srDFT_GW/JCTC_revision/SI/GW-srDFT-SI.tex

348 lines
14 KiB
TeX
Raw Normal View History

2019-12-06 14:06:25 +01:00
\documentclass[aip,jcp,reprint,noshowkeys]{revtex4-1}
\usepackage{graphicx,dcolumn,bm,xcolor,microtype,multirow,amscd,amsmath,amssymb,amsfonts,physics,mhchem,longtable,wrapfig}
\usepackage{natbib}
\usepackage[extra]{tipa}
\bibliographystyle{achemso}
\AtBeginDocument{\nocite{achemso-control}}
\usepackage{mathpazo,libertine}
\usepackage{hyperref}
\hypersetup{
colorlinks=true,
linkcolor=blue,
filecolor=blue,
urlcolor=blue,
citecolor=blue
}
\urlstyle{same}
\newcommand{\alert}[1]{\textcolor{red}{#1}}
\definecolor{darkgreen}{HTML}{009900}
\usepackage[normalem]{ulem}
\newcommand{\titou}[1]{\textcolor{red}{#1}}
\newcommand{\jt}[1]{\textcolor{purple}{#1}}
\newcommand{\manu}[1]{\textcolor{darkgreen}{#1}}
\newcommand{\toto}[1]{\textcolor{brown}{#1}}
\newcommand{\trashPFL}[1]{\textcolor{red}{\sout{#1}}}
\newcommand{\trashJT}[1]{\textcolor{purple}{\sout{#1}}}
\newcommand{\trashMG}[1]{\textcolor{darkgreen}{\sout{#1}}}
\newcommand{\trashAS}[1]{\textcolor{brown}{\sout{#1}}}
\newcommand{\MG}[1]{\manu{(\underline{\bf MG}: #1)}}
\newcommand{\JT}[1]{\juju{(\underline{\bf JT}: #1)}}
\newcommand{\PFL}[1]{\titou{(\underline{\bf PFL}: #1)}}
\newcommand{\AS}[1]{\toto{(\underline{\bf TOTO}: #1)}}
\usepackage{hyperref}
\hypersetup{
colorlinks=true,
linkcolor=blue,
filecolor=blue,
urlcolor=blue,
citecolor=blue
}
\newcommand{\mc}{\multicolumn}
\newcommand{\fnm}{\footnotemark}
\newcommand{\fnt}{\footnotetext}
\newcommand{\tabc}[1]{\multicolumn{1}{c}{#1}}
\newcommand{\SI}{\textcolor{blue}{supporting information}}
\newcommand{\QP}{\textsc{quantum package}}
% methods
2019-12-17 11:06:48 +01:00
\newcommand{\HF}{\text{HF}}
\newcommand{\PBEO}{\text{PBE0}}
2019-12-06 14:06:25 +01:00
\newcommand{\evGW}{ev$GW$}
\newcommand{\qsGW}{qs$GW$}
\newcommand{\GOWO}{$G_0W_0$}
\newcommand{\GW}{$GW$}
\newcommand{\GnWn}[1]{$G_{#1}W_{#1}$}
2019-12-17 11:06:48 +01:00
\newcommand{\srLDA}{\text{srLDA}}
\newcommand{\srPBE}{\text{srPBE}}
\newcommand{\Bas}{\mathcal{B}}
2019-12-06 14:06:25 +01:00
% operators
\newcommand{\hH}{\Hat{H}}
% energies
\newcommand{\Ec}{E_\text{c}}
\newcommand{\EHF}{E_\text{HF}}
\newcommand{\EKS}{E_\text{KS}}
\newcommand{\EcK}{E_\text{c}^\text{Klein}}
\newcommand{\EcRPA}{E_\text{c}^\text{RPA}}
\newcommand{\EcGM}{E_\text{c}^\text{GM}}
\newcommand{\EcMP}{E_c^\text{MP2}}
\newcommand{\Egap}{E_\text{gap}}
\newcommand{\IP}{\text{IP}}
\newcommand{\EA}{\text{EA}}
