2019-12-06 14:06:25 +01:00
\documentclass [aip,jcp,reprint,noshowkeys] { revtex4-1}
\usepackage { graphicx,dcolumn,bm,xcolor,microtype,multirow,amscd,amsmath,amssymb,amsfonts,physics,mhchem,longtable,wrapfig}
\usepackage { natbib}
\usepackage [extra] { tipa}
\bibliographystyle { achemso}
\AtBeginDocument { \nocite { achemso-control} }
\usepackage { mathpazo,libertine}
\usepackage { hyperref}
\hypersetup {
colorlinks=true,
linkcolor=blue,
filecolor=blue,
urlcolor=blue,
citecolor=blue
}
\urlstyle { same}
\newcommand { \alert } [1]{ \textcolor { red} { #1} }
\definecolor { darkgreen} { HTML} { 009900}
\usepackage [normalem] { ulem}
\newcommand { \titou } [1]{ \textcolor { red} { #1} }
\newcommand { \jt } [1]{ \textcolor { purple} { #1} }
\newcommand { \manu } [1]{ \textcolor { darkgreen} { #1} }
\newcommand { \toto } [1]{ \textcolor { brown} { #1} }
\newcommand { \trashPFL } [1]{ \textcolor { red} { \sout { #1} } }
\newcommand { \trashJT } [1]{ \textcolor { purple} { \sout { #1} } }
\newcommand { \trashMG } [1]{ \textcolor { darkgreen} { \sout { #1} } }
\newcommand { \trashAS } [1]{ \textcolor { brown} { \sout { #1} } }
\newcommand { \MG } [1]{ \manu { (\underline { \bf MG} : #1)} }
\newcommand { \JT } [1]{ \juju { (\underline { \bf JT} : #1)} }
\newcommand { \PFL } [1]{ \titou { (\underline { \bf PFL} : #1)} }
\newcommand { \AS } [1]{ \toto { (\underline { \bf TOTO} : #1)} }
\usepackage { hyperref}
\hypersetup {
colorlinks=true,
linkcolor=blue,
filecolor=blue,
urlcolor=blue,
citecolor=blue
}
\newcommand { \mc } { \multicolumn }
\newcommand { \fnm } { \footnotemark }
\newcommand { \fnt } { \footnotetext }
\newcommand { \tabc } [1]{ \multicolumn { 1} { c} { #1} }
\newcommand { \SI } { \textcolor { blue} { supporting information} }
\newcommand { \QP } { \textsc { quantum package} }
% methods
2019-12-17 11:06:48 +01:00
\newcommand { \HF } { \text { HF} }
\newcommand { \PBEO } { \text { PBE0} }
2019-12-06 14:06:25 +01:00
\newcommand { \evGW } { ev$ GW $ }
\newcommand { \qsGW } { qs$ GW $ }
\newcommand { \GOWO } { $ G _ 0 W _ 0 $ }
\newcommand { \GW } { $ GW $ }
\newcommand { \GnWn } [1]{ $ G _ { # 1 } W _ { # 1 } $ }
2019-12-17 11:06:48 +01:00
\newcommand { \srLDA } { \text { srLDA} }
\newcommand { \srPBE } { \text { srPBE} }
\newcommand { \Bas } { \mathcal { B} }
2019-12-06 14:06:25 +01:00
% operators
\newcommand { \hH } { \Hat { H} }
% energies
\newcommand { \Ec } { E_ \text { c} }
\newcommand { \EHF } { E_ \text { HF} }
\newcommand { \EKS } { E_ \text { KS} }
\newcommand { \EcK } { E_ \text { c} ^ \text { Klein} }
\newcommand { \EcRPA } { E_ \text { c} ^ \text { RPA} }
\newcommand { \EcGM } { E_ \text { c} ^ \text { GM} }
\newcommand { \EcMP } { E_ c^ \text { MP2} }
\newcommand { \Egap } { E_ \text { gap} }
\newcommand { \IP } { \text { IP} }
\newcommand { \EA } { \text { EA} }
\newcommand { \RH } { R_ { \ce { H2} } }
\newcommand { \RF } { R_ { \ce { F2} } }
