This commit is contained in:
Pierre-Francois Loos 2019-06-08 12:41:10 -04:00
parent 642c4f701a
commit faf9ead266
6 changed files with 176 additions and 36 deletions

BIN
Cover_Letter/CNRS_logo.pdf Normal file

Binary file not shown.

View File

@ -0,0 +1,41 @@
\documentclass[10pt]{letter}
\usepackage{UPS_letterhead,xcolor,mhchem,mathpazo,ragged2e}
\newcommand{\alert}[1]{\textcolor{red}{#1}}
\definecolor{darkgreen}{HTML}{009900}
\begin{document}
\begin{letter}%
{To the Editors of the Journal of Chemical Theory and Computation}
\opening{Dear Editors,}
\justifying
Please find enclosed our manuscript entitled
\begin{quote}
\textit{``Chemically-Accurate Excitation Energies With Small Basis Sets''},
\end{quote}
which we would like you to consider as a Regular Article in the \textit{Journal of Chemical Theory and Computation}.
This contribution nicely fits in the \textit{``Quantum Electronic Structure''} section.
Due to their diverse nature, the faithful description of excited states within electronic structure theory methods remains one of the grand challenges of modern theoretical chemistry.
In the present article, we show that, by combining selected configuration interaction methods and the recently proposed density-based basis set correction [see Giner et al., J. Chem. Phys. 149 (2018) 194301] one can obtain chemically-accurate vertical and adiabatic excitation energies with typically augmented double-$\zeta$ basis sets.
This nicely complements our recent investigation on ground-state properties [see Loos et al., J. Phys. Chem. Lett. 10 (2019) 2931] which has evidenced that one recovers quintuple-$\zeta$ quality atomization and correlation energies with triple-$\zeta$ basis sets for a much lower computational cost than F12 methods.
The present density-based correction relies on short-range correlation density functionals (with multideterminant reference) from range-separated density-functional theory to capture the missing part of the short-range correlation effects, a consequence of the incompleteness of the one-electron basis set.
We suggest Sandip Sharma, David Tew, Claudia Filippi, Eric Neuscamman and Emmanuel Fromager as potential referees.
This contribution has never been submitted in total nor in parts to any other journal, and has been seen and approved by all authors.
We look forward to hearing from you.
\closing{Sincerely, the authors.}
\end{letter}
\end{document}

View File

@ -0,0 +1,70 @@
%ANU etterhead Yves
%version 1.0 12/06/08
%need to be improved
\RequirePackage{graphicx}
%%%%%%%%%%%%%%%%%%%%% DEFINE USER-SPECIFIC MACROS BELOW %%%%%%%%%%%%%%%%%%%%%
\def\Who {Pierre-Fran\c{c}ois Loos}
\def\What {Dr}
\def\Where {Universit\'e Paul Sabatier}
\def\Address {Laboratoire de Chimie et Physique Quantiques}
\def\CityZip {Toulouse, France}
\def\Email {loos@irsamc.ups-tlse.fr}
\def\TEL {+33 5 61 55 73 39}
\def\URL {} % NOTE: use $\sim$ for tilde
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% MARGINS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\textwidth 6in
\textheight 9.25in
\oddsidemargin 0.25in
\evensidemargin 0.25in
\topmargin -1.50in
\longindentation 0.50\textwidth
\parindent 5ex
%%%%%%%%%%%%%%%%%%%%%%%%%%% ADDRESS MACRO BELOW %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\address{
\includegraphics[height=0.7in]{CNRS_logo.pdf} \hspace*{\fill}\includegraphics[height=0.7in]{UPS_logo.pdf}
\\
\hrulefill
\\
{\small \What~\Who\hspace*{\fill} Telephone:\ \TEL
\\
\Where\hspace*{\fill} Email:\ \Email
\\
\Address\hspace*{\fill}
\\
\CityZip\hspace*{\fill} \URL}
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%% OTHER MACROS BELOW %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\signature{\What~\Who}
\def\opening#1{\ifx\@empty\fromaddress
\thispagestyle{firstpage}
\hspace*{\longindendation}\today\par
\else \thispagestyle{empty}
{\centering\fromaddress \vspace{5\parskip} \\
\today\hspace*{\fill}\par}
\fi
\vspace{3\parskip}
{\raggedright \toname \\ \toaddress \par}\vspace{3\parskip}
\noindent #1\par\raggedright\parindent 5ex\par
}
%I do not know what does the macro below
%\long\def\closing#1{\par\nobreak\vspace{\parskip}
%\stopbreaks
%\noindent
%\ifx\@empty\fromaddress\else
%\hspace*{\longindentation}\fi
%\parbox{\indentedwidth}{\raggedright
%\ignorespaces #1\vskip .65in
%\ifx\@empty\fromsig
%\else \fromsig \fi\strut}
%\vspace*{\fill}
% \par}

BIN
Cover_Letter/UPS_logo.pdf Normal file

Binary file not shown.

