------------------------------
! new energy
allocate( eigvec0(n_selected,n_selected), eigval0(n_selected) )
call lapack_diag(eigval0, eigvec0, H0, n_selected, n_selected)
! get the postsvd ground state
allocate( check_ov(n_selected) )
do l = 1, n_selected
overlop = 0.d0
do i = 1, n_selected
ia = numalpha_selected(i)
ib = numbeta_selected (i)
if( ia .eq. ib ) overlop = overlop + eigvec0(i,l) * Dref(ia)
!overlop = overlop + eigvec0(i,l) * coeff_psi(i)
enddo
check_ov(l) = dabs(overlop)
enddo
ind_gs = MAXLOC( check_ov, DIM=1 )
overlop = check_ov(ind_gs)
E0 = eigval0(ind_gs)+nuclear_repulsion
coeff_psi(:) = eigvec0(:,ind_gs)
deallocate( check_ov, eigval0, eigvec0 )
print*, ' space dimen = ', n_selected
print*, ' diag energy = ', E0
print*, ' overlop = ', overlop
print*, ' index = ', ind_gs
! ---------------------------------------------------------------------------------------
write(2111, '( 3(I5,3X), 3(F15.8,3X) )') n_selected, na_new, nb_new, ept2, E0, overlop
! ---------------------------------------------------------------------------------------
! remove selected pair | na_new nb_new >
allocate( numalpha_tmp(n_toselect), numbeta_tmp(n_toselect), Hdiag_tmp(n_toselect) )
numalpha_tmp(:) = numalpha_toselect(:)
numbeta_tmp (:) = numbeta_toselect (:)
Hdiag_tmp (:) = Hdiag (:)
ii = n_selected - 1
allocate( Hkl_tmp(n_toselect,ii) )
Hkl_tmp(1:n_toselect,1:ii) = Hkl_save(1:n_toselect,1:ii)
deallocate( numalpha_toselect , numbeta_toselect, Hkl_save, Hdiag )
n_tmp = n_toselect
n_toselect = n_toselect - 1
print*, ' rank to select = ', n_toselect
allocate(numalpha_toselect(n_toselect), numbeta_toselect(n_toselect), Hkl_save(n_toselect,n_selected))
allocate(Hdiag(n_toselect))
Hkl_save = 0.d0
l = 0
do k = 1, n_tmp
ia = numalpha_tmp(k)
ib = numbeta_tmp (k)
cantor_pairing_ij = int( 0.5*(ia+ib)*(ia+ib+1) ) + ib
if( ANY(cantor_pairing .eq. cantor_pairing_ij) ) cycle
l = l + 1
numalpha_toselect(l) = numalpha_tmp(k)
numbeta_toselect (l) = numbeta_tmp (k)
Hdiag (l) = Hdiag_tmp (k)
Hkl_save(l,1:ii) = Hkl_tmp(k,1:ii)
enddo
if( l .ne. n_toselect) then
print *, " error in updating to select vectors"
print *, " l = ", l
print *, " n_toselect = ", n_toselect
stop
endif
deallocate( numalpha_tmp , numbeta_tmp , Hkl_tmp, Hdiag_tmp )
! ---------------------------------------------------------------------------------------
endif
call SYSTEM_CLOCK(COUNT=W_tend_it, COUNT_RATE=W_ir)
W_tot_time_it = real(W_tend_it-W_tbeg_it, kind=8) / real(W_ir, kind=8)
print*, " "
print*, " elapsed time (min) = ", W_tot_time_it/60.d0
end do
!________________________________________________________________________________________________________
!________________________________________________________________________________________________________
! ***************************************************************************************************
! save to ezfion
