two-electron integrals
This commit is contained in:
parent
40a24bebd3
commit
e8ad26aa33
@ -193,7 +193,7 @@ According to Eq.~(15) of Ref.~\onlinecite{GinPraFerAssSavTou-JCP-18}, assuming t
|
|||||||
\approx \E{\modY}{\Bas}
|
\approx \E{\modY}{\Bas}
|
||||||
+ \bE{}{\Bas}[\n{\modZ}{\Bas}],
|
+ \bE{}{\Bas}[\n{\modZ}{\Bas}],
|
||||||
\end{equation}
|
\end{equation}
|
||||||
where
|
where
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\label{eq:E_funcbasis}
|
\label{eq:E_funcbasis}
|
||||||
\bE{}{\Bas}[\n{}{}]
|
\bE{}{\Bas}[\n{}{}]
|
||||||
@ -244,13 +244,13 @@ where
|
|||||||
\n{2}{}(\br{1},\br{2})
|
\n{2}{}(\br{1},\br{2})
|
||||||
= \sum_{pqrs \in \Bas} \SO{p}{1} \SO{q}{2} \Gam{pq}{rs} \SO{r}{1} \SO{s}{2},
|
= \sum_{pqrs \in \Bas} \SO{p}{1} \SO{q}{2} \Gam{pq}{rs} \SO{r}{1} \SO{s}{2},
|
||||||
\end{equation}
|
\end{equation}
|
||||||
and $\Gam{pq}{rs} =\mel*{\wf{}{\Bas}}{ \aic{r_\downarrow}\aic{s_\uparrow}\ai{p_\uparrow}\ai{q_\downarrow}}{\wf{}{\Bas}}$ are the opposite-spin pair density associated with $\wf{}{\Bas}$ and its corresponding tensor (respectively), $\SO{p}{}$ is a molecular orbital (MO),
|
and $\Gam{pq}{rs} =\mel*{\wf{}{\Bas}}{ \aic{r_\downarrow}\aic{s_\uparrow}\ai{p_\uparrow}\ai{q_\downarrow}}{\wf{}{\Bas}}$ are the opposite-spin pair density associated with $\wf{}{\Bas}$ and its corresponding tensor, respectively, $\SO{p}{}$ is a (real-valued) molecular orbital (MO),
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\label{eq:fbasis}
|
\label{eq:fbasis}
|
||||||
\f{\Bas}{}(\br{1},\br{2})
|
\f{\Bas}{}(\br{1},\br{2})
|
||||||
= \sum_{pqrstu \in \Bas} \SO{p}{1} \SO{q}{2} \V{pq}{rs} \Gam{rs}{tu} \SO{t}{1} \SO{u}{2},
|
= \sum_{pqrstu \in \Bas} \SO{p}{1} \SO{q}{2} \V{pq}{rs} \Gam{rs}{tu} \SO{t}{1} \SO{u}{2},
|
||||||
\end{equation}
|
\end{equation}
|
||||||
and $\V{pq}{rs}$ are the usual two-electron Coulomb integrals.
|
and $\V{pq}{rs}=\langle pq | rs \rangle$ are the usual two-electron Coulomb integrals.
|
||||||
With such a definition, $\W{\Bas}{}(\br{1},\br{2})$ satisfies (see Appendix A of Ref.~\onlinecite{GinPraFerAssSavTou-JCP-18})
|
With such a definition, $\W{\Bas}{}(\br{1},\br{2})$ satisfies (see Appendix A of Ref.~\onlinecite{GinPraFerAssSavTou-JCP-18})
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\label{eq:int_eq_wee}
|
\label{eq:int_eq_wee}
|
||||||
|
Loading…
Reference in New Issue
Block a user