\newcommand{\RH}{R_{\ce{H2}}}
\newcommand{\RF}{R_{\ce{F2}}}
\newcommand{\RBeO}{R_{\ce{BeO}}}
2019-12-17 11:06:48 +01:00
\newcommand{\bE}[2]{\Bar{E}_{#1}^{#2}}
\newcommand{\be}[2]{\Bar{\varepsilon}_{#1}^{#2}}
\newcommand{\bpot}[2]{\Bar{v}_{#1}^{#2}}
2019-12-06 14:06:25 +01:00
% orbital energies
\newcommand{\nDIIS}{N^\text{DIIS}}
\newcommand{\maxDIIS}{N_\text{max}^\text{DIIS}}
\newcommand{\nSat}[1]{N_{#1}^\text{sat}}
\newcommand{\eSat}[2]{\epsilon_{#1,#2}}
\newcommand{\e}[1]{\epsilon_{#1}}
\newcommand{\eHF}[1]{\epsilon^\text{HF}_{#1}}
\newcommand{\teHF}[1]{\Tilde{\epsilon}^\text{HF}_{#1}}
\newcommand{\eKS}[1]{\epsilon^\text{KS}_{#1}}
\newcommand{\eQP}[1]{\epsilon^\text{QP}_{#1}}
\newcommand{\eGOWO}[1]{\epsilon^\text{\GOWO}_{#1}}
\newcommand{\eGW}[1]{\epsilon^\text{\GW}_{#1}}
\newcommand{\eGnWn}[2]{\epsilon^\text{\GnWn{#2}}_{#1}}
\newcommand{\de}[1]{\Delta\epsilon_{#1}}
\newcommand{\deHF}[1]{\Delta\epsilon^\text{HF}_{#1}}
\newcommand{\Om}[1]{\Omega_{#1}}
\newcommand{\eHOMO}{\epsilon_\text{HOMO}}
\newcommand{\eLUMO}{\epsilon_\text{LUMO}}
\newcommand{\HOMO}{\text{HOMO}}
\newcommand{\LUMO}{\text{LUMO}}
% Matrix elements
\newcommand{\A}[1]{A_{#1}}
\newcommand{\B}[1]{B_{#1}}
\newcommand{\tA}{\Tilde{A}}
\newcommand{\tB}{\Tilde{B}}
\renewcommand{\S}[1]{S_{#1}}
\newcommand{\G}[1]{G_{#1}}
\newcommand{\Po}[1]{P_{#1}}
\newcommand{\W}[1]{W_{#1}}
\newcommand{\Wc}[1]{W^\text{c}_{#1}}
\newcommand{\vc}[1]{v_{#1}}
\newcommand{\SigX}[1]{\Sigma^\text{x}_{#1}}
\newcommand{\SigC}[1]{\Sigma^\text{c}_{#1}}
\newcommand{\tSigC}[1]{\Tilde{\Sigma}^\text{c}_{#1}}
\newcommand{\SigCp}[1]{\Sigma^\text{p}_{#1}}
\newcommand{\SigCh}[1]{\Sigma^\text{h}_{#1}}
\newcommand{\SigGW}[1]{\Sigma^\text{\GW}_{#1}}
\newcommand{\Z}[1]{Z_{#1}}
% Matrices
\newcommand{\bG}{\boldsymbol{G}}
\newcommand{\bW}{\boldsymbol{W}}
\newcommand{\bvc}{\boldsymbol{v}}
\newcommand{\bSig}{\boldsymbol{\Sigma}}
\newcommand{\bSigX}{\boldsymbol{\Sigma}^\text{x}}
\newcommand{\bSigC}{\boldsymbol{\Sigma}^\text{c}}
\newcommand{\bSigGW}{\boldsymbol{\Sigma}^\text{\GW}}
2019-12-17 11:06:48 +01:00
%\newcommand{\be}{\boldsymbol{\epsilon}}
2019-12-06 14:06:25 +01:00
\newcommand{\bDelta}{\boldsymbol{\Delta}}
\newcommand{\beHF}{\boldsymbol{\epsilon}^\text{HF}}
\newcommand{\beGW}{\boldsymbol{\epsilon}^\text{\GW}}
\newcommand{\beGnWn}[1]{\boldsymbol{\epsilon}^\text{\GnWn{#1}}}
\newcommand{\bdeGnWn}[1]{\Delta\boldsymbol{\epsilon}^\text{\GnWn{#1}}}
\newcommand{\bde}{\boldsymbol{\Delta\epsilon}}
\newcommand{\bdeHF}{\boldsymbol{\Delta\epsilon}^\text{HF}}