!allocate( Uezfio(n_det_alpha_unique,rank0,1), Dezfio(rank0,1), Vezfio(n_det_beta_unique,rank0,1) )
!do l = 1, rank0
! Dezfio(l,1) = coeff_psi(l)
! Uezfio(:,l,1) = U0(:,l)
! Vezfio(:,l,1) = V0(:,l)
!enddo
!call ezfio_set_spindeterminants_n_det(N_det)
!call ezfio_set_spindeterminants_n_states(N_states)
!call ezfio_set_spindeterminants_n_det_alpha(n_det_alpha_unique)
!call ezfio_set_spindeterminants_n_det_beta(n_det_beta_unique)
!call ezfio_set_spindeterminants_psi_coef_matrix_rows(psi_bilinear_matrix_rows)
!call ezfio_set_spindeterminants_psi_coef_matrix_columns(psi_bilinear_matrix_columns)
!call ezfio_set_spindeterminants_psi_coef_matrix_values(psi_bilinear_matrix_values)
!call ezfio_set_spindeterminants_n_svd_coefs(rank0)
!call ezfio_set_spindeterminants_psi_svd_alpha(Uezfio)
!call ezfio_set_spindeterminants_psi_svd_beta(Vezfio )
!call ezfio_set_spindeterminants_psi_svd_coefs(Dezfio)
!deallocate( Uezfio, Dezfio, Vezfio )
! ***************************************************************************************************
call SYSTEM_CLOCK(COUNT=W_tend, COUNT_RATE=W_ir)
W_tot_time = real(W_tend - W_tbeg, kind=8) / real(W_ir, kind=8)
print *, ' ___________________________________________________________________'
print *, ' '
print *, " Execution avec ", nb_taches, " threads"
print *, " total elapsed time (min) = ", W_tot_time/60.d0
print *, ' ___________________________________________________________________'
deallocate( Dref )
deallocate( Uref, Vref )
deallocate( psi_coef )
deallocate( numalpha_selected, numbeta_selected, numalpha_toselect, numbeta_toselect )
deallocate( H0, Hdiag, Hkl_save )
end
subroutine const_H0_1d(na_new, nb_new, na_max, nb_max, n_selected, Uref, Vref, numalpha_selected, numbeta_selected, H0_1d)
implicit none
integer, intent(in) :: na_new, nb_new, na_max, nb_max, n_selected
integer, intent(in) :: numalpha_selected(n_selected), numbeta_selected(n_selected)
double precision, intent(in) :: Uref(n_det_alpha_unique,n_det_alpha_unique)
double precision, intent(in) :: Vref(n_det_beta_unique ,n_det_beta_unique)
double precision, intent(out) :: H0_1d(n_selected)
integer(bit_kind) :: det1(N_int,2)
integer(bit_kind) :: det2(N_int,2)
integer :: degree, na, nb
integer :: i, j, k, l, ii, jj, m
double precision :: h12
double precision, allocatable :: Hmat_kl(:,:), tmp1(:,:), tmp2(:,:)
double precision, allocatable :: U1d(:), V1d(:)
double precision, allocatable :: Utmp(:,:), Vtmp(:,:)
double precision :: ti, tf
print *, ""
print *, " start const_H0_1d"
call wall_time(ti)
na = n_det_alpha_unique
nb = n_det_beta_unique
allocate( U1d(na) , V1d(nb) )
U1d(1:na) = Uref(1:na,na_new)
V1d(1:nb) = Vref(1:nb,nb_new)
allocate( tmp1(na,nb) )
tmp1 = 0.d0
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(i,j,k,l,h12,det1,det2,degree,tmp2) &
!$OMP SHARED(na,nb,psi_det_alpha_unique,psi_det_beta_unique, &
