cover
This commit is contained in:
parent
642c4f701a
commit
faf9ead266
BIN
Cover_Letter/CNRS_logo.pdf
Normal file
BIN
Cover_Letter/CNRS_logo.pdf
Normal file
Binary file not shown.
41
Cover_Letter/CoverLetter.tex
Normal file
41
Cover_Letter/CoverLetter.tex
Normal file
@ -0,0 +1,41 @@
|
||||
\documentclass[10pt]{letter}
|
||||
\usepackage{UPS_letterhead,xcolor,mhchem,mathpazo,ragged2e}
|
||||
\newcommand{\alert}[1]{\textcolor{red}{#1}}
|
||||
\definecolor{darkgreen}{HTML}{009900}
|
||||
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{letter}%
|
||||
{To the Editors of the Journal of Chemical Theory and Computation}
|
||||
|
||||
\opening{Dear Editors,}
|
||||
|
||||
\justifying
|
||||
Please find enclosed our manuscript entitled
|
||||
\begin{quote}
|
||||
\textit{``Chemically-Accurate Excitation Energies With Small Basis Sets''},
|
||||
\end{quote}
|
||||
which we would like you to consider as a Regular Article in the \textit{Journal of Chemical Theory and Computation}.
|
||||
This contribution nicely fits in the \textit{``Quantum Electronic Structure''} section.
|
||||
|
||||
Due to their diverse nature, the faithful description of excited states within electronic structure theory methods remains one of the grand challenges of modern theoretical chemistry.
|
||||
In the present article, we show that, by combining selected configuration interaction methods and the recently proposed density-based basis set correction [see Giner et al., J. Chem. Phys. 149 (2018) 194301] one can obtain chemically-accurate vertical and adiabatic excitation energies with typically augmented double-$\zeta$ basis sets.
|
||||
This nicely complements our recent investigation on ground-state properties [see Loos et al., J. Phys. Chem. Lett. 10 (2019) 2931] which has evidenced that one recovers quintuple-$\zeta$ quality atomization and correlation energies with triple-$\zeta$ basis sets for a much lower computational cost than F12 methods.
|
||||
The present density-based correction relies on short-range correlation density functionals (with multideterminant reference) from range-separated density-functional theory to capture the missing part of the short-range correlation effects, a consequence of the incompleteness of the one-electron basis set.
|
||||
|
||||
We suggest Sandip Sharma, David Tew, Claudia Filippi, Eric Neuscamman and Emmanuel Fromager as potential referees.
|
||||
This contribution has never been submitted in total nor in parts to any other journal, and has been seen and approved by all authors.
|
||||
We look forward to hearing from you.
|
||||
|
||||
\closing{Sincerely, the authors.}
|
||||
|
||||
|
||||
\end{letter}
|
||||
\end{document}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
70
Cover_Letter/UPS_letterhead.sty
Normal file
70
Cover_Letter/UPS_letterhead.sty
Normal file
@ -0,0 +1,70 @@
|
||||
%ANU etterhead Yves
|
||||
%version 1.0 12/06/08
|
||||
%need to be improved
|
||||
|
||||
|
||||
