\documentclass[aip,jcp,reprint,noshowkeys]{revtex4-1} \usepackage{graphicx,dcolumn,bm,xcolor,microtype,multirow,amscd,amsmath,amssymb,amsfonts,physics,mhchem,longtable,wrapfig} \usepackage{natbib} \usepackage[extra]{tipa} \bibliographystyle{achemso} \AtBeginDocument{\nocite{achemso-control}} \usepackage{mathpazo,libertine} \usepackage{hyperref} \hypersetup{ colorlinks=true, linkcolor=blue, filecolor=blue, urlcolor=blue, citecolor=blue } \urlstyle{same} \newcommand{\alert}[1]{\textcolor{red}{#1}} \definecolor{darkgreen}{HTML}{009900} \usepackage[normalem]{ulem} \newcommand{\titou}[1]{\textcolor{red}{#1}} \newcommand{\jt}[1]{\textcolor{purple}{#1}} \newcommand{\manu}[1]{\textcolor{darkgreen}{#1}} \newcommand{\toto}[1]{\textcolor{brown}{#1}} \newcommand{\trashPFL}[1]{\textcolor{red}{\sout{#1}}} \newcommand{\trashJT}[1]{\textcolor{purple}{\sout{#1}}} \newcommand{\trashMG}[1]{\textcolor{darkgreen}{\sout{#1}}} \newcommand{\trashAS}[1]{\textcolor{brown}{\sout{#1}}} \newcommand{\MG}[1]{\manu{(\underline{\bf MG}: #1)}} \newcommand{\JT}[1]{\juju{(\underline{\bf JT}: #1)}} \newcommand{\PFL}[1]{\titou{(\underline{\bf PFL}: #1)}} \newcommand{\AS}[1]{\toto{(\underline{\bf TOTO}: #1)}} \usepackage{hyperref} \hypersetup{ colorlinks=true, linkcolor=blue, filecolor=blue, urlcolor=blue, citecolor=blue } \newcommand{\mc}{\multicolumn} \newcommand{\fnm}{\footnotemark} \newcommand{\fnt}{\footnotetext} \newcommand{\tabc}[1]{\multicolumn{1}{c}{#1}} \newcommand{\SI}{\textcolor{blue}{supporting information}} \newcommand{\QP}{\textsc{quantum package}} % methods \newcommand{\HF}{\text{HF}} \newcommand{\PBEO}{\text{PBE0}} \newcommand{\evGW}{ev$GW$} \newcommand{\qsGW}{qs$GW$} \newcommand{\GOWO}{$G_0W_0$} \newcommand{\GW}{$GW$} \newcommand{\GnWn}[1]{$G_{#1}W_{#1}$} \newcommand{\srLDA}{\text{srLDA}} \newcommand{\srPBE}{\text{srPBE}} \newcommand{\Bas}{\mathcal{B}} % operators \newcommand{\hH}{\Hat{H}} % energies \newcommand{\Ec}{E_\text{c}} \newcommand{\EHF}{E_\text{HF}} \newcommand{\EKS}{E_\text{KS}} \newcommand{\EcK}{E_\text{c}^\text{Klein}} \newcommand{\EcRPA}{E_\text{c}^\text{RPA}} \newcommand{\EcGM}{E_\text{c}^\text{GM}} \newcommand{\EcMP}{E_c^\text{MP2}} \newcommand{\Egap}{E_\text{gap}} \newcommand{\IP}{\text{IP}} \newcommand{\EA}{\text{EA}} \newcommand{\RH}{R_{\ce{H2}}} \newcommand{\RF}{R_{\ce{F2}}} \newcommand{\RBeO}{R_{\ce{BeO}}} \newcommand{\bE}[2]{\Bar{E}_{#1}^{#2}} \newcommand{\be}[2]{\Bar{\varepsilon}_{#1}^{#2}} \newcommand{\bpot}[2]{\Bar{v}_{#1}^{#2}} % orbital energies \newcommand{\nDIIS}{N^\text{DIIS}} \newcommand{\maxDIIS}{N_\text{max}^\text{DIIS}} \newcommand{\nSat}[1]{N_{#1}^\text{sat}} \newcommand{\eSat}[2]{\epsilon_{#1,#2}} \newcommand{\e}[1]{\epsilon_{#1}} \newcommand{\eHF}[1]{\epsilon^\text{HF}_{#1}} \newcommand{\teHF}[1]{\Tilde{\epsilon}^\text{HF}_{#1}} \newcommand{\eKS}[1]{\epsilon^\text{KS}_{#1}} \newcommand{\eQP}[1]{\epsilon^\text{QP}_{#1}} \newcommand{\eGOWO}[1]{\epsilon^\text{\GOWO}_{#1}} \newcommand{\eGW}[1]{\epsilon^\text{\GW}_{#1}} \newcommand{\eGnWn}[2]{\epsilon^\text{\GnWn{#2}}_{#1}} \newcommand{\de}[1]{\Delta\epsilon_{#1}} \newcommand{\deHF}[1]{\Delta\epsilon^\text{HF}_{#1}} \newcommand{\Om}[1]{\Omega_{#1}} \newcommand{\eHOMO}{\epsilon_\text{HOMO}} \newcommand{\eLUMO}{\epsilon_\text{LUMO}} \newcommand{\HOMO}{\text{HOMO}} \newcommand{\LUMO}{\text{LUMO}} % Matrix elements \newcommand{\A}[1]{A_{#1}} \newcommand{\B}[1]{B_{#1}} \newcommand{\tA}{\Tilde{A}} \newcommand{\tB}{\Tilde{B}} \renewcommand{\S}[1]{S_{#1}} \newcommand{\G}[1]{G_{#1}} \newcommand{\Po}[1]{P_{#1}} \newcommand{\W}[1]{W_{#1}} \newcommand{\Wc}[1]{W^\text{c}_{#1}} \newcommand{\vc}[1]{v_{#1}} \newcommand{\SigX}[1]{\Sigma^\text{x}_{#1}} \newcommand{\SigC}[1]{\Sigma^\text{c}_{#1}} \newcommand{\tSigC}[1]{\Tilde{\Sigma}^\text{c}_{#1}} \newcommand{\SigCp}[1]{\Sigma^\text{p}_{#1}} \newcommand{\SigCh}[1]{\Sigma^\text{h}_{#1}} \newcommand{\SigGW}[1]{\Sigma^\text{\GW}_{#1}} \newcommand{\Z}[1]{Z_{#1}} % Matrices \newcommand{\bG}{\boldsymbol{G}} \newcommand{\bW}{\boldsymbol{W}} \newcommand{\bvc}{\boldsymbol{v}} \newcommand{\bSig}{\boldsymbol{\Sigma}} \newcommand{\bSigX}{\boldsymbol{\Sigma}^\text{x}} \newcommand{\bSigC}{\boldsymbol{\Sigma}^\text{c}} \newcommand{\bSigGW}{\boldsymbol{\Sigma}^\text{\GW}} %\newcommand{\be}{\boldsymbol{\epsilon}} \newcommand{\bDelta}{\boldsymbol{\Delta}} \newcommand{\beHF}{\boldsymbol{\epsilon}^\text{HF}} \newcommand{\beGW}{\boldsymbol{\epsilon}^\text{\GW}} \newcommand{\beGnWn}[1]{\boldsymbol{\epsilon}^\text{\GnWn{#1}}} \newcommand{\bdeGnWn}[1]{\Delta\boldsymbol{\epsilon}^\text{\GnWn{#1}}} \newcommand{\bde}{\boldsymbol{\Delta\epsilon}} \newcommand{\bdeHF}{\boldsymbol{\Delta\epsilon}^\text{HF}} \newcommand{\bdeGW}{\boldsymbol{\Delta\epsilon}^\text{GW}} \newcommand{\bOm}{\boldsymbol{\Omega}} \newcommand{\bA}{\boldsymbol{A}} \newcommand{\bB}{\boldsymbol{B}} \newcommand{\bX}{\boldsymbol{X}} \newcommand{\bY}{\boldsymbol{Y}} \newcommand{\bZ}{\boldsymbol{Z}} \newcommand{\fc}{f_\text{c}} \newcommand{\Vc}{V_\text{c}} \newcommand{\MO}[1]{\phi_{#1}} % coordinates \newcommand{\br}[1]{\mathbf{r}_{#1}} \renewcommand{\b}[1]{\mathbf{#1}} \renewcommand{\d}{\text{d}} \newcommand{\dbr}[1]{d\br{#1}} \renewcommand{\bra}[1]{\ensuremath{\langle #1 \vert}} \renewcommand{\ket}[1]{\ensuremath{\vert #1 \rangle}} \renewcommand{\braket}[2]{\ensuremath{\langle #1 \vert #2 \rangle}} \newcommand{\n}[2]{n_{#1}^{#2}} \newcommand{\rsmu}[2]{\mu_{#1}^{#2}} \newcommand{\ISCD}{Institut des Sciences du Calcul et des Donn\'ees, Sorbonne Universit\'e, Paris, France} \newcommand{\LCPQ}{Laboratoire de Chimie et Physique Quantiques (UMR 