\newcommand{\bdeGW}{\boldsymbol{\Delta\epsilon}^\text{GW}}
\newcommand{\bOm}{\boldsymbol{\Omega}}
\newcommand{\bA}{\boldsymbol{A}}
\newcommand{\bB}{\boldsymbol{B}}
\newcommand{\bX}{\boldsymbol{X}}
\newcommand{\bY}{\boldsymbol{Y}}
\newcommand{\bZ}{\boldsymbol{Z}}
\newcommand{\fc}{f_\text{c}}
\newcommand{\Vc}{V_\text{c}}
\newcommand{\MO}[1]{\phi_{#1}}
% coordinates
\newcommand{\br}[1]{\mathbf{r}_{#1}}
\renewcommand{\b}[1]{\mathbf{#1}}
\renewcommand{\d}{\text{d}}
\newcommand{\dbr}[1]{d\br{#1}}
\renewcommand{\bra}[1]{\ensuremath{\langle #1 \vert}}
\renewcommand{\ket}[1]{\ensuremath{\vert #1 \rangle}}
\renewcommand{\braket}[2]{\ensuremath{\langle #1 \vert #2 \rangle}}
2019-12-17 11:06:48 +01:00
\newcommand{\n}[2]{n_{#1}^{#2}}
\newcommand{\rsmu}[2]{\mu_{#1}^{#2}}
2019-12-06 14:06:25 +01:00
\newcommand{\ISCD}{Institut des Sciences du Calcul et des Donn\'ees, Sorbonne Universit\'e, Paris, France}
\newcommand{\LCPQ}{Laboratoire de Chimie et Physique Quantiques (UMR 5626), Universit\'e de Toulouse, CNRS, UPS, France}
\newcommand{\LCT}{Laboratoire de Chimie Th\'eorique (UMR 7616), Sorbonne Universit\'e, CNRS, Paris, France}
\newcommand{\IUF}{Institut Universitaire de France, Paris, France}
\begin{document}
\title{Supplementary Materials for ``A Density-Based Basis-Set Incompleteness Correction for GW Methods''}
\author{Pierre-Fran\c{c}ois Loos}
\email[Corresponding author: ]{loos@irsamc.ups-tlse.fr}
\affiliation{\LCPQ}
\author{Barth\'el\'emy Pradines}
\affiliation{\LCT}
\affiliation{\ISCD}
\author{Anthony Scemama}
\affiliation{\LCPQ}
\author{Emmanuel Giner}
\affiliation{\LCT}
\author{Julien Toulouse}
\email[Corresponding author: ]{toulouse@lct.jussieu.fr}
\affiliation{\LCT}
\affiliation{\IUF}
\begin{abstract}
\end{abstract}
\maketitle
2019-12-13 22:38:13 +01:00
%Macros:
\newcommand{\basis}[0]{\mathcal{B}}
\newcommand{\efuncbasispbe}[0]{\bar{E}_{\text{srPBE}}^{\basis}[n]}
\newcommand{\epspbeueg}[0]{\bar{\varepsilon}^{\text{sr},\text{PBE}}_{\text{c,md}}}
\newcommand{\epspbe}[0]{\varepsilon^{\text{PBE}}_{\text{c}}}
\newcommand{\potpbeueg}[0]{\bar{v}_{\text{srPBE}}^{\basis}}
\newcommand{\potpbe}[0]{v^{\text{PBE}}_{\text{c}}}
2019-12-17 11:06:48 +01:00
\section{Complementary short-range correlation potentials}
2019-12-13 22:38:13 +01:00
2019-12-17 11:06:48 +01:00
Here, we provide the expressions of the complementary short-range LDA and PBE correlation potentials used in the present work in the case of closed-shell systems.