!$OMP N_int,U1d,V1d,tmp1)
allocate( tmp2(na,nb) )
tmp2 = 0.d0
!$OMP DO
do l = 1, nb
det2(:,2) = psi_det_beta_unique(:,l)
do j = 1, nb
det1(:,2) = psi_det_beta_unique(:,j)
call get_excitation_degree_spin(det1(1,2),det2(1,2),degree,N_int)
if(degree .gt. 2) cycle
do k = 1, na
det2(:,1) = psi_det_alpha_unique(:,k)
do i = 1, na
det1(:,1) = psi_det_alpha_unique(:,i)
call get_excitation_degree(det1,det2,degree,N_int)
if(degree .gt. 2) cycle
call i_H_j(det1, det2, N_int, h12)
if( h12 .eq. 0.d0) cycle
tmp2(i,j) += h12 * U1d(k) * V1d(l)
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP CRITICAL
do j = 1, nb
do i = 1, na
tmp1(i,j) += tmp2(i,j)
enddo
enddo
!$OMP END CRITICAL
deallocate( tmp2 )
!$OMP END PARALLEL
deallocate( U1d , V1d )
! tmp2(j,m) = sum_i tmp1(i,j) x Uref(i,m)
allocate( Utmp(na,na_max) )
Utmp(1:na,1:na_max) = Uref(1:na,1:na_max)
allocate( tmp2(nb,na_max) )
call DGEMM('T', 'N', nb, na_max, na, 1.d0, &
tmp1, size(tmp1,1), Utmp, size(Utmp,1), &
0.d0, tmp2, size(tmp2,1) )
deallocate( tmp1 )
deallocate( Utmp )
! Hmat_kl(m,n) = sum_j tmp2(j,m) x Vref(j,n)
allocate( Vtmp(nb,nb_max) )
Vtmp(1:nb,1:nb_max) = Vref(1:nb,1:nb_max)
allocate( Hmat_kl(na_max,nb_max) )
call DGEMM('T', 'N', na_max, nb_max, nb, 1.d0, &
tmp2, size(tmp2,1), Vtmp, size(Vtmp,1), &
0.d0, Hmat_kl, size(Hmat_kl,1) )
deallocate( tmp2 )
deallocate( Vtmp )
do m = 1, n_selected
ii = numalpha_selected(m)
jj = numbeta_selected (m)
H0_1d(m) = Hmat_kl(ii,jj)
enddo
deallocate( Hmat_kl )
call wall_time(tf)
print *, " end const_H0_1d after (min) ", (tf-ti)/60.
print *, ""
return
end subroutine const_H0_1d
subroutine const_Hkl_1d(na_new, nb_new, na_max, nb_max, n_toselect, Uref, Vref, numalpha_toselect, numbeta_toselect, Hkl_1d)
implicit none
integer, intent(in) :: na_new, nb_new, na_max, nb_max, n_toselect
integer, intent(in) :: numalpha_toselect(n_toselect), numbeta_toselect(n_toselect)
double precision, intent(in) :: Uref(n_det_alpha_unique,n_det_alpha_unique)
double precision, intent(in) :: Vref(n_det_beta_unique ,n_det_beta_unique)
double precision, intent(out) :: Hkl_1d(n_toselect)
integer(bit_kind) :: det1(N_int,2)
integer(bit_kind) :: det2(N_int,2)
integer :: degree, na, nb
integer :: i, j, k, l, ii, jj, m
double precision :: h12
double precision, allocatable :: Hmat_kl(:,:), tmp1(:,:), tmp2(:,:)
double precision, allocatable :: U1d(:), V1d(:)
double precision, allocatable :: Utmp(:,:), Vtmp(:,:)
double precision :: ti, tf
print *, ""
print *, " start const_Hkl_1d"
call wall_time(ti)
na = n_det_alpha_unique
nb = n_det_beta_unique
allocate( U1d(na) , V1d(nb) )
U1d(1:na) = Uref(1:na,na_new)
V1d(1:nb) = Vref(1:nb,nb_new)
allocate( tmp1(na,nb) )
tmp1 = 0.d0
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(i,j,k,l,h12,det1,det2,degree,tmp2) &
!$OMP SHARED(na,nb,psi_det_alpha_unique,psi_det_beta_unique, &
!$OMP N_int,U1d,V1d,tmp1)
allocate( tmp2(na,nb) )