\newcommand { \RBeO } { R_ { \ce { BeO} } }
2019-12-17 11:06:48 +01:00
\newcommand { \bE } [2]{ \Bar { E} _ { #1} ^ { #2} }
\newcommand { \be } [2]{ \Bar { \varepsilon } _ { #1} ^ { #2} }
\newcommand { \bpot } [2]{ \Bar { v} _ { #1} ^ { #2} }
2019-12-06 14:06:25 +01:00
% orbital energies
\newcommand { \nDIIS } { N^ \text { DIIS} }
\newcommand { \maxDIIS } { N_ \text { max} ^ \text { DIIS} }
\newcommand { \nSat } [1]{ N_ { #1} ^ \text { sat} }
\newcommand { \eSat } [2]{ \epsilon _ { #1,#2} }
\newcommand { \e } [1]{ \epsilon _ { #1} }
\newcommand { \eHF } [1]{ \epsilon ^ \text { HF} _ { #1} }
\newcommand { \teHF } [1]{ \Tilde { \epsilon } ^ \text { HF} _ { #1} }
\newcommand { \eKS } [1]{ \epsilon ^ \text { KS} _ { #1} }
\newcommand { \eQP } [1]{ \epsilon ^ \text { QP} _ { #1} }
\newcommand { \eGOWO } [1]{ \epsilon ^ \text { \GOWO } _ { #1} }
\newcommand { \eGW } [1]{ \epsilon ^ \text { \GW } _ { #1} }
\newcommand { \eGnWn } [2]{ \epsilon ^ \text { \GnWn { #2} } _ { #1} }
\newcommand { \de } [1]{ \Delta \epsilon _ { #1} }
\newcommand { \deHF } [1]{ \Delta \epsilon ^ \text { HF} _ { #1} }
\newcommand { \Om } [1]{ \Omega _ { #1} }
\newcommand { \eHOMO } { \epsilon _ \text { HOMO} }
\newcommand { \eLUMO } { \epsilon _ \text { LUMO} }
\newcommand { \HOMO } { \text { HOMO} }
\newcommand { \LUMO } { \text { LUMO} }
% Matrix elements
\newcommand { \A } [1]{ A_ { #1} }
\newcommand { \B } [1]{ B_ { #1} }
\newcommand { \tA } { \Tilde { A} }
\newcommand { \tB } { \Tilde { B} }
\renewcommand { \S } [1]{ S_ { #1} }
\newcommand { \G } [1]{ G_ { #1} }
\newcommand { \Po } [1]{ P_ { #1} }
\newcommand { \W } [1]{ W_ { #1} }
\newcommand { \Wc } [1]{ W^ \text { c} _ { #1} }
\newcommand { \vc } [1]{ v_ { #1} }
\newcommand { \SigX } [1]{ \Sigma ^ \text { x} _ { #1} }
\newcommand { \SigC } [1]{ \Sigma ^ \text { c} _ { #1} }
\newcommand { \tSigC } [1]{ \Tilde { \Sigma } ^ \text { c} _ { #1} }
\newcommand { \SigCp } [1]{ \Sigma ^ \text { p} _ { #1} }
\newcommand { \SigCh } [1]{ \Sigma ^ \text { h} _ { #1} }
\newcommand { \SigGW } [1]{ \Sigma ^ \text { \GW } _ { #1} }
\newcommand { \Z } [1]{ Z_ { #1} }
% Matrices
\newcommand { \bG } { \boldsymbol { G} }
\newcommand { \bW } { \boldsymbol { W} }
\newcommand { \bvc } { \boldsymbol { v} }
\newcommand { \bSig } { \boldsymbol { \Sigma } }
\newcommand { \bSigX } { \boldsymbol { \Sigma } ^ \text { x} }
\newcommand { \bSigC } { \boldsymbol { \Sigma } ^ \text { c} }
\newcommand { \bSigGW } { \boldsymbol { \Sigma } ^ \text { \GW } }
2019-12-17 11:06:48 +01:00
%\newcommand{\be}{\boldsymbol{\epsilon}}
2019-12-06 14:06:25 +01:00
\newcommand { \bDelta } { \boldsymbol { \Delta } }
\newcommand { \beHF } { \boldsymbol { \epsilon } ^ \text { HF} }
\newcommand { \beGW } { \boldsymbol { \epsilon } ^ \text { \GW } }
\newcommand { \beGnWn } [1]{ \boldsymbol { \epsilon } ^ \text { \GnWn { #1} } }
\newcommand { \bdeGnWn } [1]{ \Delta \boldsymbol { \epsilon } ^ \text { \GnWn { #1} } }