2019-12-13 22:38:13 +01:00
2019-12-17 11:06:48 +01:00
\subsection{Complementary short-range LDA correlation potential}
The complementary short-range LDA correlation energy functional with multideterminant reference has the expression~\cite{Toulouse_2005,Paziani_2006}
\begin{equation}
\label{eq:def_lda_tot}
\bE{\srLDA}{\Bas}[\n{}{}] =
\int \n{}{}(\br{}) \be{\text{c,md}}{\srLDA}(\n{}{}(\br{}),\rsmu{}{\Bas}(\br{})) \dbr{},
\end{equation}
with
\begin{equation}
\be{\text{c,md}}{\srLDA}(\n{}{},\rsmu{}{}) = \be{\text{c}}{\srLDA}(\n{}{},\rsmu{}{}) + \Delta^{\text{lr-sr}}(n,\mu),
\end{equation}
with $\be{\text{c,md}}{\srLDA}(\n{}{},\rsmu{}{})$ is the complementary short-range LDA correlation energy functional (with single-determinant reference) and $\Delta^{\text{lr-sr}}(n,\mu)$ is a mixed long-range/short-range contribution, both parametrized in Ref.~\onlinecite{Paziani_2006}.
The corresponding complementary srLDA potential is
\begin{eqnarray}
\bpot{\srLDA}{\Bas}[\n{}{}](\br{}) &=& \frac{\delta \bE{\srLDA}{\Bas}[\n{}{}]}{\delta \n{}{}(\br{})}
\nonumber\\
&=& \be{\text{c,md}}{\srLDA}(\n{}{}(\br{}),\rsmu{}{\Bas}(\br{}))
\nonumber\\
&&+ n(\br{}) \frac{\partial \be{\text{c,md}}{\srLDA}}{\partial n} (\n{}{}(\br{}),\rsmu{}{\Bas}(\br{})).
\end{eqnarray}
The density derivative of $\be{\text{c,md}}{\srLDA}$ is calculated as
\begin{eqnarray}
\frac{\partial \be{\text{c,md}}{\srLDA}}{\partial n} = \frac{\partial \be{\text{c}}{\srLDA}}{\partial n} + \frac{\partial \Delta^{\text{lr-sr}}}{\partial n},
\end{eqnarray}
where $\partial \be{\text{c}}{\srLDA}/\partial n$ is given as a subroutine on Paola Gori-Giorgi's web site (\url{https://www.quantummatter.eu/source-codes-2}) and we have calculated $\partial \Delta^{\text{lr-sr}}/\partial n$ by taking the derivative of Eq. (42) of Ref.~\onlinecite{Paziani_2006}.
\subsection{Complementary short-range PBE correlation potential}
The complementary short-range PBE correlation energy functional with multideterminant reference has the expression~\cite{Loos_2019}
2019-12-13 22:38:13 +01:00
\begin{equation}
\label{eq:def_pbe}
2019-12-17 11:06:48 +01:00
\efuncbasispbe = \int n({\bf r})\epspbeueg(n({\bf r}),s({\bf r}),\mu^{\basis}(\br{})) d\br{},
2019-12-13 22:38:13 +01:00
\end{equation}
2019-12-17 11:06:48 +01:00
with
2019-12-13 22:38:13 +01:00
\begin{equation}
\label{eq:def_epsipbeueg}
2019-12-17 11:06:48 +01:00
\epspbeueg(n,s,\mu) = \frac{\epspbe(n,s)}{1+\beta(n,s)\mu^3}.