tmp2 = 0.d0
!$OMP DO
do l = 1, nb
det2(:,2) = psi_det_beta_unique(:,l)
do j = 1, nb
det1(:,2) = psi_det_beta_unique(:,j)
call get_excitation_degree_spin(det1(1,2),det2(1,2),degree,N_int)
if(degree .gt. 2) cycle
do k = 1, na
det2(:,1) = psi_det_alpha_unique(:,k)
do i = 1, na
det1(:,1) = psi_det_alpha_unique(:,i)
call get_excitation_degree(det1,det2,degree,N_int)
if(degree .gt. 2) cycle
call i_H_j(det1, det2, N_int, h12)
if( h12 .eq. 0.d0) cycle
tmp2(i,j) += h12 * U1d(k) * V1d(l)
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP CRITICAL
do j = 1, nb
do i = 1, na
tmp1(i,j) += tmp2(i,j)
enddo
enddo
!$OMP END CRITICAL
deallocate( tmp2 )
!$OMP END PARALLEL
deallocate( U1d , V1d )
! tmp2(j,m) = sum_i tmp1(i,j) x Uref(i,m)
allocate( Utmp(na,na_max) )
Utmp(1:na,1:na_max) = Uref(1:na,1:na_max)
allocate( tmp2(nb,na_max) )
call DGEMM('T', 'N', nb, na_max, na, 1.d0, &
tmp1, size(tmp1,1), Utmp, size(Utmp,1), &
0.d0, tmp2, size(tmp2,1) )
deallocate( tmp1 , Utmp )
! Hmat_kl(m,n) = sum_j tmp2(j,m) x Vref(j,n)
allocate( Vtmp(nb,nb_max) )
Vtmp(1:nb,1:nb_max) = Vref(1:nb,1:nb_max)
allocate( Hmat_kl(na_max,nb_max) )
call DGEMM('T', 'N', na_max, nb_max, nb, 1.d0, &
tmp2, size(tmp2,1), Vtmp, size(Vtmp,1), &
0.d0, Hmat_kl, size(Hmat_kl,1) )
deallocate( tmp2 )
deallocate( Vtmp )
do m = 1, n_toselect
ii = numalpha_toselect(m)
jj = numbeta_toselect (m)
Hkl_1d(m) = Hmat_kl(ii,jj)
enddo
deallocate( Hmat_kl )
call wall_time(tf)
print *, " end const_Hkl_1d after (min) ", (tf-ti)/60.
print *, ""
return
end subroutine const_Hkl_1d

123
devel/svdwf/pyth_RSVD.py Normal file
View File

@ -0,0 +1,123 @@
#!/usr/bin/env python3
# !!!
import os, sys
# !!!
#QP_PATH=os.environ["QMCCHEM_PATH"]
#sys.path.insert(0,QMCCHEM_PATH+"/EZFIO/Python/")
# !!!
from ezfio import ezfio
from datetime import datetime
import numpy as np
from scipy.sparse.linalg import svds
from R3SVD_LiYu import R3SVD_LiYu
from RSVD import powit_RSVD
from R3SVD_AMMAR import R3SVD_AMMAR
import time
# !!!
fmt = '%5d' + 2 * ' %e'
# !!!
if __name__ == "__main__":
# !!!
if len(sys.argv) != 2:
print("Usage: %s <EZFIO_DIRECTORY>"%sys.argv[0])
sys.exit(1)
filename = sys.argv[1]
ezfio.set_file(filename)
# !!!
N_det = ezfio.get_spindeterminants_n_det()
A_rows = np.array(ezfio.get_spindeterminants_psi_coef_matrix_rows())
A_cols = np.array(ezfio.get_spindeterminants_psi_coef_matrix_columns())
A_vals = np.array(ezfio.get_spindeterminants_psi_coef_matrix_values())
nrows, ncols = ezfio.get_spindeterminants_n_det_alpha(), ezfio.get_spindeterminants_n_det_beta()
Y = np.zeros( (nrows, ncols) )
for k in range(N_det):
i = A_rows[k] - 1
j = A_cols[k] - 1
Y[i,j] = A_vals[0][k]
print("# # # # # # # # # # # # # # # # # # # # # #")
print('matrix dimensions = {} x {}'.format(nrows, ncols))
print("# # # # # # # # # # # # # # # # # # # # # # \n")
normY = np.linalg.norm(Y, ord='fro')
print( normY )
