still working on the notations

This commit is contained in:
Pierre-Francois Loos 2019-04-11 21:30:23 +02:00
parent d4f80c67c9
commit 308830cf20

View File

@ -385,9 +385,9 @@ Of course, there exists \textit{a priori} an infinite set of functions in $\math
\label{eq:lim_W} \label{eq:lim_W}
\lim_{\Bas \to \infty}\W{\Bas}{}(\br{1},\br{2}) = r_{12}^{-1}\ \lim_{\Bas \to \infty}\W{\Bas}{}(\br{1},\br{2}) = r_{12}^{-1}\
\end{equation} \end{equation}
for all points $(\br{1},\br{2})$ such that $\n{2}{}(\br{1},\br{2}) \ne 0$ and for any choice of $\wf{}{\Bas}$, which therefore guarantees a physically satisfying limit. for any $(\br{1},\br{2})$ such that $\n{2}{}(\br{1},\br{2}) \ne 0$ and for any $\wf{}{\Bas}$, which therefore guarantees a physically satisfying limit.
An important point here is that, with the present definition of $\W{\Bas}{}(\br{1},\br{2})$, one can quantify the effect of the incompleteness of $\Bas$ on the Coulomb operator itself as a removal of the divergence of the two-electron interaction near the electron coalescence. An important point here is that, with the present definition of $\W{\Bas}{}(\br{1},\br{2})$, one can quantify the effect of the incompleteness of $\Bas$ on the Coulomb operator itself as a removal of the divergence of the two-electron interaction near the electron coalescence.
As it has been shown in Ref.~\onlinecite{GinPraFerAssSavTou-JCP-18} (see for instance Fig 1,2 and 3 therein), choosing a HF wave function as $\wf{}{\Bas}$ to define the effective interaction $\W{\Bas}{}(\br{1},\br{2})$ already provides a quantitative representation of the incompleteness of the basis set $\Bas$ for weakly correlated systems. As shown in Ref.~\onlinecite{GinPraFerAssSavTou-JCP-18}, choosing a HF wave function as $\wf{}{\Bas}$ to define the effective interaction $\W{\Bas}{}(\br{1},\br{2})$ already provides a quantitative representation of the incompleteness of $\Bas$ for weakly correlated systems.
%================================================================= %=================================================================
%\subsection{Range-separation function} %\subsection{Range-separation function}
@ -402,6 +402,7 @@ such that the long-range interaction $\w{}{\lr,\rsmu{\Bas}{}}(\br{1},\br{2})$
\begin{equation} \begin{equation}
\w{}{\lr,\rsmu{\Bas}{}}(\br{1},\br{2}) = \frac{1}{2} \qty{ \frac{\erf[ \rsmu{\Bas}{}(\br{1}) r_{12}]}{r_{12}} + \frac{\erf[ \rsmu{\Bas}{}(\br{2}) r_{12}]}{ r_{12}} } \w{}{\lr,\rsmu{\Bas}{}}(\br{1},\br{2}) = \frac{1}{2} \qty{ \frac{\erf[ \rsmu{\Bas}{}(\br{1}) r_{12}]}{r_{12}} + \frac{\erf[ \rsmu{\Bas}{}(\br{2}) r_{12}]}{ r_{12}} }
\end{equation} \end{equation}
\PFL{This expression looks like a cheap spherical average.}
coincides with the effective interaction $\W{\Bas}{}(\br{})$ for all points in $\mathbb{R}^3$ coincides with the effective interaction $\W{\Bas}{}(\br{})$ for all points in $\mathbb{R}^3$
\begin{equation} \begin{equation}
\w{}{\lr,\rsmu{\Bas}{}}(\br{},\br{}) = \W{\Bas}{}(\br{}). \w{}{\lr,\rsmu{\Bas}{}}(\br{},\br{}) = \W{\Bas}{}(\br{}).
@ -521,7 +522,7 @@ Therefore, the PBE complementary functional reads
\label{eq:def_pbe_tot} \label{eq:def_pbe_tot}
\bE{\PBE}{\sr}[\n{}{}(\br{}),\rsmu{}{}(\br{})] = \int \be{\PBE}{\sr}\big(\n{}{}(\br{}),\nabla \n{}{}(\br{}),\rsmu{}{}(\br{})\big) \n{}{}(\br{}) \dbr{}. \bE{\PBE}{\sr}[\n{}{}(\br{}),\rsmu{}{}(\br{})] = \int \be{\PBE}{\sr}\big(\n{}{}(\br{}),\nabla \n{}{}(\br{}),\rsmu{}{}(\br{})\big) \n{}{}(\br{}) \dbr{}.