View File

@ -514,7 +514,7 @@ However, these results also clearly evidence that special care has to be taken f
\begin{squeezetable}
\begin{table*}
\caption{
Vertical absorption energies $\Eabs$ (in eV) of excited states of ammonia, carbon dimer, water and ethylene for various methods and basis sets.
Vertical absorption energies $\Eabs$ (in eV) of excited states of ammonia, carbon dimer, carbon monoxyde, ethylene and water for various methods and basis sets.
The TBEs have been extracted from Refs.~\onlinecite{LooSceBloGarCafJac-JCTC-18, LooBogSceCafJac-JCTC-19} on the same geometries.
See the {\SI} for raw data.}
\label{tab:Mol}
@ -561,12 +561,6 @@ However, these results also clearly evidence that special care has to be taken f
& -0.07 & -0.01 & -0.03
\\
\\
Carbon monoxide & $1\,^{1}\Sigma_g^+ \ra 1\,^{1}\Pi$ & Val. & 8.48\fnm[1] & 0.09 & 0.01 & 0.02
& 0.05 & 0.00 &
& 0.07 & 0.01 &
& 0.07 & 0.00 &
\\
\\
Carbon dimer & $1\,^{1}\Sigma_g^+ \ra 1\,^{1}\Delta_g$ & Val. & 2.06\fnm[3] & 0.15 & 0.03 & 0.00
& 0.02 & -0.02 & -0.02
& 0.13 & 0.02 & 0.00
@ -578,35 +572,10 @@ However, these results also clearly evidence that special care has to be taken f
& 0.11 & 0.02 & 0.00
\\
\\
Water & $1\,^{1}A_1 \ra 1\,^{1}B_1$ & Ryd. & 7.70\fnm[1] & -0.17 & -0.07 & -0.02
& 0.01 & 0.00 & 0.02
& -0.02 & -0.01 & 0.00
& -0.04 & -0.01 & 0.01
\\
& $1\,^{1}A_1 \ra 1\,^{1}A_2$ & Ryd. & 9.47\fnm[1] & -0.15 & -0.06 & -0.01
& 0.03 & 0.01 & 0.03
& 0.00 & 0.00 & 0.02
& -0.03 & 0.00 & 0.00
\\
& $1\,^{1}A_1 \ra 2\,^{1}A_1$ & Ryd. & 9.97\fnm[1] & -0.03 & 0.02 & 0.06
& 0.13 & 0.08 & 0.09
& 0.10 & 0.07 & 0.08
& 0.09 & 0.07 & 0.03
\\
& $1\,^{1}A_1 \ra 1\,^{3}B_1$ & Ryd. & 7.33\fnm[1] & -0.19 & -0.08 & -0.03
& 0.02 & 0.00 & 0.02
& 0.05 & 0.01 & 0.02
& 0.00 & 0.00 & 0.04
\\
& $1\,^{1}A_1 \ra 1\,^{3}A_2$ & Ryd. & 9.30\fnm[1] & -0.16 & -0.06 & -0.01
& 0.04 & 0.02 & 0.04
& 0.07 & 0.03 & 0.04
& 0.03 & 0.03 & 0.04
\\
& $1\,^{1}A_1 \ra 1\,^{3}A_1$ & Ryd. & 9.59\fnm[1] & -0.11 & -0.05 & -0.01
& 0.07 & 0.02 & 0.03
& 0.09 & 0.03 & 0.03
& 0.06 & 0.03 & 0.04
Carbon monoxide & $1\,^{1}\Sigma^+ \ra 1\,^{1}\Pi$ & Val. & 8.48\fnm[1] & 0.09 & 0.01 & 0.02
& 0.05 & 0.00 &
& 0.07 & 0.01 &
& 0.07 & 0.00 &
\\
\\
Ethylene & $1\,^{1}A_{1g} \ra 1\,^{1}B_{3u}$ & Ryd. & 7.43\fnm[3] & -0.12 & -0.04 &
@ -640,6 +609,37 @@ However, these results also clearly evidence that special care has to be taken f
& 0.05 & 0.04 &
\\
\\
Water & $1\,^{1}A_1 \ra 1\,^{1}B_1$ & Ryd. & 7.70\fnm[1] & -0.17 & -0.07 & -0.02
& 0.01 & 0.00 & 0.02
