diff --git a/JCTC_revision/SI/paper.tex b/JCTC_revision/SI/paper.tex new file mode 100644 index 0000000..2b17f97 --- /dev/null +++ b/JCTC_revision/SI/paper.tex @@ -0,0 +1,187 @@ + +%% ****** Start of file auguide.tex ****** % +%% +%% This file is part of the AIP distribution of substyles for REVTeX 4.1 +%% For version 4.1r of REVTeX, August 2010 +%% +%% Copyright (c) 2009,2010 American Institute of Physics +%% +%\listfiles + +\documentclass[ + reprint, + amssymb, amsmath, + aip,jcp +]{revtex4-1} + +\usepackage{comment} +\usepackage{dcolumn} +%\usepackage{docs}% +%\usepackage{bm}% +\usepackage[colorlinks=true,linkcolor=blue]{hyperref}% +\expandafter\ifx\csname package@font\endcsname\relax\else + \expandafter\expandafter + \expandafter\usepackage + \expandafter\expandafter + \expandafter{\csname package@font\endcsname}% +\fi +\hyphenation{title} +\usepackage{xspace} + +\usepackage{graphicx} +%\usepackage{subfig} + +\usepackage[version=3]{mhchem} +\parskip=0.1in + +\usepackage{amsmath} + +\usepackage[normalem]{ulem} +\usepackage[utf8]{inputenc} + +%Macros: +\newcommand{\basis}[0]{\mathcal{B}} +\newcommand{\efuncbasispbe}[0]{\bar{E}_{\text{srPBE}}^{\basis}[n]} +\newcommand{\epspbeueg}[0]{\bar{\varepsilon}^{\text{sr},\text{PBE}}_{\text{c,md}}} +\newcommand{\epspbe}[0]{\varepsilon^{\text{PBE}}_{\text{c}}} +\newcommand{\potpbeueg}[0]{\bar{v}_{\text{srPBE}}^{\basis}} +\newcommand{\potpbe}[0]{v^{\text{PBE}}_{\text{c}}} + +\setcounter{secnumdepth}{4} +\begin{document} + + + +\section{PBE-based complementary potential $\potpbeueg$} + + +The PBE-based multideterminant short-range correlation complementary density functional used in this paper is the one presented in Ref.~\onlinecite{LooPraSce} and which is defined with the following equation: + +\begin{equation} + \label{eq:def_pbe} + \efuncbasispbe = \int \, \text{d}{\bf r} \,\,n({\bf r})\epspbeueg(n({\bf r}),s({\bf r}),\mu^{\basis}({\bf r})), +\end{equation} + +with, + +\begin{equation} +\label{eq:def_epsipbeueg} + \epspbeueg(n,s,\mu) = \frac{\epspbe(n,s)}{1+\beta(n,s)\mu^3}, +\end{equation} + +where $\epspbe$ is the usual PBE correlation functional~\cite{pbe}, $s({\bf r})=\nabla n({\bf r})/n({\bf r})^{4/3}$ is the reduced density gradient, + +\begin{equation} + \beta(n,s) = \frac{3}{2\sqrt{\pi}(1-\sqrt{2})}\frac{\epspbe(n,s)}{n_2^{\text{UEG}}(n)/n}, +\end{equation} + + and where + +\begin{equation} + \label{eq:uegotop} + n_2^{\text{UEG}}(n)=n^2(1-\xi^2)g_0(r_s), + \end{equation} + +is the on-top pair density of the uniform electron gas. In eq.~\ref{eq:uegotop}, $\xi=(n_{\uparrow}-n_{\downarrow})/n$ is the spin polarisation,$r_s=(\frac{4\pi n}{3})^{-1/3}$ the Wigner-Seitz radius and $g_0(r_s)$ is the UEG on-top pair-distribution function. The parametrization used in this paper for this last function is detailed in eq.46 of Ref.