2019-12-13 22:38:13 +01:00
\end{equation}
2019-12-17 11:06:48 +01:00
Here, $\epspbe(n,s)$ is the usual PBE correlation functional \cite{Perdew_1996}, $s$ is the reduced density gradient,
2019-12-13 22:38:13 +01:00
\begin{equation}
\beta(n,s) = \frac{3}{2\sqrt{\pi}(1-\sqrt{2})}\frac{\epspbe(n,s)}{n_2^{\text{UEG}}(n)/n},
\end{equation}
and
\begin{equation}
\label{eq:uegotop}
2019-12-17 11:06:48 +01:00
n_2^{\text{UEG}}(n)=n^2g_0(r_\text{s})
2019-12-13 22:38:13 +01:00
\end{equation}
2019-12-17 11:06:48 +01:00
is the on-top pair density of the uniform electron gas (UEG). In Eq.~\eqref{eq:uegotop}, $g_0(r_\text{s})$ is the UEG on-top pair-distribution function written as a function of the Wigner-Seitz radius $r_\text{s}=(4\pi n/3)^{-1/3}$. We use the parametrization of $g_0(r_\text{s})$ given in Eq.~(46) of Ref.~\onlinecite{Gori-Giorgi_2006}.
The corresponding complementary srPBE potential is
\begin{eqnarray}
\potpbeueg[n](\br{})
&=& \fdv{\efuncbasispbe}{n(\br{})}
\nonumber\\
&=& \epspbeueg(n({\bf r}),s({\bf r}),\mu^{\basis}(\br{}))
\nonumber\\
&+& n(\br{}) \pdv{\epspbeueg }{n} (n({\bf r}),s({\bf r}),\mu^{\basis}(\br{}))
\nonumber\\
&-& \nabla \cdot \qty( n(\br{}) \pdv{\epspbeueg}{\nabla n} (n({\bf r}),s({\bf r}),\mu^{\basis}(\br{})) ).\,\,\,
\end{eqnarray}
Hence, we have to compute the density derivative $\partial \epspbeueg/\partial n$ and the density-gradient derivative $\partial \epspbeueg/\partial \nabla n$.
\subsubsection{Density derivative}
From Eq.~\eqref{eq:def_epsipbeueg}, the density derivative is found to be
2019-12-13 22:38:13 +01:00
\begin{equation}
\pdv{\epspbeueg }{n}
2019-12-17 11:06:48 +01:00
= \frac{1}{1+\beta\mu^3} \pdv{\epspbe}{n}
2019-12-13 22:38:13 +01:00
- \frac{\epspbe \mu^3}{(1+\beta\mu^3)^2} \pdv{\beta}{n},
\end{equation}
2019-12-17 11:06:48 +01:00
where $\partial \epspbe/\partial n$ is the density derivative of the usual PBE correlation functional, and
\begin{eqnarray}
2019-12-13 22:38:13 +01:00
\pdv{\beta}{n}
2019-12-17 11:06:48 +01:00
&=& \frac{3}{2\sqrt{\pi}(1-\sqrt{2})}
\Bigg[ \frac{1}{n_2^{\text{UEG}}/n} \pdv{\epspbe}{n}
\nonumber\\
&&\phantom{xxxxx} - \frac{\epspbe}{(n_2^{\text{UEG}}/n)^2} \frac{\partial (n_2^{\text{UEG}}/n)}{\partial n} \Bigg].
\end{eqnarray}
The only remaining missing part is the derivative of $n_2^{\text{UEG}}/n$ which is
2019-12-13 22:38:13 +01:00
\begin{equation}
2019-12-17 11:06:48 +01:00
\pdv{(n_2^{\text{UEG}}/n)}{n} = \pdv{[n g_0(r_\text{s})]}{n} = g_0(r_\text{s})+ n \pdv{g_0(r_\text{s})}{n},
2019-12-13 22:38:13 +01:00
\end{equation}
with
\begin{equation}
2019-12-17 11:06:48 +01:00
\pdv{g_0(r_\text{s})}{n} = \pdv{r_\text{s}}{n} \pdv{g_0(r_\text{s})}{r_\text{s}} = -(6 n^{2}\sqrt{\pi})^{-2/3} \pdv{g_0(r_\text{s})}{r_\text{s}}.