\newcommand { \bde } { \boldsymbol { \Delta \epsilon } }
\newcommand { \bdeHF } { \boldsymbol { \Delta \epsilon } ^ \text { HF} }
\newcommand { \bdeGW } { \boldsymbol { \Delta \epsilon } ^ \text { GW} }
\newcommand { \bOm } { \boldsymbol { \Omega } }
\newcommand { \bA } { \boldsymbol { A} }
\newcommand { \bB } { \boldsymbol { B} }
\newcommand { \bX } { \boldsymbol { X} }
\newcommand { \bY } { \boldsymbol { Y} }
\newcommand { \bZ } { \boldsymbol { Z} }
\newcommand { \fc } { f_ \text { c} }
\newcommand { \Vc } { V_ \text { c} }
\newcommand { \MO } [1]{ \phi _ { #1} }
% coordinates
\newcommand { \br } [1]{ \mathbf { r} _ { #1} }
\renewcommand { \b } [1]{ \mathbf { #1} }
\renewcommand { \d } { \text { d} }
\newcommand { \dbr } [1]{ d\br { #1} }
\renewcommand { \bra } [1]{ \ensuremath { \langle #1 \vert } }
\renewcommand { \ket } [1]{ \ensuremath { \vert #1 \rangle } }
\renewcommand { \braket } [2]{ \ensuremath { \langle #1 \vert #2 \rangle } }
2019-12-17 11:06:48 +01:00
\newcommand { \n } [2]{ n_ { #1} ^ { #2} }
\newcommand { \rsmu } [2]{ \mu _ { #1} ^ { #2} }
2019-12-06 14:06:25 +01:00
\newcommand { \ISCD } { Institut des Sciences du Calcul et des Donn\' ees, Sorbonne Universit\' e, Paris, France}
\newcommand { \LCPQ } { Laboratoire de Chimie et Physique Quantiques (UMR 5626), Universit\' e de Toulouse, CNRS, UPS, France}
\newcommand { \LCT } { Laboratoire de Chimie Th\' eorique (UMR 7616), Sorbonne Universit\' e, CNRS, Paris, France}
\newcommand { \IUF } { Institut Universitaire de France, Paris, France}
\begin { document}
\title { Supplementary Materials for ``A Density-Based Basis-Set Incompleteness Correction for GW Methods''}
\author { Pierre-Fran\c { c} ois Loos}
\email [Corresponding author: ] { loos@irsamc.ups-tlse.fr}
\affiliation { \LCPQ }
\author { Barth\' el\' emy Pradines}
\affiliation { \LCT }
\affiliation { \ISCD }
\author { Anthony Scemama}
\affiliation { \LCPQ }
\author { Emmanuel Giner}
\affiliation { \LCT }
\author { Julien Toulouse}
\email [Corresponding author: ] { toulouse@lct.jussieu.fr}
\affiliation { \LCT }
\affiliation { \IUF }
\begin { abstract}
\end { abstract}
\maketitle
2019-12-13 22:38:13 +01:00
%Macros:
\newcommand { \basis } [0]{ \mathcal { B} }
\newcommand { \efuncbasispbe } [0]{ \bar { E} _ { \text { srPBE} } ^ { \basis } [n]}
\newcommand { \epspbeueg } [0]{ \bar { \varepsilon } ^ { \text { sr} ,\text { PBE} } _ { \text { c,md} } }
\newcommand { \epspbe } [0]{ \varepsilon ^ { \text { PBE} } _ { \text { c} } }
\newcommand { \potpbeueg } [0]{ \bar { v} _ { \text { srPBE} } ^ { \basis } }
\newcommand { \potpbe } [0]{ v^ { \text { PBE} } _ { \text { c} } }
2019-12-17 11:06:48 +01:00
\section { Complementary short-range correlation potentials}
2019-12-13 22:38:13 +01:00
2019-12-17 11:06:48 +01:00
Here, we provide the expressions of the complementary short-range LDA and PBE correlation potentials used in the present work in the case of closed-shell systems.