\end{equation} \end{equation}
Depending on the functional choice, the complementary functional $\bE{}{\Bas}[\n{\wf{}{\Bas}}{}]$ is then equal to $\bE{\LDA}{\sr}[\n{\wf{}{\Bas}}{}(\br{}),\rsmu{\Bas}{}(\br{})]$ or $\bE{\PBE}{\sr}[\n{\wf{}{\Bas}}{}(\br{}),\rsmu{\Bas}{}(\br{})]$ where $\rsmu{\Bas}{}(\br{})$ is given by Eq.~\eqref{eq:mu_of_r}. Depending on the functional choice, the complementary functional $\bE{}{\Bas}[\n{\modY}{}]$ is then equal to $\bE{\LDA}{\sr}[\n{\modY}{}(\br{}),\rsmu{\Bas}{}(\br{})]$ or $\bE{\PBE}{\sr}[\n{\modY}{}(\br{}),\rsmu{\Bas}{}(\br{})]$ where $\rsmu{\Bas}{}(\br{})$ is given by Eq.~\eqref{eq:mu_of_r}.
%The general scheme for estimating $\ecompmodel$ is the following. Consider a given approximated ECMD functional $\ecmuapprox$ labelled by ECMD-$\mathcal{X}$. %The general scheme for estimating $\ecompmodel$ is the following. Consider a given approximated ECMD functional $\ecmuapprox$ labelled by ECMD-$\mathcal{X}$.
%Such a functional of the density $\denr$ (and potentially its derivatives $\nabla \denr$) is defined for any value of the range-separation parameter $\mu$. %Such a functional of the density $\denr$ (and potentially its derivatives $\nabla \denr$) is defined for any value of the range-separation parameter $\mu$.
@ -546,35 +547,34 @@ We then naturally split the basis set as $\Bas = \Cor \bigcup \Val$, where $\Cor
%According to Eqs.~\eqref{eq:expectweeb} and \eqref{eq:def_weebasis} , the effective interaction is defined by the expectation value of the coulomb operator over a wave function $\wf{}{\Bas}$. %According to Eqs.~\eqref{eq:expectweeb} and \eqref{eq:def_weebasis} , the effective interaction is defined by the expectation value of the coulomb operator over a wave function $\wf{}{\Bas}$.
We therefore define the valence-only effective interaction We therefore define the valence-only effective interaction
\begin{equation} \begin{equation}
% \label{eq:Wval} \W{\Bas}{\Val}(\br{1},\br{2}) =
\W{\wf{}{\Bas}}{\Val}(\br{1},\br{2}) = \left\{ \begin{cases}
\begin{array}{ll} \f{\Bas}{\Val}(\br{1},\br{2})/\n{2}{\Val}(\br{1},\br{2}), & \text{if $\n{2}{\Val}(\br{1},\br{2})\ne 0$},
\f{\wf{}{\Bas}}{\Val}(\br{1},\br{2})/\n{2}{\wf{}{\Bas},\Val}(\br{1},\br{2}) & \mbox{if } \n{2}{\wf{}{\Bas},\Val}(\br{1},\br{2})\ne 0\\ \\
\,\,\,\,+\infty & \mbox{otherwise. } \infty, & \text{otherwise,}
\end{array} \end{cases}
\right.
\end{equation} \end{equation}
with with
\begin{subequations} \begin{subequations}
\begin{gather} \begin{gather}
\label{eq:fbasisval} \label{eq:fbasisval}
\f{\wf{}{\Bas}}{\Val}(\br{1},\br{2}) \f{\Bas}{\Val}(\br{1},\br{2})
= \sum_{pq \in \Bas} \sum_{rstu \in \Val} \SO{p}{1} \SO{q}{2} \V{pq}{rs} \Gam{rs}{tu}[{\wf{}{\Bas}}] \SO{t}{1} \SO{u}{2}, = \sum_{pq \in \Bas} \sum_{rstu \in \Val} \SO{p}{1} \SO{q}{2} \V{pq}{rs} \Gam{rs}{tu}[{\wf{}{\Bas}}] \SO{t}{1} \SO{u}{2},
\\ \\
\n{2}{\wf{}{\Bas},\Val}(\br{1},\br{2}) \n{2}{\Val}(\br{1},\br{2})
= \sum_{pqrs \in \Val} \SO{p}{1} \SO{q}{2} \Gam{pq}{rs}[\wf{}{\Bas}] \SO{r}{1} \SO{s}{2}, = \sum_{pqrs \in \Val} \SO{p}{1} \SO{q}{2} \Gam{pq}{rs} \SO{r}{1} \SO{s}{2},
\end{gather} \end{gather}
\end{subequations} \end{subequations}
and the corresponding valence range separation function $\rsmu{\wf{}{\Bas}}{\Val}(\br{})$ and the corresponding valence range separation function $\rsmu{\Bas}{\Val}(\br{})$
\begin{equation} \begin{equation}
\label{eq:muval} \label{eq:muval}
\rsmu{\wf{}{\Bas}}{\Val}(\br{}) = \frac{\sqrt{\pi}}{2} \W{\wf{}{\Bas}}{\Val}(\br{},\br{}). \rsmu{\Bas}{\Val}(\br{}) = \frac{\sqrt{\pi}}{2} \W{\Bas}{\Val}(\br{},\br{}).