\RequirePackage{graphicx}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%% DEFINE USER-SPECIFIC MACROS BELOW %%%%%%%%%%%%%%%%%%%%%
|
||||
\def\Who {Pierre-Fran\c{c}ois Loos}
|
||||
\def\What {Dr}
|
||||
\def\Where {Universit\'e Paul Sabatier}
|
||||
\def\Address {Laboratoire de Chimie et Physique Quantiques}
|
||||
\def\CityZip {Toulouse, France}
|
||||
\def\Email {loos@irsamc.ups-tlse.fr}
|
||||
\def\TEL {+33 5 61 55 73 39}
|
||||
\def\URL {} % NOTE: use $\sim$ for tilde
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% MARGINS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\textwidth 6in
|
||||
\textheight 9.25in
|
||||
\oddsidemargin 0.25in
|
||||
\evensidemargin 0.25in
|
||||
\topmargin -1.50in
|
||||
\longindentation 0.50\textwidth
|
||||
\parindent 5ex
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%% ADDRESS MACRO BELOW %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
\address{
|
||||
\includegraphics[height=0.7in]{CNRS_logo.pdf} \hspace*{\fill}\includegraphics[height=0.7in]{UPS_logo.pdf}
|
||||
\\
|
||||
\hrulefill
|
||||
\\
|
||||
{\small \What~\Who\hspace*{\fill} Telephone:\ \TEL
|
||||
\\
|
||||
\Where\hspace*{\fill} Email:\ \Email
|
||||
\\
|
||||
\Address\hspace*{\fill}
|
||||
\\
|
||||
\CityZip\hspace*{\fill} \URL}
|
||||
}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%% OTHER MACROS BELOW %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%\signature{\What~\Who}
|
||||
|
||||
\def\opening#1{\ifx\@empty\fromaddress
|
||||
\thispagestyle{firstpage}
|
||||
\hspace*{\longindendation}\today\par
|
||||
\else \thispagestyle{empty}
|
||||
{\centering\fromaddress \vspace{5\parskip} \\
|
||||
\today\hspace*{\fill}\par}
|
||||
\fi
|
||||
\vspace{3\parskip}
|
||||
{\raggedright \toname \\ \toaddress \par}\vspace{3\parskip}
|
||||
\noindent #1\par\raggedright\parindent 5ex\par
|
||||
}
|
||||
|
||||
%I do not know what does the macro below
|
||||
|
||||
%\long\def\closing#1{\par\nobreak\vspace{\parskip}
|
||||
%\stopbreaks
|
||||
%\noindent
|
||||
%\ifx\@empty\fromaddress\else
|
||||
%\hspace*{\longindentation}\fi
|
||||
%\parbox{\indentedwidth}{\raggedright
|
||||
%\ignorespaces #1\vskip .65in
|
||||
%\ifx\@empty\fromsig
|
||||
%\else \fromsig \fi\strut}
|
||||
%\vspace*{\fill}
|
||||
% \par}
|
BIN
Cover_Letter/UPS_logo.pdf
Normal file
BIN
Cover_Letter/UPS_logo.pdf
Normal file
Binary file not shown.
@ -514,7 +514,7 @@ However, these results also clearly evidence that special care has to be taken f
|
||||
\begin{squeezetable}
|
||||
\begin{table*}
|
||||
\caption{
|
||||
Vertical absorption energies $\Eabs$ (in eV) of excited states of ammonia, carbon dimer, water and ethylene for various methods and basis sets.
|
||||
Vertical absorption energies $\Eabs$ (in eV) of excited states of ammonia, carbon dimer, carbon monoxyde, ethylene and water for various methods and basis sets.
|
||||
The TBEs have been extracted from Refs.~\onlinecite{LooSceBloGarCafJac-JCTC-18, LooBogSceCafJac-JCTC-19} on the same geometries.