# !!!
print('Full SVD:')
t_beg = time.time()
U, S_FSVD, VT = np.linalg.svd(Y, full_matrices=0)
t_end = time.time()
rank = S_FSVD.shape[0]
energy = np.sum(np.square(S_FSVD)) / normY**2
err_SVD = 100. * np.linalg.norm(Y - np.dot(U,np.dot(np.diag(S_FSVD),VT)), ord='fro') / normY
print('rank = {}, energy = {}, error = {}%, CPU time = {} \n'.format(rank, energy, err_SVD, t_end-t_beg))
# !!!
np.savetxt('results_python/h2o_pseudo/SingValues_FullSVD.txt', np.transpose([ np.array(range(rank))+1, S_FSVD ]), fmt='%5d' + ' %e', delimiter=' ')
# !!!
t = 50
delta_t = 10
npow = 15
err_thr = 1e-3
maxit = 10
# !!!
print('RRR SVD Li & Yu:')
t_beg = time.time()
U, S_R3SVD, VT = R3SVD_LiYu(Y, t, delta_t, npow, err_thr, maxit)
t_end = time.time()
rank = S_R3SVD.shape[0]
energy = np.sum( np.square(S_R3SVD) ) / normY**2
err_SVD = 100. * np.linalg.norm(Y - np.dot(U,np.dot(np.diag(S_R3SVD),VT)), ord='fro') / normY
print('nb Pow It = {}, rank = {}, energy = {}, error = {} %, CPU time = {}\n'.format(npow, rank, energy, err_SVD, t_end-t_beg))
# !!!
err_R3SVD = np.zeros( (rank) )
for i in range(rank):
err_R3SVD[i] = 100.0 * abs( S_FSVD[i] - S_R3SVD[i] ) / S_FSVD[i]
np.savetxt('results_python/h2o_pseudo/SingValues_R3SVD.txt', np.transpose([ np.array(range(rank))+1, S_R3SVD, err_R3SVD ]), fmt=fmt, delimiter=' ')
# !!!
nb_oversamp = 10
tol_SVD = 1e-10
print('RRR SVD my version:')
t_beg = time.time()
U, S_MRSVD, VT = R3SVD_AMMAR(Y, t, delta_t, npow, nb_oversamp, err_thr, maxit, tol_SVD)
t_end = time.time()
rank = S_MRSVD.shape[0]
energy = np.sum( np.square(S_MRSVD) ) / normY**2
err_SVD = 100. * np.linalg.norm(Y - np.dot(U,np.dot(np.diag(S_MRSVD),VT)), ord='fro') / normY
print('nb Pow It = {}, rank = {}, energy = {}, error = {} %, CPU time = {}\n'.format(npow, rank, energy, err_SVD, t_end-t_beg))
# !!!
err_MRSVD = np.zeros( (rank) )
for i in range(rank):
err_MRSVD[i] = 100.0 * abs( S_FSVD[i] - S_MRSVD[i] ) / S_FSVD[i]
np.savetxt('results_python/h2o_pseudo/SingValues_MRSVD.txt', np.transpose([ np.array(range(rank))+1, S_MRSVD, err_MRSVD ]), fmt=fmt, delimiter=' ')
# !!!
trank = rank
print("Truncated RSVD (pre-fixed rank = {} & oversampling parameter = {}):".format(trank,nb_oversamp))
t_beg = time.time()
U, S_RSVD, VT = powit_RSVD(Y, trank, npow, nb_oversamp)
t_end = time.time()
rank = S_RSVD.shape[0]
energy = np.sum( np.square(S_RSVD) ) / normY**2
err_SVD = 100. * np.linalg.norm( Y - np.dot(U,np.dot(np.diag(S_RSVD),VT)), ord="fro") / normY
print('nb Pow It = {}, rank = {}, energy = {}, error = {} %, CPU time = {}\n'.format(npow, rank, energy, err_SVD, t_end-t_beg))
