added pot barth
This commit is contained in:
parent
c012735537
commit
367894e7fe
187
JCTC_revision/SI/paper.tex
Normal file
187
JCTC_revision/SI/paper.tex
Normal file
@ -0,0 +1,187 @@
|
||||
|
||||
%% ****** Start of file auguide.tex ****** %
|
||||
%%
|
||||
%% This file is part of the AIP distribution of substyles for REVTeX 4.1
|
||||
%% For version 4.1r of REVTeX, August 2010
|
||||
%%
|
||||
%% Copyright (c) 2009,2010 American Institute of Physics
|
||||
%%
|
||||
%\listfiles
|
||||
|
||||
\documentclass[
|
||||
reprint,
|
||||
amssymb, amsmath,
|
||||
aip,jcp
|
||||
]{revtex4-1}
|
||||
|
||||
\usepackage{comment}
|
||||
\usepackage{dcolumn}
|
||||
%\usepackage{docs}%
|
||||
%\usepackage{bm}%
|
||||
\usepackage[colorlinks=true,linkcolor=blue]{hyperref}%
|
||||
\expandafter\ifx\csname package@font\endcsname\relax\else
|
||||
\expandafter\expandafter
|
||||
\expandafter\usepackage
|
||||
\expandafter\expandafter
|
||||
\expandafter{\csname package@font\endcsname}%
|
||||
\fi
|
||||
\hyphenation{title}
|
||||
\usepackage{xspace}
|
||||
|
||||
\usepackage{graphicx}
|
||||
%\usepackage{subfig}
|
||||
|
||||
\usepackage[version=3]{mhchem}
|
||||
\parskip=0.1in
|
||||
|
||||
\usepackage{amsmath}
|
||||
|
||||
\usepackage[normalem]{ulem}
|
||||
\usepackage[utf8]{inputenc}
|
||||
|
||||
%Macros:
|
||||
\newcommand{\basis}[0]{\mathcal{B}}
|
||||
\newcommand{\efuncbasispbe}[0]{\bar{E}_{\text{srPBE}}^{\basis}[n]}
|
||||
\newcommand{\epspbeueg}[0]{\bar{\varepsilon}^{\text{sr},\text{PBE}}_{\text{c,md}}}
|
||||
\newcommand{\epspbe}[0]{\varepsilon^{\text{PBE}}_{\text{c}}}
|
||||
\newcommand{\potpbeueg}[0]{\bar{v}_{\text{srPBE}}^{\basis}}
|
||||
\newcommand{\potpbe}[0]{v^{\text{PBE}}_{\text{c}}}
|
||||
|
||||
\setcounter{secnumdepth}{4}
|
||||
\begin{document}
|
||||
|
||||
|
||||
|
||||
\section{PBE-based complementary potential $\potpbeueg$}
|
||||
|
||||
|
||||
The PBE-based multideterminant short-range correlation complementary density functional used in this paper is the one presented in Ref.~\onlinecite{LooPraSce} and which is defined with the following equation:
|
||||
|
||||
\begin{equation}
|
||||
\label{eq:def_pbe}
|
||||
\efuncbasispbe = \int \, \text{d}{\bf r} \,\,n({\bf r})\epspbeueg(n({\bf r}),s({\bf r}),\mu^{\basis}({\bf r})),
|
||||
\end{equation}
|
||||
|
||||
with,
|
||||
|
||||
\begin{equation}
|
||||
\label{eq:def_epsipbeueg}
|
||||
\epspbeueg(n,s,\mu) = \frac{\epspbe(n,s)}{1+\beta(n,s)\mu^3},
|
||||
\end{equation}
|
||||
|
||||
where $\epspbe$ is the usual PBE correlation functional~\cite{pbe}, $s({\bf r})=\nabla n({\bf r})/n({\bf r})^{4/3}$ is the reduced density gradient,
|
||||
|
||||
\begin{equation}
|
||||
\beta(n,s) = \frac{3}{2\sqrt{\pi}(1-\sqrt{2})}\frac{\epspbe(n,s)}{n_2^{\text{UEG}}(n)/n},
|
||||
\end{equation}
|
||||
|
||||
and where
|
||||
|
||||
\begin{equation}
|
||||
\label{eq:uegotop}
|
||||
n_2^{\text{UEG}}(n)=n^2(1-\xi^2)g_0(r_s),
|
||||
\end{equation}
|
||||
|
||||
is the on-top pair density of the uniform electron gas. In eq.~\ref{eq:uegotop}, $\xi=(n_{\uparrow}-n_{\downarrow})/n$ is the spin polarisation,$r_s=(\frac{4\pi n}{3})^{-1/3}$ the Wigner-Seitz radius and $g_0(r_s)$ is the UEG on-top pair-distribution function. The parametrization used in this paper for this last function is detailed in eq.46 of Ref.~\onlinecite{GorSav2006}.
|
||||
|
||||
In the present investigation, we have only studied close shell cases for which $n_{\uparrow} = n_{\downarrow}$, which implies that $\xi = 0$. The on-top pair density of the uniform electron gas can thus be rewritten:
|
||||
|
||||
\begin{equation}
|
||||
\label{eq:uegotop2}
|
||||
n_2^{\text{UEG}}(n)=n^2 g_0(r_s).
|
||||
\end{equation}
|
||||
|
||||
The potential of this GGA-based functional has the following form:
|
||||
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
& \potpbeueg[n]({\bf r},\mu) = \frac{\delta \efuncbasispbe}{\delta n({\bf r})} \\
|
||||
& = \frac{\partial n \epspbeueg }{\partial n}- \nabla . \frac{\partial n \epspbeueg }{\partial \nabla n}\\
|
||||
& =\epspbeueg +n\frac{\partial \epspbeueg }{\partial n}- \nabla . n\frac{\partial \epspbeueg }{\partial \nabla n}.