|
||||
See the {\SI} for raw data.}
|
||||
\label{tab:Mol}
|
||||
@ -561,12 +561,6 @@ However, these results also clearly evidence that special care has to be taken f
|
||||
& -0.07 & -0.01 & -0.03
|
||||
\\
|
||||
\\
|
||||
Carbon monoxide & $1\,^{1}\Sigma_g^+ \ra 1\,^{1}\Pi$ & Val. & 8.48\fnm[1] & 0.09 & 0.01 & 0.02
|
||||
& 0.05 & 0.00 &
|
||||
& 0.07 & 0.01 &
|
||||
& 0.07 & 0.00 &
|
||||
\\
|
||||
\\
|
||||
Carbon dimer & $1\,^{1}\Sigma_g^+ \ra 1\,^{1}\Delta_g$ & Val. & 2.06\fnm[3] & 0.15 & 0.03 & 0.00
|
||||
& 0.02 & -0.02 & -0.02
|
||||
& 0.13 & 0.02 & 0.00
|
||||
@ -578,35 +572,10 @@ However, these results also clearly evidence that special care has to be taken f
|
||||
& 0.11 & 0.02 & 0.00
|
||||
\\
|
||||
\\
|
||||
Water & $1\,^{1}A_1 \ra 1\,^{1}B_1$ & Ryd. & 7.70\fnm[1] & -0.17 & -0.07 & -0.02
|
||||
& 0.01 & 0.00 & 0.02
|
||||
& -0.02 & -0.01 & 0.00
|
||||
& -0.04 & -0.01 & 0.01
|
||||
\\
|
||||
& $1\,^{1}A_1 \ra 1\,^{1}A_2$ & Ryd. & 9.47\fnm[1] & -0.15 & -0.06 & -0.01
|
||||
& 0.03 & 0.01 & 0.03
|
||||
& 0.00 & 0.00 & 0.02
|
||||
& -0.03 & 0.00 & 0.00
|
||||
\\
|
||||
& $1\,^{1}A_1 \ra 2\,^{1}A_1$ & Ryd. & 9.97\fnm[1] & -0.03 & 0.02 & 0.06
|
||||
& 0.13 & 0.08 & 0.09
|
||||
& 0.10 & 0.07 & 0.08
|
||||
& 0.09 & 0.07 & 0.03
|
||||
\\
|
||||
& $1\,^{1}A_1 \ra 1\,^{3}B_1$ & Ryd. & 7.33\fnm[1] & -0.19 & -0.08 & -0.03
|
||||
& 0.02 & 0.00 & 0.02
|
||||
& 0.05 & 0.01 & 0.02
|
||||
& 0.00 & 0.00 & 0.04
|
||||
\\
|
||||
& $1\,^{1}A_1 \ra 1\,^{3}A_2$ & Ryd. & 9.30\fnm[1] & -0.16 & -0.06 & -0.01
|
||||
& 0.04 & 0.02 & 0.04
|
||||
& 0.07 & 0.03 & 0.04
|
||||
& 0.03 & 0.03 & 0.04
|
||||
\\
|
||||
& $1\,^{1}A_1 \ra 1\,^{3}A_1$ & Ryd. & 9.59\fnm[1] & -0.11 & -0.05 & -0.01
|
||||
& 0.07 & 0.02 & 0.03
|
||||
& 0.09 & 0.03 & 0.03
|
||||
& 0.06 & 0.03 & 0.04
|
||||
Carbon monoxide & $1\,^{1}\Sigma^+ \ra 1\,^{1}\Pi$ & Val. & 8.48\fnm[1] & 0.09 & 0.01 & 0.02
|
||||
& 0.05 & 0.00 &
|
||||
& 0.07 & 0.01 &
|
||||
& 0.07 & 0.00 &
|
||||
\\
|
||||
\\
|
||||
Ethylene & $1\,^{1}A_{1g} \ra 1\,^{1}B_{3u}$ & Ryd. & 7.43\fnm[3] & -0.12 & -0.04 &
|
||||
@ -640,6 +609,37 @@ However, these results also clearly evidence that special care has to be taken f
|
||||
& 0.05 & 0.04 &
|
||||
\\
|
||||
\\
|
||||
Water & $1\,^{1}A_1 \ra 1\,^{1}B_1$ & Ryd. & 7.70\fnm[1] & -0.17 & -0.07 & -0.02
|
||||
& 0.01 & 0.00 & 0.02
|
||||
& -0.02 & -0.01 & 0.00
|
||||
& -0.04 & -0.01 & 0.01
|
||||
\\
|
||||
& $1\,^{1}A_1 \ra 1\,^{1}A_2$ & Ryd. & 9.47\fnm[1] & -0.15 & -0.06 & -0.01
|
||||
& 0.03 & 0.01 & 0.03
|
||||
& 0.00 & 0.00 & 0.02
|
||||
& -0.03 & 0.00 & 0.00
|
||||
\\
|
||||
& $1\,^{1}A_1 \ra 2\,^{1}A_1$ & Ryd. & 9.97\fnm[1] & -0.03 & 0.02 & 0.06
|
||||
& 0.13 & 0.08 & 0.09
|
||||
& 0.10 & 0.07 & 0.08
