diff --git a/Manuscript/G2-srDFT.tex b/Manuscript/G2-srDFT.tex index 8ae8c32..873d17f 100644 --- a/Manuscript/G2-srDFT.tex +++ b/Manuscript/G2-srDFT.tex @@ -193,7 +193,7 @@ According to Eq.~(15) of Ref.~\onlinecite{GinPraFerAssSavTou-JCP-18}, assuming t \approx \E{\modY}{\Bas} + \bE{}{\Bas}[\n{\modZ}{\Bas}], \end{equation} -where +where \begin{equation} \label{eq:E_funcbasis} \bE{}{\Bas}[\n{}{}] @@ -244,13 +244,13 @@ where \n{2}{}(\br{1},\br{2}) = \sum_{pqrs \in \Bas} \SO{p}{1} \SO{q}{2} \Gam{pq}{rs} \SO{r}{1} \SO{s}{2}, \end{equation} -and $\Gam{pq}{rs} =\mel*{\wf{}{\Bas}}{ \aic{r_\downarrow}\aic{s_\uparrow}\ai{p_\uparrow}\ai{q_\downarrow}}{\wf{}{\Bas}}$ are the opposite-spin pair density associated with $\wf{}{\Bas}$ and its corresponding tensor (respectively), $\SO{p}{}$ is a molecular orbital (MO), +and $\Gam{pq}{rs} =\mel*{\wf{}{\Bas}}{ \aic{r_\downarrow}\aic{s_\uparrow}\ai{p_\uparrow}\ai{q_\downarrow}}{\wf{}{\Bas}}$ are the opposite-spin pair density associated with $\wf{}{\Bas}$ and its corresponding tensor, respectively, $\SO{p}{}$ is a (real-valued) molecular orbital (MO), \begin{equation} \label{eq:fbasis} \f{\Bas}{}(\br{1},\br{2}) = \sum_{pqrstu \in \Bas} \SO{p}{1} \SO{q}{2} \V{pq}{rs} \Gam{rs}{tu} \SO{t}{1} \SO{u}{2}, \end{equation} -and $\V{pq}{rs}$ are the usual two-electron Coulomb integrals. +and $\V{pq}{rs}=\langle pq | rs \rangle$ are the usual two-electron Coulomb integrals. With such a definition, $\W{\Bas}{}(\br{1},\br{2})$ satisfies (see Appendix A of Ref.~\onlinecite{GinPraFerAssSavTou-JCP-18}) \begin{equation} \label{eq:int_eq_wee}