5626), Universit\'e de Toulouse, CNRS, UPS, France} \newcommand{\LCT}{Laboratoire de Chimie Th\'eorique (UMR 7616), Sorbonne Universit\'e, CNRS, Paris, France} \newcommand{\IUF}{Institut Universitaire de France, Paris, France} \begin{document} \title{Supplementary Materials for ``A Density-Based Basis-Set Incompleteness Correction for GW Methods''} \author{Pierre-Fran\c{c}ois Loos} \email[Corresponding author: ]{loos@irsamc.ups-tlse.fr} \affiliation{\LCPQ} \author{Barth\'el\'emy Pradines} \affiliation{\LCT} \affiliation{\ISCD} \author{Anthony Scemama} \affiliation{\LCPQ} \author{Emmanuel Giner} \affiliation{\LCT} \author{Julien Toulouse} \email[Corresponding author: ]{toulouse@lct.jussieu.fr} \affiliation{\LCT} \affiliation{\IUF} \begin{abstract} \end{abstract} \maketitle %Macros: \newcommand{\basis}[0]{\mathcal{B}} \newcommand{\efuncbasispbe}[0]{\bar{E}_{\text{srPBE}}^{\basis}[n]} \newcommand{\epspbeueg}[0]{\bar{\varepsilon}^{\text{sr},\text{PBE}}_{\text{c,md}}} \newcommand{\epspbe}[0]{\varepsilon^{\text{PBE}}_{\text{c}}} \newcommand{\potpbeueg}[0]{\bar{v}_{\text{srPBE}}^{\basis}} \newcommand{\potpbe}[0]{v^{\text{PBE}}_{\text{c}}} \section{Complementary short-range correlation potentials} Here, we provide the expressions of the complementary short-range LDA and PBE correlation potentials used in the present work in the case of closed-shell systems. \subsection{Complementary short-range LDA correlation potential} The complementary short-range LDA correlation energy functional with multideterminant reference has the expression~\cite{Toulouse_2005,Paziani_2006} \begin{equation} \label{eq:def_lda_tot} \bE{\srLDA}{\Bas}[\n{}{}] = \int \n{}{}(\br{}) \be{\text{c,md}}{\srLDA}(\n{}{}(\br{}),\rsmu{}{\Bas}(\br{})) \dbr{}, \end{equation} with \begin{equation} \be{\text{c,md}}{\srLDA}(\n{}{},\rsmu{}{}) = \be{\text{c}}{\srLDA}(\n{}{},\rsmu{}{}) + \Delta^{\text{lr-sr}}(n,\mu), \end{equation} with $\be{\text{c,md}}{\srLDA}(\n{}{},\rsmu{}{})$ is the complementary short-range LDA correlation energy functional (with single-determinant reference) and $\Delta^{\text{lr-sr}}(n,\mu)$ is a mixed long-range/short-range contribution, both parametrized in Ref.~\onlinecite{Paziani_2006}. The corresponding complementary srLDA potential is \begin{eqnarray} \bpot{\srLDA}{\Bas}[\n{}{}](\br{}) &=& \frac{\delta \bE{\srLDA}{\Bas}[\n{}{}]}{\delta \n{}{}(\br{})} \nonumber\\ &=& \be{\text{c,md}}{\srLDA}(\n{}{}(\br{}),\rsmu{}{\Bas}(\br{})) \nonumber\\ &&+ n(\br{}) \frac{\partial \be{\text{c,md}}{\srLDA}}{\partial n} (\n{}{}(\br{}),\rsmu{}{\Bas}(\br{})). \end{eqnarray} The density derivative of $\be{\text{c,md}}{\srLDA}$ is calculated as \begin{eqnarray} \frac{\partial \be{\text{c,md}}{\srLDA}}{\partial n} = \frac{\partial \be{\text{c}}{\srLDA}}{\partial n} + \frac{\partial \Delta^{\text{lr-sr}}}{\partial n}, \end{eqnarray} where $\partial \be{\text{c}}{\srLDA}/\partial n$ is given as a subroutine on Paola Gori-Giorgi's web site (\url{https://www.quantummatter.eu/source-codes-2}) and we have calculated $\partial \Delta^{\text{lr-sr}}/\partial n$ by taking the derivative of Eq. (42) of Ref.