2019-12-13 22:38:13 +01:00
2019-12-17 11:06:48 +01:00
\subsection { Complementary short-range LDA correlation potential}
The complementary short-range LDA correlation energy functional with multideterminant reference has the expression~\cite { Toulouse_ 2005,Paziani_ 2006}
\begin { equation}
\label { eq:def_ lda_ tot}
\bE { \srLDA } { \Bas } [\n { } { } ] =
\int \n { } { } (\br { } ) \be { \text { c,md} } { \srLDA } (\n { } { } (\br { } ),\rsmu { } { \Bas } (\br { } )) \dbr { } ,
\end { equation}
with
\begin { equation}
\be { \text { c,md} } { \srLDA } (\n { } { } ,\rsmu { } { } ) = \be { \text { c} } { \srLDA } (\n { } { } ,\rsmu { } { } ) + \Delta ^ { \text { lr-sr} } (n,\mu ),
\end { equation}
with $ \be { \text { c,md } } { \srLDA } ( \n { } { } , \rsmu { } { } ) $ is the complementary short-range LDA correlation energy functional (with single-determinant reference) and $ \Delta ^ { \text { lr - sr } } ( n, \mu ) $ is a mixed long-range/short-range contribution, both parametrized in Ref.~\onlinecite { Paziani_ 2006} .
The corresponding complementary srLDA potential is
\begin { eqnarray}
\bpot { \srLDA } { \Bas } [\n { } { } ](\br { } ) & =& \frac { \delta \bE { \srLDA } { \Bas } [\n { } { } ]} { \delta \n { } { } (\br { } )}
\nonumber \\
& =& \be { \text { c,md} } { \srLDA } (\n { } { } (\br { } ),\rsmu { } { \Bas } (\br { } ))
\nonumber \\
& & + n(\br { } ) \frac { \partial \be { \text { c,md} } { \srLDA } } { \partial n} (\n { } { } (\br { } ),\rsmu { } { \Bas } (\br { } )).
\end { eqnarray}
The density derivative of $ \be { \text { c,md } } { \srLDA } $ is calculated as
\begin { eqnarray}
\frac { \partial \be { \text { c,md} } { \srLDA } } { \partial n} = \frac { \partial \be { \text { c} } { \srLDA } } { \partial n} + \frac { \partial \Delta ^ { \text { lr-sr} } } { \partial n} ,
\end { eqnarray}
where $ \partial \be { \text { c } } { \srLDA } / \partial n $ is given as a subroutine on Paola Gori-Giorgi's web site (\url { https://www.quantummatter.eu/source-codes-2} ) and we have calculated $ \partial \Delta ^ { \text { lr - sr } } / \partial n $ by taking the derivative of Eq. (42) of Ref.~\onlinecite { Paziani_ 2006} .
\subsection { Complementary short-range PBE correlation potential}
The complementary short-range PBE correlation energy functional with multideterminant reference has the expression~\cite { Loos_ 2019}
2019-12-13 22:38:13 +01:00
\begin { equation}
\label { eq:def_ pbe}
2019-12-17 11:06:48 +01:00
\efuncbasispbe = \int n({ \bf r} )\epspbeueg (n({ \bf r} ),s({ \bf r} ),\mu ^ { \basis } (\br { } )) d\br { } ,
2019-12-13 22:38:13 +01:00
\end { equation}
2019-12-17 11:06:48 +01:00
with
2019-12-13 22:38:13 +01:00
\begin { equation}
\label { eq:def_ epsipbeueg}
2019-12-17 11:06:48 +01:00
\epspbeueg (n,s,\mu ) = \frac { \epspbe (n,s)} { 1+\beta (n,s)\mu ^ 3} .
2019-12-13 22:38:13 +01:00
\end { equation}
2019-12-17 11:06:48 +01:00
Here, $ \epspbe ( n,s ) $ is the usual PBE correlation functional \cite { Perdew_ 1996} , $ s $ is the reduced density gradient,
2019-12-13 22:38:13 +01:00
\begin { equation}
\beta (n,s) = \frac { 3} { 2\sqrt { \pi } (1-\sqrt { 2} )} \frac { \epspbe (n,s)} { n_ 2^ { \text { UEG} } (n)/n} ,
\end { equation}
and
\begin { equation}
\label { eq:uegotop}
2019-12-17 11:06:48 +01:00
n_ 2^ { \text { UEG} } (n)=n^ 2g_ 0(r_ \text { s} )
2019-12-13 22:38:13 +01:00
\end { equation}
2019-12-17 11:06:48 +01:00
is the on-top pair density of the uniform electron gas (UEG). In Eq.~\eqref { eq:uegotop} , $ g _ 0 ( r _ \text { s } ) $ is the UEG on-top pair-distribution function written as a function of the Wigner-Seitz radius $ r _ \text { s } = ( 4 \pi n / 3 ) ^ { - 1 / 3 } $ . We use the parametrization of $ g _ 0 ( r _ \text { s } ) $ given in Eq.~(46) of Ref.~\onlinecite { Gori-Giorgi_ 2006} .