# !!!
err_RSVD = np.zeros( (rank) )
for i in range(rank):
err_RSVD[i] = 100.0 * abs( S_FSVD[i] - S_RSVD[i] ) / S_FSVD[i]
np.savetxt('results_python/h2o_pseudo/SingValues_RSVD.txt', np.transpose([ np.array(range(rank))+1, S_RSVD, err_RSVD ]), fmt=fmt, delimiter=' ')
# !!!
print("Truncated SVD (scipy):")
t_beg = time.time()
U, S_TSVD, VT = svds(Y, min(trank, min(Y.shape[0],Y.shape[1])-1 ), which='LM')
t_end = time.time()
rank = S_TSVD.shape[0]
energy = np.sum( np.square(S_TSVD) ) / normY**2
err_SVD = 100. * np.linalg.norm( Y - np.dot(U, np.dot(np.diag(S_TSVD),VT) ), ord="fro") / normY
print('rank = {}, energy = {}, error = {} %, CPU time = {}\n'.format(rank, energy, err_SVD, t_end-t_beg))
# !!!
err_TSVD = np.zeros( (rank) )
for i in range(rank-1):
for j in range(i+1,rank):
if( S_TSVD[j] > S_TSVD[i]):
S_TSVD[i], S_TSVD[j] = S_TSVD[j], S_TSVD[i]
for i in range(rank):
err_TSVD[i] = 100.0 * abs( S_FSVD[i] - S_TSVD[i] ) / S_FSVD[i]
np.savetxt('results_python/h2o_pseudo/SingValues_TSVD.txt', np.transpose([ np.array(range(rank))+1, S_TSVD, err_TSVD ]), fmt=fmt, delimiter=' ')
# !!!
# !!!

223
devel/svdwf/set_QP_svd.py Normal file
View File

@ -0,0 +1,223 @@
# !!!
import sys, os
#QMCCHEM_PATH=os.environ["QMCCHEM_PATH"]
#sys.path.insert(0,QMCCHEM_PATH+"/EZFIO/Python/")
# !!!
from ezfio import ezfio
from math import sqrt
from datetime import datetime
import time
import numpy as np
import subprocess
from scipy.linalg import eig, eigh
from RSVD import powit_RSVD
# ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~
def get_Hsvd_QP(Hsvd_qp_txt):
Hsvd_qp = np.zeros( (n_svd,n_svd) )
Hsvd_qp_file = open(Hsvd_qp_txt, 'r')
for line in Hsvd_qp_file:
line = line.split()
i = int(line[0]) - 1
j = int(line[1]) - 1
Hsvd_qp[i,j] = float(line[2])
return(Hsvd_qp)
# ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~
# ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~
def get_Hpostsvd_QP(Hpostsvd_qp_txt):
Hpostsvd_qp = np.zeros( (n_svd*n_svd,n_svd*n_svd) )
Hpostsvd_qp_file = open(Hpostsvd_qp_txt, 'r')
for line in Hpostsvd_qp_file:
line = line.split()
i = int(line[0]) - 1
j = int(line[1]) - 1
Hpostsvd_qp[i,j] = float(line[2])
return(Hpostsvd_qp)
# ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~
# ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~
def get_Esvd_QP(Hsvd_qp):
# symmetrise and diagonalise
aa = Hsvd_qp
aa = 0.5*( aa + aa.T )
bb = np.identity(n_svd)
#eigvals_svd, vr = eig(aa, bb, left=False, right=True, overwrite_a=True, overwrite_b=True,
eigvals_svd, vr = eig(aa, left=False, right=True, overwrite_a=True, overwrite_b=True,
check_finite=True, homogeneous_eigvals=False)
recouvre_svd = np.abs(psi_svd_coeff @ vr)
ind_gssvd = np.argmax(recouvre_svd)
E_svd = eigvals_svd[ind_gssvd] + E_toadd
return( E_svd, vr[:,ind_gssvd] )
# ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~
# ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~
def get_Epostsvd_QP(Hpostsvd_qp):
# symmetrise and diagonalise
aa = Hpostsvd_qp
aa = 0.5*( aa + aa.T )
bb = np.identity(n_svd*n_svd)
eigvals_postsvd, vr = eig(aa, bb, left=False, right=True, overwrite_a=True, overwrite_b=True,
check_finite=True, homogeneous_eigvals=False)
d_postsvd = np.diagflat(psi_svd_coeff)
d_postsvd = d_postsvd.reshape( (1,n_svd*n_svd) )
recouvre_postsvd = np.abs(d_postsvd @ vr)
ind_gspostsvd = np.argmax(recouvre_postsvd)