\end{equation} \end{equation}
%\begin{equation} %\begin{equation}
% \twodmrdiagpsival = \sum_{klmn \in \Val} \SO{m}{1} \SO{n}{2} \gammamnkl[\wf{}{\Bas}] \SO{k}{1} \SO{l}{2} . % \twodmrdiagpsival = \sum_{klmn \in \Val} \SO{m}{1} \SO{n}{2} \gammamnkl[\wf{}{\Bas}] \SO{k}{1} \SO{l}{2} .
%\end{equation} %\end{equation}
%It is worth noting that, in Eq.~\eqref{eq:fbasisval} the difference between the set of orbitals for the indices $(i,j)$, which span the full set of MOs within $\Bas$, and the $(k,l,m,n)$, which span only the valence space $\Basval$. Only with such a definition, one can show (see annex) that $\fbasisval$ fulfills \eqref{eq:expectweebval} and tends to the exact interaction $1/r_{12}$ in the limit of a complete basis set $\Bas$, whatever the choice of subset $\Basval$. %It is worth noting that, in Eq.~\eqref{eq:fbasisval} the difference between the set of orbitals for the indices $(i,j)$, which span the full set of MOs within $\Bas$, and the $(k,l,m,n)$, which span only the valence space $\Basval$. Only with such a definition, one can show (see annex) that $\fbasisval$ fulfills \eqref{eq:expectweebval} and tends to the exact interaction $1/r_{12}$ in the limit of a complete basis set $\Bas$, whatever the choice of subset $\Basval$.
It is worth noting that, within the present definition, $\W{\wf{}{\Bas}}{\Val}(\br{1},\br{2})$ still satisfies Eq.~\eqref{eq:lim_W}. It is worth noting that, within the present definition, $\W{\Bas}{\Val}(\br{1},\br{2})$ still satisfies Eq.~\eqref{eq:lim_W}.
%We now introduce a valence-only approximation for the complementary functional which is needed to correct for frozen core WFT models. %We now introduce a valence-only approximation for the complementary functional which is needed to correct for frozen core WFT models.
%Defining the valence one-body spin density matrix as %Defining the valence one-body spin density matrix as
@ -597,7 +597,7 @@ It is worth noting that, within the present definition, $\W{\wf{}{\Bas}}{\Val}(\
% \label{eq:def_lda_tot} % \label{eq:def_lda_tot}
% \ecompmodelpbeval = \int \, \text{d}{\bf r} \,\, \bar{e}_{\text{c,md}}^\text{PBE}(\denval({\bf r}),\nabla \denval({\bf r});\,\murval) % \ecompmodelpbeval = \int \, \text{d}{\bf r} \,\, \bar{e}_{\text{c,md}}^\text{PBE}(\denval({\bf r}),\nabla \denval({\bf r});\,\murval)
%\end{equation} %\end{equation}
Defining $\n{\wf{}{\Bas}}{\Val}$ as the valence one-electron density, the valence part of the complementary functional $\bE{}{\Val}[\n{\wf{}{\Bas}}{\Val}]$ is then evaluated as $\bE{\LDA}{\sr}[\n{\wf{}{\Bas}}{\Val}(\br{}),\rsmu{\wf{}{\Bas}}{\Val}(\br{})]$ or $\bE{\PBE}{\sr}[\n{\wf{}{\Bas}}{\Val}(\br{}),\rsmu{\wf{}{\Bas}}{\Val}(\br{})]$. Defining $\n{\modY}{\Val}$ as the valence one-electron density obtained with the model $\modY$, the valence part of the complementary functional $\bE{}{\Val}[\n{\modY}{\Val}]$ is then evaluated as $\bE{\LDA}{\sr}[\n{\modY}{\Val}(\br{}),\rsmu{\Bas}{\Val}(\br{})]$ or $\bE{\PBE}{\sr}[\n{\modY}{\Val}(\br{}),\rsmu{\Bas}{\Val}(\br{})]$.
Regarding now the main computational source of the present approach, it consists in the evaluation Regarding now the main computational source of the present approach, it consists in the evaluation
of $\W{\Bas}{}(\br{})$ [See Eqs.~\eqref{eq:wcoal}] at each quadrature grid point. of $\W{\Bas}{}(\br{})$ [See Eqs.~\eqref{eq:wcoal}] at each quadrature grid point.