The corresponding complementary srPBE potential is
\begin { eqnarray}
\potpbeueg [n] (\br { } )
& =& \fdv { \efuncbasispbe } { n(\br { } )}
\nonumber \\
& =& \epspbeueg (n({ \bf r} ),s({ \bf r} ),\mu ^ { \basis } (\br { } ))
\nonumber \\
& +& n(\br { } ) \pdv { \epspbeueg } { n} (n({ \bf r} ),s({ \bf r} ),\mu ^ { \basis } (\br { } ))
\nonumber \\
& -& \nabla \cdot \qty ( n(\br { } ) \pdv { \epspbeueg } { \nabla n} (n({ \bf r} ),s({ \bf r} ),\mu ^ { \basis } (\br { } )) ).\, \, \,
\end { eqnarray}
Hence, we have to compute the density derivative $ \partial \epspbeueg / \partial n $ and the density-gradient derivative $ \partial \epspbeueg / \partial \nabla n $ .
\subsubsection { Density derivative}
From Eq.~\eqref { eq:def_ epsipbeueg} , the density derivative is found to be
2019-12-13 22:38:13 +01:00
\begin { equation}
\pdv { \epspbeueg } { n}
2019-12-17 11:06:48 +01:00
= \frac { 1} { 1+\beta \mu ^ 3} \pdv { \epspbe } { n}
2019-12-13 22:38:13 +01:00
- \frac { \epspbe \mu ^ 3} { (1+\beta \mu ^ 3)^ 2} \pdv { \beta } { n} ,
\end { equation}
2019-12-17 11:06:48 +01:00
where $ \partial \epspbe / \partial n $ is the density derivative of the usual PBE correlation functional, and
\begin { eqnarray}
2019-12-13 22:38:13 +01:00
\pdv { \beta } { n}
2019-12-17 11:06:48 +01:00
& =& \frac { 3} { 2\sqrt { \pi } (1-\sqrt { 2} )}
\Bigg [ \frac { 1} { n_ 2^ { \text { UEG} } /n} \pdv { \epspbe } { n}
\nonumber \\
& & \phantom { xxxxx} - \frac { \epspbe } { (n_ 2^ { \text { UEG} } /n)^ 2} \frac { \partial (n_ 2^ { \text { UEG} } /n)} { \partial n} \Bigg ].
\end { eqnarray}
The only remaining missing part is the derivative of $ n _ 2 ^ { \text { UEG } } / n $ which is
2019-12-13 22:38:13 +01:00
\begin { equation}
2019-12-17 11:06:48 +01:00
\pdv { (n_ 2^ { \text { UEG} } /n)} { n} = \pdv { [n g_ 0(r_ \text { s} )]} { n} = g_ 0(r_ \text { s} )+ n \pdv { g_ 0(r_ \text { s} )} { n} ,
2019-12-13 22:38:13 +01:00
\end { equation}
with
\begin { equation}
2019-12-17 11:06:48 +01:00
\pdv { g_ 0(r_ \text { s} )} { n} = \pdv { r_ \text { s} } { n} \pdv { g_ 0(r_ \text { s} )} { r_ \text { s} } = -(6 n^ { 2} \sqrt { \pi } )^ { -2/3} \pdv { g_ 0(r_ \text { s} )} { r_ \text { s} } .