# !!!
E_postsvd = eigvals_postsvd[ind_gspostsvd] + E_toadd
# !!!
return( E_postsvd, vr[:,ind_gspostsvd] )
# ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~
# ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~
def SVD_postsvd(sigma_postsvd):
# !!!
print(' performing new SVD for the post SVD eigenvector:' )
# !!!
sigma_postsvd_mat = np.zeros( (n_svd,n_svd) )
for indc in range(1, n_svd**2+1):
if( ( indc % n_svd ) !=0 ):
kp = indc % n_svd
else:
kp = n_svd
indc1 = int( ( indc - kp ) / n_svd )
k = indc1 % n_svd + 1
irow = kp + (k-1)*n_svd - 1
sigma_postsvd_mat[kp-1][k-1] = sigma_postsvd[irow]
sigma_postsvd = sigma_postsvd_mat
print(sigma_postsvd[0:n_svd,0:n_svd])
# !!!
# construct the new matrix Y
Y = np.dot( U_svd , np.dot(sigma_postsvd , V_svd.T) )
normY = np.linalg.norm(Y, ord='fro')
# !!!
# parameters of RSVD
rank = n_svd
npow = 10
nb_oversamp = 10
# !!!
# call RSV
U_postSVD, sigma_postsvd_diag, VT_postsvd = powit_RSVD(Y, rank, npow, nb_oversamp)
# !!!
# check precision
Y_SVD = np.dot( U_postSVD , np.dot( np.diag(sigma_postsvd_diag) , VT_postsvd ) )
energy = np.sum( np.square(sigma_postsvd_diag) ) / normY**2
err_SVD = 100. * np.linalg.norm( Y - Y_SVD, ord="fro") / normY
print(' energy = {}, error = {}\n'.format(energy, err_SVD))
# !!!
return(U_postSVD, sigma_postsvd_diag, VT_postsvd)
# !!!
# ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~ ! ~
if __name__ == '__main__':
t0 = time.time()
# !!!
# ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ #
EZFIO_file = "/home/aammar/qp2/src/svdwf/2h2_cisd_nsvd20"
Hsvd_qp_txt = 'H_QP_svd_2h2_nsvd20.txt'
Hpostsvd_qp_txt = 'H_QP_postsvd_2h2_nsvd20.txt'
# h2o
#E_toadd = 9.194966082434476 #6.983610961797779
# 2h2
E_toadd = 1.711353545183182
# f2
#E_toadd = 30.35863309325590
# ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ #
# !!!
ezfio.set_file(EZFIO_file)
n_svd = ezfio.get_spindeterminants_n_svd_coefs()
psi_svd_coeff = np.array(ezfio.get_spindeterminants_psi_svd_coefs())
U_svd = np.array(ezfio.get_spindeterminants_psi_svd_alpha())
V_svd = np.array(ezfio.get_spindeterminants_psi_svd_beta())