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
So we have to compute two main contributions, the scalar part $\frac{\partial \epspbeueg }{\partial n}$ and the gradient part $\frac{\partial \epspbeueg }{\partial \nabla n}$.
|
||||
|
||||
|
||||
$\bullet$ For the scalar contribution, we simply derived eq.~\ref{eq:def_epsipbeueg} with respect to the density:
|
||||
|
||||
\begin{equation}
|
||||
\frac{\partial \epspbeueg }{\partial n}=\frac{\potpbe(1+\beta \mu^3)-\epspbe \frac{\partial\beta}{\partial n}\mu^3}{(1+\beta\mu^3)^2},
|
||||
\end{equation}
|
||||
|
||||
Where
|
||||
|
||||
\begin{equation}
|
||||
\potpbe[n]({\bf r}) =\frac{\partial\epspbe}{\partial n}
|
||||
\end{equation}
|
||||
|
||||
and
|
||||
|
||||
\begin{equation}
|
||||
\frac{\partial \beta}{\partial n}=\frac{3}{2\sqrt{\pi}(1-\sqrt{2})}\frac{\potpbe (n_2^{\text{UEG}}/n)-\epspbe \frac{\partial n_2^{\text{UEG}}/n}{\partial n}}{(n_2^{\text{UEG}}/n)^2}.
|
||||
\end{equation}
|
||||
|
||||
The only remaining part is the derivative of $n_2^{\text{UEG}}/n$ with respect to the density:
|
||||
|
||||
\begin{equation}
|
||||
\frac{\partial n_2^{\text{UEG}}/n}{\partial n} = \frac{\partial n g_0(r_s)}{\partial n} = g_0(r_s)+ n\frac{\partial g_0(r_s)}{\partial n}.
|
||||
\end{equation}
|
||||
|
||||
|
||||
To compute $\frac{\partial g_0(r_s)}{\partial n}$, we used the chain rule:
|
||||
|
||||
\begin{equation}
|
||||
\frac{\partial g_0(r_s)}{\partial n} = \frac{\partial g_0(r_s)}{\partial r_s}\frac{\partial r_s}{\partial n}.
|
||||
\end{equation}
|
||||
|
||||
The derivative with respect to $r_s$ can be express:
|
||||
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
&\frac{\partial g_0(r_s)}{\partial r_s} = \\
|
||||
& 0.5e^{-F_{g_0}*r_s} ( (-B_{g_0}+2C_{g_0}r_s+3D_{g_0}*r_s^2+4E_{g_0}r_s^3) \\
|
||||
& -(F_{g_0}(1 - B_{g_0}r_s + C_{g_0}r_s^2 + D_{g_0}rs^3 + E_{g_0}r_s^4))),
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
with
|
||||
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
& C_{g_0} = 0.0819306, \\
|
||||
& F_{g_0} = 0.752411, \\
|
||||
& D_{g_0} = -0.0127713,\\
|
||||
& E_{g_0} =0.00185898,\\
|
||||
& B_{g_0} = 0.7317 - F_{g_0}.
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
And finally the derivative of $r_s$ with respect to $n$ is equal to:
|
||||
|
||||
\begin{equation}
|
||||
\frac{\partial g_0(r_s)}{\partial n} = -(6^{2/3}n^{4/3}\pi^{1/3})^{-1}.
|
||||
\end{equation}
|
||||
|
||||
$\bullet$ For the gradient part, we also used the chain rule:
|
||||
|
||||
\begin{equation}
|
||||
\frac{\partial \epspbeueg}{\partial \nabla n}=\frac{\partial \epspbeueg}{\partial \epspbe}\frac{\partial \epspbe}{\partial \nabla n}.
|
||||
\end{equation}
|
||||
|
||||
$\frac{\partial \epspbe}{\partial \nabla n}$ is already known (\textbf{Quelqu'un a une ref pour ça??}), and the partial derivative of $\epspbeueg$ with respect to $\epspbe$ is trivial:
|
||||
|
||||
\begin{equation}
|
||||
\frac{\partial \epspbeueg}{\partial \epspbe}= \frac{(1+\beta \mu^3)-\epspbe \frac{\partial\beta}{\partial \epspbe}\mu^3}{(1+\beta\mu^3)^2}
|
||||
\end{equation}
|
||||
|
||||
where
|
||||
|
||||
\begin{equation}
|
||||
\frac{\partial \beta}{\partial \epspbe}= \frac{3}{2\sqrt{\pi}(1-\sqrt{2})}\frac{1}{n_2^{\text{UEG}}/n}.
|
||||
\end{equation}
|
||||
|
||||
|
||||
\bibliography{paper}
|
||||
|
||||
\end{document}
|
Loading…
Reference in New Issue
Block a user