2019-12-13 22:38:13 +01:00
\end { equation}
2019-12-17 11:06:48 +01:00
Finally, we calculate $ \partial g _ 0 ( r _ \text { s } ) / \partial r _ \text { s } $ by taking the derivative of Eq.~(46) of Ref.~\onlinecite { Gori-Giorgi_ 2006}
2019-12-13 22:38:13 +01:00
\begin { equation}
\begin { aligned}
2019-12-17 11:06:48 +01:00
\pdv { g_ 0(r_ \text { s} )} { r_ \text { s} }
& = \frac { e^ { -F\, r_ \text { s} } } { 2} \big [ (-B + 2 C r_ \text { s} + 3 D r_ \text { s} ^ 2 + 4 E r_ \text { s} ^ 3)
2019-12-13 22:38:13 +01:00
\\
2019-12-17 11:06:48 +01:00
& - F (1 - B r_ \text { s} + C r_ \text { s} ^ 2 + D r_ \text { s} ^ 3 + E r_ \text { s} ^ 4) \big ],
2019-12-13 22:38:13 +01:00
\end { aligned}
\end { equation}
2019-12-17 11:06:48 +01:00
with $ C = 0 . 0819306 $ , $ F = 0 . 752411 $ , $ D = - 0 . 0127713 $ , $ E = 0 . 00185898 $ , and $ B = 0 . 7317 - F $ .
2019-12-13 22:38:13 +01:00
2019-12-17 11:06:48 +01:00
\subsubsection { Density-gradient derivative}
2019-12-13 22:38:13 +01:00
2019-12-17 11:06:48 +01:00
For the density-gradient derivative, we use the chain rule
2019-12-13 22:38:13 +01:00
\begin { equation}
2019-12-17 11:06:48 +01:00
\pdv { \epspbeueg } { \nabla n} = \pdv { \epspbeueg } { \epspbe } \pdv { \epspbe } { \nabla n} ,
2019-12-13 22:38:13 +01:00
\end { equation}
2019-12-17 11:06:48 +01:00
where $ \partial \epspbe / \partial \nabla n $ is the density-gradient derivative of the usual PBE correlation functional, and
2019-12-13 22:38:13 +01:00
\begin { equation}
\pdv { \epspbeueg } { \epspbe }
= \frac { 1} { 1+\beta \mu ^ 3}
- \frac { \epspbe \mu ^ 3} { (1+\beta \mu ^ 3)^ 2} \pdv { \beta } { \epspbe } ,
\end { equation}
2019-12-17 11:06:48 +01:00
with
2019-12-13 22:38:13 +01:00
\begin { equation}
\pdv { \beta } { \epspbe } = \frac { 3} { 2\sqrt { \pi } (1-\sqrt { 2} )} \frac { 1} { n_ 2^ { \text { UEG} } /n} .
\end { equation}
2019-12-17 11:06:48 +01:00
\section { Additional graphs of the convergence of the IPs of the GW20 subset}
Graphs reporting the convergence of the IPs of each molecule of the GW20 subset at the { \GOWO } @{ \HF } and { \GOWO } @{ \PBEO } levels are given in Figure~\ref { fig:IP_ G0W0HF} and~\ref { fig:IP_ G0W0PBE0} , respectively.
2019-12-06 14:06:25 +01:00
\begin { figure*}
\includegraphics [width=\linewidth] { IP_ G0W0HF}
\caption {
IPs (in eV) computed at the { \GOWO } @HF (black circles), { \GOWO } @HF+srLDA (red squares), and { \GOWO } @HF+srPBE (blue diamonds) levels of theory with increasingly large Dunning's basis sets (cc-pVDZ, cc-pVTZ, cc-pVQZ, and cc-pV5Z) for the 20 smallest molecules of the GW100 set.
The thick black line represents the CBS value obtained by extrapolation with the three largest basis sets.
\label { fig:IP_ G0W0HF}
}
\end { figure*}
\begin { figure*}
\includegraphics [width=\linewidth] { IP_ G0W0PBE0}
\caption {
IPs (in eV) computed at the { \GOWO } @PBE0 (black circles), { \GOWO } @PBE0+srLDA (red squares), and { \GOWO } @PBE0+srPBE (blue diamonds) levels of theory with increasingly large Dunning's basis sets (cc-pVDZ, cc-pVTZ, cc-pVQZ, and cc-pV5Z) for the 20 smallest molecules of the GW100 set.
The thick black line represents the CBS value obtained by extrapolation with the three largest basis sets.
2019-12-17 11:06:48 +01:00
\label { fig:IP_ G0W0PBE0}
2019-12-06 14:06:25 +01:00
}
\end { figure*}
\bibliography { ../GW-srDFT,../GW-srDFT-control}
\end { document}