~\onlinecite{Paziani_2006}. \subsection{Complementary short-range PBE correlation potential} The complementary short-range PBE correlation energy functional with multideterminant reference has the expression~\cite{Loos_2019} \begin{equation} \label{eq:def_pbe} \efuncbasispbe = \int n({\bf r})\epspbeueg(n({\bf r}),s({\bf r}),\mu^{\basis}(\br{})) d\br{}, \end{equation} with \begin{equation} \label{eq:def_epsipbeueg} \epspbeueg(n,s,\mu) = \frac{\epspbe(n,s)}{1+\beta(n,s)\mu^3}. \end{equation} Here, $\epspbe(n,s)$ is the usual PBE correlation functional \cite{Perdew_1996}, $s$ is the reduced density gradient, \begin{equation} \beta(n,s) = \frac{3}{2\sqrt{\pi}(1-\sqrt{2})}\frac{\epspbe(n,s)}{n_2^{\text{UEG}}(n)/n}, \end{equation} and \begin{equation} \label{eq:uegotop} n_2^{\text{UEG}}(n)=n^2g_0(r_\text{s}) \end{equation} is the on-top pair density of the uniform electron gas (UEG). In Eq.~\eqref{eq:uegotop}, $g_0(r_\text{s})$ is the UEG on-top pair-distribution function written as a function of the Wigner-Seitz radius $r_\text{s}=(4\pi n/3)^{-1/3}$. We use the parametrization of $g_0(r_\text{s})$ given in Eq.~(46) of Ref.~\onlinecite{Gori-Giorgi_2006}. The corresponding complementary srPBE potential is \begin{eqnarray} \potpbeueg[n](\br{}) &=& \fdv{\efuncbasispbe}{n(\br{})} \nonumber\\ &=& \epspbeueg(n({\bf r}),s({\bf r}),\mu^{\basis}(\br{})) \nonumber\\ &+& n(\br{}) \pdv{\epspbeueg }{n} (n({\bf r}),s({\bf r}),\mu^{\basis}(\br{})) \nonumber\\ &-& \nabla \cdot \qty( n(\br{}) \pdv{\epspbeueg}{\nabla n} (n({\bf r}),s({\bf r}),\mu^{\basis}(\br{})) ).\,\,\, \end{eqnarray} Hence, we have to compute the density derivative $\partial \epspbeueg/\partial n$ and the density-gradient derivative $\partial \epspbeueg/\partial \nabla n$. \subsubsection{Density derivative} From Eq.~\eqref{eq:def_epsipbeueg}, the density derivative is found to be \begin{equation} \pdv{\epspbeueg }{n} = \frac{1}{1+\beta\mu^3} \pdv{\epspbe}{n} - \frac{\epspbe \mu^3}{(1+\beta\mu^3)^2} \pdv{\beta}{n}, \end{equation} where $\partial \epspbe/\partial n$ is the density derivative of the usual PBE correlation functional, and \begin{eqnarray} \pdv{\beta}{n} &=& \frac{3}{2\sqrt{\pi}(1-\sqrt{2})} \Bigg[ \frac{1}{n_2^{\text{UEG}}/n} \pdv{\epspbe}{n} \nonumber\\ &&\phantom{xxxxx} - \frac{\epspbe}{(n_2^{\text{UEG}}/n)^2} \frac{\partial (n_2^{\text{UEG}}/n)}{\partial n} \Bigg]. \end{eqnarray} The only remaining missing part is the derivative of $n_2^{\text{UEG}}/n$ which is \begin{equation} \pdv{(n_2^{\text{UEG}}/n)}{n} = \pdv{[n g_0(r_\text{s})]}{n} = g_0(r_\text{s})+ n \pdv{g_0(r_\text{s})}{n}, \end{equation} with \begin{equation} \pdv{g_0(r_\text{s})}{n} = \pdv{r_\text{s}}{n} \pdv{g_0(r_\text{s})}{r_\text{s}} = -(6 n^{2}\sqrt{\pi})^{-2/3} \pdv{g_0(r_\text{s})}{r_\text{s}}. \end{equation} Finally, we calculate $\partial g_0(r_\text{s}) /\partial r_\text{s}$ by taking the derivative of Eq.~(46) of Ref.~\onlinecite{Gori-Giorgi_2006} \begin{equation} \begin{aligned} \pdv{g_0(r_\text{s})}{r_\text{s}} & = \frac{e^{-F\,r_\text{s}}}{2} \big[ (-B + 2 C r_\text{s} + 3 D r_\text{s}^2 + 4 E r_\text{s}^3) \\ & - F (1 - B r_\text{s} + C r_\text{s}^2 + D r_\text{s}^3 + E r_\text{s}^4) \big], \end{aligned} \end{equation} with $C = 0.0819306$, $F = 0.752411$, $D = -0.0127713$, $E =0.00185898$, and $B = 0.7317 - F$. \subsubsection{Density-gradient derivative} For the density-gradient derivative, we use the chain rule \begin{equation} \pdv{\epspbeueg}{\nabla n} = \pdv{\epspbeueg}{\epspbe}\pdv{\epspbe}{\nabla n}, \end{equation} where $\partial \epspbe/\partial \nabla n$ is the density-gradient derivative of the usual PBE correlation functional, and \begin{equation} \pdv{\epspbeueg}{\epspbe} = \frac{1}{1+\beta\mu^3} - \frac{\epspbe \mu^3}{(1+\beta\mu^3)^2} \pdv{\beta}{\epspbe}, \end{equation} with \begin{equation} \pdv{\beta}{\epspbe}= \frac{3}{2\sqrt{\pi}(1-\sqrt{2})}\frac{1}{n_2^{\text{UEG}}/n}. \end{equation} \section{Additional graphs of the convergence of the IPs of the GW20 subset} Graphs reporting the convergence of the IPs of each molecule of the GW20 subset at the {\GOWO}@{\HF} and {\GOWO}@{\PBEO} levels are given in Figure~\ref{fig:IP_G0W0HF} and~\ref{fig:IP_G0W0PBE0}, respectively. \begin{figure*} \includegraphics[width=\linewidth]{IP_G0W0HF} \caption{ IPs (in eV) computed at the {\GOWO}@HF (black circles), {\GOWO}@HF+srLDA (red squares), and {\GOWO}@HF+srPBE (blue diamonds) levels of theory with increasingly large Dunning's basis sets (cc-pVDZ, cc-pVTZ, cc-pVQZ, and cc-pV5Z) for the 20 smallest molecules of the GW100 set. The thick black line represents the CBS value obtained by extrapolation with the three largest basis sets. \label{fig:IP_G0W0HF} } \end{figure*} \begin{figure*} \includegraphics[width=\linewidth]{IP_G0W0PBE0} \caption{ IPs (in eV) computed at the {\GOWO}@PBE0 (black circles), {\GOWO}@PBE0+srLDA (red squares), and {\GOWO}@PBE0+srPBE (blue diamonds) levels of theory with increasingly large Dunning's basis sets (cc-pVDZ, cc-pVTZ, cc-pVQZ, and cc-pV5Z) for the 20 smallest molecules of the GW100 set. The thick black line represents the CBS value obtained by extrapolation with the three largest basis sets. \label{fig:IP_G0W0PBE0} } \end{figure*} \bibliography{../GW-srDFT,../GW-srDFT-control} \end{document}