# !!!
U_svd = U_svd[0,:,:].T
V_svd = V_svd[0,:,:].T
# !!!
print(" Today's date:", datetime.now() )
print(" EZFIO file = {}".format(EZFIO_file))
print(" n_svd = {}\n".format(n_svd) )
# !!!
print(' initial svd coeff = {}\n'.format(psi_svd_coeff))
C_old = np.dot( U_svd , np.dot( np.diagflat(psi_svd_coeff) , V_svd.T ) )
norm_C = np.linalg.norm(C_old, ord="fro")
# !!!
read_QPsvd = 'y'
if( read_QPsvd == 'y' ):
Hsvd_qp = get_Hsvd_QP(Hsvd_qp_txt)
E_svd_QP, sigma_svd_QP = get_Esvd_QP(Hsvd_qp)
print(' QP svd enegry = {}'.format(E_svd_QP) )
sigma_svd_QP = sigma_svd_QP * np.sign(sigma_svd_QP[0])
print(' QP svd coeff = {}\n'.format(sigma_svd_QP))
# compare C_new and C_old
C_new = np.dot( U_svd , np.dot( np.diagflat(sigma_svd_QP) , V_svd.T ) )
delta_C = 100. * np.linalg.norm(C_old-C_new, ord="fro") / norm_C
print(' Difference between C_old and C_new svd = {} %\n'.format(delta_C))
# !!!
read_QPpostsvd = 'y'
if( read_QPpostsvd == 'y' ):
Hpostsvd_qp = get_Hpostsvd_QP(Hpostsvd_qp_txt)
E_postsvd_QP, sigma_postsvd_QP = get_Epostsvd_QP(Hpostsvd_qp)
print(' QP postsvd enegry = {}'.format(E_postsvd_QP) )
U_postSVD, sigma_postsvd_diag, Vt_postSVD = SVD_postsvd(sigma_postsvd_QP)
V_postSVD = Vt_postSVD.T
print(' QP postsvd coeff = {}\n'.format(sigma_postsvd_diag))
# compare C_new and C_old
C_new = np.dot( U_postSVD , np.dot( np.diag(sigma_postsvd_diag) , Vt_postSVD ) )
delta_C_m = 100. * np.linalg.norm(C_old-C_new, ord="fro") / norm_C
delta_C_p = 100. * np.linalg.norm(C_old+C_new, ord="fro") / norm_C
delta_C = min(delta_C_m,delta_C_p)
print(' Difference between C_old and C_new postsvd = {} %'.format(delta_C))
# !!!
# !!!
# ___________________________________________________________________________
# ___________________________________________________________________________
#
save_to_EZFIO = ''
#
if( save_to_EZFIO == 'svd'):
ezfio.set_spindeterminants_psi_svd_coefs( sigma_svd_QP )
direc_svdcoeff = EZFIO_file + '/spindeterminants/psi_svd_coefs.gz'
print(' {} is modified'.format(direc_svdcoeff) )
# # #
elif( save_to_EZFIO == 'postsvd' ):
U_postSVD_toEZFIO = np.zeros( ( 1, U_postSVD.shape[1], U_postSVD.shape[0] ) )
V_postSVD_toEZFIO = np.zeros( ( 1, V_postSVD.shape[1], V_postSVD.shape[0] ) )
U_postSVD_toEZFIO[0,:,:] = U_postSVD.T
V_postSVD_toEZFIO[0,:,:] = V_postSVD.T
#
ezfio.set_spindeterminants_psi_svd_alpha( U_postSVD_toEZFIO )
ezfio.set_spindeterminants_psi_svd_coefs( sigma_postsvd_diag )
ezfio.set_spindeterminants_psi_svd_beta( V_postSVD_toEZFIO )
#
direc_svdcoeff = EZFIO_file + '/spindeterminants/psi_svd_coefs.gz'
direc_svdalpha = EZFIO_file + '/spindeterminants/psi_svd_alpha.gz'
direc_svdbeta = EZFIO_file + '/spindeterminants/psi_svd_beta.gz'
print(' {} is modified'.format(direc_svdcoeff) )
print(' {} is modified'.format(direc_svdalpha) )
print(' {} is modified'.format(direc_svdbeta ) )
else:
pass
# ___________________________________________________________________________
# ___________________________________________________________________________
#
print("end after {:.3f} minutes".format((time.time()-t0)/60.) )
# !!!
# !!!