& -0.02 & -0.01 & 0.00
& -0.04 & -0.01 & 0.01
\\
& $1\,^{1}A_1 \ra 1\,^{1}A_2$ & Ryd. & 9.47\fnm[1] & -0.15 & -0.06 & -0.01
& 0.03 & 0.01 & 0.03
& 0.00 & 0.00 & 0.02
& -0.03 & 0.00 & 0.00
\\
& $1\,^{1}A_1 \ra 2\,^{1}A_1$ & Ryd. & 9.97\fnm[1] & -0.03 & 0.02 & 0.06
& 0.13 & 0.08 & 0.09
& 0.10 & 0.07 & 0.08
& 0.09 & 0.07 & 0.03
\\
& $1\,^{1}A_1 \ra 1\,^{3}B_1$ & Ryd. & 7.33\fnm[1] & -0.19 & -0.08 & -0.03
& 0.02 & 0.00 & 0.02
& 0.05 & 0.01 & 0.02
& 0.00 & 0.00 & 0.04
\\
& $1\,^{1}A_1 \ra 1\,^{3}A_2$ & Ryd. & 9.30\fnm[1] & -0.16 & -0.06 & -0.01
& 0.04 & 0.02 & 0.04
& 0.07 & 0.03 & 0.04
& 0.03 & 0.03 & 0.04
\\
& $1\,^{1}A_1 \ra 1\,^{3}A_1$ & Ryd. & 9.59\fnm[1] & -0.11 & -0.05 & -0.01
& 0.07 & 0.02 & 0.03
& 0.09 & 0.03 & 0.03
& 0.06 & 0.03 & 0.04
\\
\\
\end{tabular}
\end{ruledtabular}
\fnt[1]{exFCI/AVQZ data corrected with the difference between CC3/d-AV5Z and exFCI/AVQZ values. \cite{LooSceBloGarCafJac-JCTC-18}}
@ -679,6 +679,15 @@ However, these results also clearly evidence that special care has to be taken f
To do so, we consider the first singlet excited state of carbon monoxide (vertical excitation energies are reported in Table \ref{tab:Mol}).
Figure \ref{fig:mu} represent $\rsmu{}{}(\br{})$ for the ground and excited states for the AVDZ, AVTZ and AVQZ basis sets.}
%%% FIG 3 %%%
\begin{figure}
\includegraphics[width=\linewidth]{CO}
\caption{$\rsmu{}{\Bas}(z)$ along the molecular axis ($z$) for the ground state and first singlet excited state of \ce{CO} for various basis sets $\Bas$.
The carbon and oxygen nuclei are located at $z=-1.249$ and $z=0.893$ bohr, respectively.}
\label{fig:CO}
\end{figure}
%%% %%% %%%
%=======================
\subsection{Doubly-Excited States of the Carbon Dimer}
\label{sec:C2}

View File

@ -199,6 +199,15 @@ C 0.000000 0.000000 0.624021
C 0.000000 0.000000 -0.624021
\end{verbatim}
%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Carbon monoxyde}
%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{verbatim}
C 0.000000 0.000000 -1.249421
0 0.000000 0.000000 0.892667
\end{verbatim}
%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Ethylene}
%%%%%%%%%%%%%%%%%%%%%%%%%%%
@ -440,6 +449,17 @@ Here, we report the absolute energetic corrections for each state of each molecu
& -0.049\,208 & -0.021\,292 & -0.01\,0257
\\
\\
Carbon monoxyde & $1\,^{1}\Sigma^+$
& & &
& & &
& & &
\\
& $1\,^{1}\Pi$
& & &
& & &
& & &
\\
\\
Water & $1\,^{1}A_1$
& -0.058\,765 & -0.024\,014 & -0.011\,990
& -0.066\,603 & -0.027\,236 & -0.013\,127