|
||||
& 0.09 & 0.07 & 0.03
|
||||
\\
|
||||
& $1\,^{1}A_1 \ra 1\,^{3}B_1$ & Ryd. & 7.33\fnm[1] & -0.19 & -0.08 & -0.03
|
||||
& 0.02 & 0.00 & 0.02
|
||||
& 0.05 & 0.01 & 0.02
|
||||
& 0.00 & 0.00 & 0.04
|
||||
\\
|
||||
& $1\,^{1}A_1 \ra 1\,^{3}A_2$ & Ryd. & 9.30\fnm[1] & -0.16 & -0.06 & -0.01
|
||||
& 0.04 & 0.02 & 0.04
|
||||
& 0.07 & 0.03 & 0.04
|
||||
& 0.03 & 0.03 & 0.04
|
||||
\\
|
||||
& $1\,^{1}A_1 \ra 1\,^{3}A_1$ & Ryd. & 9.59\fnm[1] & -0.11 & -0.05 & -0.01
|
||||
& 0.07 & 0.02 & 0.03
|
||||
& 0.09 & 0.03 & 0.03
|
||||
& 0.06 & 0.03 & 0.04
|
||||
\\
|
||||
\\
|
||||
\end{tabular}
|
||||
\end{ruledtabular}
|
||||
\fnt[1]{exFCI/AVQZ data corrected with the difference between CC3/d-AV5Z and exFCI/AVQZ values. \cite{LooSceBloGarCafJac-JCTC-18}}
|
||||
@ -679,6 +679,15 @@ However, these results also clearly evidence that special care has to be taken f
|
||||
To do so, we consider the first singlet excited state of carbon monoxide (vertical excitation energies are reported in Table \ref{tab:Mol}).
|
||||
Figure \ref{fig:mu} represent $\rsmu{}{}(\br{})$ for the ground and excited states for the AVDZ, AVTZ and AVQZ basis sets.}
|
||||
|
||||
%%% FIG 3 %%%
|
||||
\begin{figure}
|
||||
\includegraphics[width=\linewidth]{CO}
|
||||
\caption{$\rsmu{}{\Bas}(z)$ along the molecular axis ($z$) for the ground state and first singlet excited state of \ce{CO} for various basis sets $\Bas$.
|
||||
The carbon and oxygen nuclei are located at $z=-1.249$ and $z=0.893$ bohr, respectively.}
|
||||
\label{fig:CO}
|
||||
\end{figure}
|
||||
%%% %%% %%%
|
||||
|
||||
%=======================
|
||||
\subsection{Doubly-Excited States of the Carbon Dimer}
|
||||
\label{sec:C2}
|
||||
|
@ -199,6 +199,15 @@ C 0.000000 0.000000 0.624021
|
||||
C 0.000000 0.000000 -0.624021
|
||||
\end{verbatim}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\subsection{Carbon monoxyde}
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
\begin{verbatim}
|
||||
C 0.000000 0.000000 -1.249421
|
||||
0 0.000000 0.000000 0.892667
|
||||
\end{verbatim}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\subsection{Ethylene}
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
@ -440,6 +449,17 @@ Here, we report the absolute energetic corrections for each state of each molecu
|
||||
& -0.049\,208 & -0.021\,292 & -0.01\,0257
|
||||
\\
|
||||
\\
|
||||
Carbon monoxyde & $1\,^{1}\Sigma^+$
|
||||
& & &
|
||||
& & &
|
||||
& & &
|
||||
\\
|
||||
& $1\,^{1}\Pi$
|
||||
& & &
|
||||
& & &
|
||||
& & &
|
||||
\\
|
||||
\\
|
||||
Water & $1\,^{1}A_1$
|
||||
& -0.058\,765 & -0.024\,014 & -0.011\,990
|
||||
& -0.066\,603 & -0.027\,236 & -0.013\,127
|
||||
|
Loading…
Reference in New Issue
Block a user