2019-12-13 22:38:13 +01:00
\end{equation}
2019-12-17 11:06:48 +01:00
Finally, we calculate $\partial g_0(r_\text{s}) /\partial r_\text{s}$ by taking the derivative of Eq.~(46) of Ref.~\onlinecite{Gori-Giorgi_2006}
2019-12-13 22:38:13 +01:00
\begin{equation}
\begin{aligned}
2019-12-17 11:06:48 +01:00
\pdv{g_0(r_\text{s})}{r_\text{s}}
& = \frac{e^{-F\,r_\text{s}}}{2} \big[ (-B + 2 C r_\text{s} + 3 D r_\text{s}^2 + 4 E r_\text{s}^3)
2019-12-13 22:38:13 +01:00
\\
2019-12-17 11:06:48 +01:00
& - F (1 - B r_\text{s} + C r_\text{s}^2 + D r_\text{s}^3 + E r_\text{s}^4) \big],
2019-12-13 22:38:13 +01:00
\end{aligned}
\end{equation}
2019-12-17 11:06:48 +01:00
with $C = 0.0819306$, $F = 0.752411$, $D = -0.0127713$, $E =0.00185898$, and $B = 0.7317 - F$.
2019-12-13 22:38:13 +01:00
2019-12-17 11:06:48 +01:00
\subsubsection{Density-gradient derivative}
2019-12-13 22:38:13 +01:00
2019-12-17 11:06:48 +01:00
For the density-gradient derivative, we use the chain rule
2019-12-13 22:38:13 +01:00
\begin{equation}
2019-12-17 11:06:48 +01:00
\pdv{\epspbeueg}{\nabla n} = \pdv{\epspbeueg}{\epspbe}\pdv{\epspbe}{\nabla n},
2019-12-13 22:38:13 +01:00
\end{equation}
2019-12-17 11:06:48 +01:00
where $\partial \epspbe/\partial \nabla n$ is the density-gradient derivative of the usual PBE correlation functional, and
2019-12-13 22:38:13 +01:00
\begin{equation}
\pdv{\epspbeueg}{\epspbe}
= \frac{1}{1+\beta\mu^3}
- \frac{\epspbe \mu^3}{(1+\beta\mu^3)^2} \pdv{\beta}{\epspbe},
\end{equation}
2019-12-17 11:06:48 +01:00
with
2019-12-13 22:38:13 +01:00
\begin{equation}
\pdv{\beta}{\epspbe}= \frac{3}{2\sqrt{\pi}(1-\sqrt{2})}\frac{1}{n_2^{\text{UEG}}/n}.
\end{equation}
2019-12-17 11:06:48 +01:00
\section{Additional graphs of the convergence of the IPs of the GW20 subset}
Graphs reporting the convergence of the IPs of each molecule of the GW20 subset at the {\GOWO}@{\HF} and {\GOWO}@{\PBEO} levels are given in Figure~\ref{fig:IP_G0W0HF} and~\ref{fig:IP_G0W0PBE0}, respectively.
2019-12-06 14:06:25 +01:00
\begin{figure*}
\includegraphics[width=\linewidth]{IP_G0W0HF}
\caption{
IPs (in eV) computed at the {\GOWO}@HF (black circles), {\GOWO}@HF+srLDA (red squares), and {\GOWO}@HF+srPBE (blue diamonds) levels of theory with increasingly large Dunning's basis sets (cc-pVDZ, cc-pVTZ, cc-pVQZ, and cc-pV5Z) for the 20 smallest molecules of the GW100 set.
The thick black line represents the CBS value obtained by extrapolation with the three largest basis sets.
\label{fig:IP_G0W0HF}
}
\end{figure*}
\begin{figure*}
\includegraphics[width=\linewidth]{IP_G0W0PBE0}
\caption{
IPs (in eV) computed at the {\GOWO}@PBE0 (black circles), {\GOWO}@PBE0+srLDA (red squares), and {\GOWO}@PBE0+srPBE (blue diamonds) levels of theory with increasingly large Dunning's basis sets (cc-pVDZ, cc-pVTZ, cc-pVQZ, and cc-pV5Z) for the 20 smallest molecules of the GW100 set.
The thick black line represents the CBS value obtained by extrapolation with the three largest basis sets.
2019-12-17 11:06:48 +01:00
\label{fig:IP_G0W0PBE0}
2019-12-06 14:06:25 +01:00
}
\end{figure*}
\bibliography{../GW-srDFT,../GW-srDFT-control}
\end{document}