~\onlinecite{GorSav2006}. + +In the present investigation, we have only studied close shell cases for which $n_{\uparrow} = n_{\downarrow}$, which implies that $\xi = 0$. The on-top pair density of the uniform electron gas can thus be rewritten: + +\begin{equation} + \label{eq:uegotop2} + n_2^{\text{UEG}}(n)=n^2 g_0(r_s). + \end{equation} + +The potential of this GGA-based functional has the following form: + +\begin{equation} + \begin{aligned} + & \potpbeueg[n]({\bf r},\mu) = \frac{\delta \efuncbasispbe}{\delta n({\bf r})} \\ + & = \frac{\partial n \epspbeueg }{\partial n}- \nabla . \frac{\partial n \epspbeueg }{\partial \nabla n}\\ + & =\epspbeueg +n\frac{\partial \epspbeueg }{\partial n}- \nabla . n\frac{\partial \epspbeueg }{\partial \nabla n}. + \end{aligned} +\end{equation} + +So we have to compute two main contributions, the scalar part $\frac{\partial \epspbeueg }{\partial n}$ and the gradient part $\frac{\partial \epspbeueg }{\partial \nabla n}$. + + +$\bullet$ For the scalar contribution, we simply derived eq.~\ref{eq:def_epsipbeueg} with respect to the density: + +\begin{equation} + \frac{\partial \epspbeueg }{\partial n}=\frac{\potpbe(1+\beta \mu^3)-\epspbe \frac{\partial\beta}{\partial n}\mu^3}{(1+\beta\mu^3)^2}, +\end{equation} + +Where + +\begin{equation} + \potpbe[n]({\bf r}) =\frac{\partial\epspbe}{\partial n} +\end{equation} + +and + +\begin{equation} + \frac{\partial \beta}{\partial n}=\frac{3}{2\sqrt{\pi}(1-\sqrt{2})}\frac{\potpbe (n_2^{\text{UEG}}/n)-\epspbe \frac{\partial n_2^{\text{UEG}}/n}{\partial n}}{(n_2^{\text{UEG}}/n)^2}. +\end{equation} + +The only remaining part is the derivative of $n_2^{\text{UEG}}/n$ with respect to the density: + +\begin{equation} +\frac{\partial n_2^{\text{UEG}}/n}{\partial n} = \frac{\partial n g_0(r_s)}{\partial n} = g_0(r_s)+ n\frac{\partial g_0(r_s)}{\partial n}. +\end{equation} + + +To compute $\frac{\partial g_0(r_s)}{\partial n}$, we used the chain rule: + +\begin{equation} +\frac{\partial g_0(r_s)}{\partial n} = \frac{\partial g_0(r_s)}{\partial r_s}\frac{\partial r_s}{\partial n}. +\end{equation} + +The derivative with respect to $r_s$ can be express: + +\begin{equation} +\begin{aligned} +&\frac{\partial g_0(r_s)}{\partial r_s} = \\ +& 0.5e^{-F_{g_0}*r_s} ( (-B_{g_0}+2C_{g_0}r_s+3D_{g_0}*r_s^2+4E_{g_0}r_s^3) \\ +& -(F_{g_0}(1 - B_{g_0}r_s + C_{g_0}r_s^2 + D_{g_0}rs^3 + E_{g_0}r_s^4))), +\end{aligned} +\end{equation} + + with + + \begin{equation} + \begin{aligned} + & C_{g_0} = 0.0819306, \\ + & F_{g_0} = 0.752411, \\ + & D_{g_0} = -0.0127713,\\ + & E_{g_0} =0.00185898,\\ + & B_{g_0} = 0.7317 - F_{g_0}. + \end{aligned} +\end{equation} + +And finally the derivative of $r_s$ with respect to $n$ is equal to: + +\begin{equation} +\frac{\partial g_0(r_s)}{\partial n} = -(6^{2/3}n^{4/3}\pi^{1/3})^{-1}. +\end{equation} + +$\bullet$ For the gradient part, we also used the chain rule: + +\begin{equation} + \frac{\partial \epspbeueg}{\partial \nabla n}=\frac{\partial \epspbeueg}{\partial \epspbe}\frac{\partial \epspbe}{\partial \nabla n}. +\end{equation} + +$\frac{\partial \epspbe}{\partial \nabla n}$ is already known (\textbf{Quelqu'un a une ref pour ça??}), and the partial derivative of $\epspbeueg$ with respect to $\epspbe$ is trivial: + +\begin{equation} + \frac{\partial \epspbeueg}{\partial \epspbe}= \frac{(1+\beta \mu^3)-\epspbe \frac{\partial\beta}{\partial \epspbe}\mu^3}{(1+\beta\mu^3)^2} +\end{equation} + +where + +\begin{equation} + \frac{\partial \beta}{\partial \epspbe}= \frac{3}{2\sqrt{\pi}(1-\sqrt{2})}\frac{1}{n_2^{\text{UEG}}/n}. +\end{equation} + + +\bibliography{paper} + + \end{document}