diff --git a/Cover_Letter/CNRS_logo.pdf b/Cover_Letter/CNRS_logo.pdf new file mode 100644 index 0000000..954b3f7 Binary files /dev/null and b/Cover_Letter/CNRS_logo.pdf differ diff --git a/Cover_Letter/CoverLetter.tex b/Cover_Letter/CoverLetter.tex new file mode 100644 index 0000000..bb88c1a --- /dev/null +++ b/Cover_Letter/CoverLetter.tex @@ -0,0 +1,41 @@ +\documentclass[10pt]{letter} +\usepackage{UPS_letterhead,xcolor,mhchem,mathpazo,ragged2e} +\newcommand{\alert}[1]{\textcolor{red}{#1}} +\definecolor{darkgreen}{HTML}{009900} + + +\begin{document} + +\begin{letter}% +{To the Editors of the Journal of Chemical Theory and Computation} + +\opening{Dear Editors,} + +\justifying +Please find enclosed our manuscript entitled +\begin{quote} +\textit{``Chemically-Accurate Excitation Energies With Small Basis Sets''}, +\end{quote} +which we would like you to consider as a Regular Article in the \textit{Journal of Chemical Theory and Computation}. +This contribution nicely fits in the \textit{``Quantum Electronic Structure''} section. + +Due to their diverse nature, the faithful description of excited states within electronic structure theory methods remains one of the grand challenges of modern theoretical chemistry. +In the present article, we show that, by combining selected configuration interaction methods and the recently proposed density-based basis set correction [see Giner et al., J. Chem. Phys. 149 (2018) 194301] one can obtain chemically-accurate vertical and adiabatic excitation energies with typically augmented double-$\zeta$ basis sets. +This nicely complements our recent investigation on ground-state properties [see Loos et al., J. Phys. Chem. Lett. 10 (2019) 2931] which has evidenced that one recovers quintuple-$\zeta$ quality atomization and correlation energies with triple-$\zeta$ basis sets for a much lower computational cost than F12 methods. +The present density-based correction relies on short-range correlation density functionals (with multideterminant reference) from range-separated density-functional theory to capture the missing part of the short-range correlation effects, a consequence of the incompleteness of the one-electron basis set. + +We suggest Sandip Sharma, David Tew, Claudia Filippi, Eric Neuscamman and Emmanuel Fromager as potential referees. +This contribution has never been submitted in total nor in parts to any other journal, and has been seen and approved by all authors. +We look forward to hearing from you. + +\closing{Sincerely, the authors.} + + +\end{letter} +\end{document} + + + + + + diff --git a/Cover_Letter/UPS_letterhead.sty b/Cover_Letter/UPS_letterhead.sty new file mode 100644 index 0000000..2e5f5bb --- /dev/null +++ b/Cover_Letter/UPS_letterhead.sty @@ -0,0 +1,70 @@ +%ANU etterhead Yves +%version 1.0 12/06/08 +%need to be improved + + +\RequirePackage{graphicx} + +%%%%%%%%%%%%%%%%%%%%% DEFINE USER-SPECIFIC MACROS BELOW %%%%%%%%%%%%%%%%%%%%% +\def\Who {Pierre-Fran\c{c}ois Loos} +\def\What {Dr} +\def\Where {Universit\'e Paul Sabatier} +\def\Address {Laboratoire de Chimie et Physique Quantiques} +\def\CityZip {Toulouse, France} +\def\Email {loos@irsamc.ups-tlse.fr} +\def\TEL {+33 5 61 55 73 39} +\def\URL {} % NOTE: use $\sim$ for tilde + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% MARGINS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +\textwidth 6in +\textheight 9.25in +\oddsidemargin 0.25in +\evensidemargin 0.25in +\topmargin -1.50in +\longindentation 0.50\textwidth +\parindent 5ex + +%%%%%%%%%%%%%%%%%%%%%%%%%%% ADDRESS MACRO BELOW %%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +\address{ + \includegraphics[height=0.7in]{CNRS_logo.pdf} \hspace*{\fill}\includegraphics[height=0.7in]{UPS_logo.pdf} + \\ + \hrulefill + \\ + {\small \What~\Who\hspace*{\fill} Telephone:\ \TEL + \\ + \Where\hspace*{\fill} Email:\ \Email + \\ + \Address\hspace*{\fill} + \\ + \CityZip\hspace*{\fill} \URL} + } + +%%%%%%%%%%%%%%%%%%%%%%%%%%%% OTHER MACROS BELOW %%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%\signature{\What~\Who} + +\def\opening#1{\ifx\@empty\fromaddress + \thispagestyle{firstpage} + \hspace*{\longindendation}\today\par + \else \thispagestyle{empty} + {\centering\fromaddress \vspace{5\parskip} \\ +\today\hspace*{\fill}\par} + \fi + \vspace{3\parskip} + {\raggedright \toname \\ \toaddress \par}\vspace{3\parskip} + \noindent #1\par\raggedright\parindent 5ex\par + } + +%I do not know what does the macro below + +%\long\def\closing#1{\par\nobreak\vspace{\parskip} + %\stopbreaks + %\noindent + %\ifx\@empty\fromaddress\else + %\hspace*{\longindentation}\fi + %\parbox{\indentedwidth}{\raggedright + %\ignorespaces #1\vskip .65in + %\ifx\@empty\fromsig + %\else \fromsig \fi\strut} + %\vspace*{\fill} +% \par} diff --git a/Cover_Letter/UPS_logo.pdf b/Cover_Letter/UPS_logo.pdf new file mode 100644 index 0000000..ca9ecee Binary files /dev/null and b/Cover_Letter/UPS_logo.pdf differ diff --git a/Manuscript/Ex-srDFT.tex b/Manuscript/Ex-srDFT.tex index b17b033..23bb3da 100644 --- a/Manuscript/Ex-srDFT.tex +++ b/Manuscript/Ex-srDFT.tex @@ -514,7 +514,7 @@ However, these results also clearly evidence that special care has to be taken f \begin{squeezetable} \begin{table*} \caption{ - Vertical absorption energies $\Eabs$ (in eV) of excited states of ammonia, carbon dimer, water and ethylene for various methods and basis sets. + Vertical absorption energies $\Eabs$ (in eV) of excited states of ammonia, carbon dimer, carbon monoxyde, ethylene and water for various methods and basis sets. The TBEs have been extracted from Refs.~\onlinecite{LooSceBloGarCafJac-JCTC-18, LooBogSceCafJac-JCTC-19} on the same geometries. See the {\SI} for raw data.} \label{tab:Mol} @@ -561,12 +561,6 @@ However, these results also clearly evidence that special care has to be taken f & -0.07 & -0.01 & -0.03 \\ \\ - Carbon monoxide & $1\,^{1}\Sigma_g^+ \ra 1\,^{1}\Pi$ & Val. & 8.48\fnm[1] & 0.09 & 0.01 & 0.02 - & 0.05 & 0.00 & - & 0.07 & 0.01 & - & 0.07 & 0.00 & - \\ - \\ Carbon dimer & $1\,^{1}\Sigma_g^+ \ra 1\,^{1}\Delta_g$ & Val. & 2.06\fnm[3] & 0.15 & 0.03 & 0.00 & 0.02 & -0.02 & -0.02 & 0.13 & 0.02 & 0.00 @@ -578,35 +572,10 @@ However, these results also clearly evidence that special care has to be taken f & 0.11 & 0.02 & 0.00 \\ \\ - Water & $1\,^{1}A_1 \ra 1\,^{1}B_1$ & Ryd. & 7.70\fnm[1] & -0.17 & -0.07 & -0.02 - & 0.01 & 0.00 & 0.02 - & -0.02 & -0.01 & 0.00 - & -0.04 & -0.01 & 0.01 - \\ - & $1\,^{1}A_1 \ra 1\,^{1}A_2$ & Ryd. & 9.47\fnm[1] & -0.15 & -0.06 & -0.01 - & 0.03 & 0.01 & 0.03 - & 0.00 & 0.00 & 0.02 - & -0.03 & 0.00 & 0.00 - \\ - & $1\,^{1}A_1 \ra 2\,^{1}A_1$ & Ryd. & 9.97\fnm[1] & -0.03 & 0.02 & 0.06 - & 0.13 & 0.08 & 0.09 - & 0.10 & 0.07 & 0.08 - & 0.09 & 0.07 & 0.03 - \\ - & $1\,^{1}A_1 \ra 1\,^{3}B_1$ & Ryd. & 7.33\fnm[1] & -0.19 & -0.08 & -0.03 - & 0.02 & 0.00 & 0.02 - & 0.05 & 0.01 & 0.02 - & 0.00 & 0.00 & 0.04 - \\ - & $1\,^{1}A_1 \ra 1\,^{3}A_2$ & Ryd. & 9.30\fnm[1] & -0.16 & -0.06 & -0.01 - & 0.04 & 0.02 & 0.04 - & 0.07 & 0.03 & 0.04 - & 0.03 & 0.03 & 0.04 - \\ - & $1\,^{1}A_1 \ra 1\,^{3}A_1$ & Ryd. & 9.59\fnm[1] & -0.11 & -0.05 & -0.01 - & 0.07 & 0.02 & 0.03 - & 0.09 & 0.03 & 0.03 - & 0.06 & 0.03 & 0.04 + Carbon monoxide & $1\,^{1}\Sigma^+ \ra 1\,^{1}\Pi$ & Val. & 8.48\fnm[1] & 0.09 & 0.01 & 0.02 + & 0.05 & 0.00 & + & 0.07 & 0.01 & + & 0.07 & 0.00 & \\ \\ Ethylene & $1\,^{1}A_{1g} \ra 1\,^{1}B_{3u}$ & Ryd. & 7.43\fnm[3] & -0.12 & -0.04 & @@ -640,6 +609,37 @@ However, these results also clearly evidence that special care has to be taken f & 0.05 & 0.04 & \\ \\ + Water & $1\,^{1}A_1 \ra 1\,^{1}B_1$ & Ryd. & 7.70\fnm[1] & -0.17 & -0.07 & -0.02 + & 0.01 & 0.00 & 0.02 + & -0.02 & -0.01 & 0.00 + & -0.04 & -0.01 & 0.01 + \\ + & $1\,^{1}A_1 \ra 1\,^{1}A_2$ & Ryd. & 9.47\fnm[1] & -0.15 & -0.06 & -0.01 + & 0.03 & 0.01 & 0.03 + & 0.00 & 0.00 & 0.02 + & -0.03 & 0.00 & 0.00 + \\ + & $1\,^{1}A_1 \ra 2\,^{1}A_1$ & Ryd. & 9.97\fnm[1] & -0.03 & 0.02 & 0.06 + & 0.13 & 0.08 & 0.09 + & 0.10 & 0.07 & 0.08 + & 0.09 & 0.07 & 0.03 + \\ + & $1\,^{1}A_1 \ra 1\,^{3}B_1$ & Ryd. & 7.33\fnm[1] & -0.19 & -0.08 & -0.03 + & 0.02 & 0.00 & 0.02 + & 0.05 & 0.01 & 0.02 + & 0.00 & 0.00 & 0.04 + \\ + & $1\,^{1}A_1 \ra 1\,^{3}A_2$ & Ryd. & 9.30\fnm[1] & -0.16 & -0.06 & -0.01 + & 0.04 & 0.02 & 0.04 + & 0.07 & 0.03 & 0.04 + & 0.03 & 0.03 & 0.04 + \\ + & $1\,^{1}A_1 \ra 1\,^{3}A_1$ & Ryd. & 9.59\fnm[1] & -0.11 & -0.05 & -0.01 + & 0.07 & 0.02 & 0.03 + & 0.09 & 0.03 & 0.03 + & 0.06 & 0.03 & 0.04 + \\ + \\ \end{tabular} \end{ruledtabular} \fnt[1]{exFCI/AVQZ data corrected with the difference between CC3/d-AV5Z and exFCI/AVQZ values. \cite{LooSceBloGarCafJac-JCTC-18}} @@ -679,6 +679,15 @@ However, these results also clearly evidence that special care has to be taken f To do so, we consider the first singlet excited state of carbon monoxide (vertical excitation energies are reported in Table \ref{tab:Mol}). Figure \ref{fig:mu} represent $\rsmu{}{}(\br{})$ for the ground and excited states for the AVDZ, AVTZ and AVQZ basis sets.} +%%% FIG 3 %%% +\begin{figure} + \includegraphics[width=\linewidth]{CO} + \caption{$\rsmu{}{\Bas}(z)$ along the molecular axis ($z$) for the ground state and first singlet excited state of \ce{CO} for various basis sets $\Bas$. + The carbon and oxygen nuclei are located at $z=-1.249$ and $z=0.893$ bohr, respectively.} + \label{fig:CO} +\end{figure} +%%% %%% %%% + %======================= \subsection{Doubly-Excited States of the Carbon Dimer} \label{sec:C2} diff --git a/Manuscript/SI/Ex-srDFT-SI.tex b/Manuscript/SI/Ex-srDFT-SI.tex index 35251be..aba399d 100644 --- a/Manuscript/SI/Ex-srDFT-SI.tex +++ b/Manuscript/SI/Ex-srDFT-SI.tex @@ -199,6 +199,15 @@ C 0.000000 0.000000 0.624021 C 0.000000 0.000000 -0.624021 \end{verbatim} +%%%%%%%%%%%%%%%%%%%%%%%%%%% +\subsection{Carbon monoxyde} +%%%%%%%%%%%%%%%%%%%%%%%%%%% + +\begin{verbatim} +C 0.000000 0.000000 -1.249421 +0 0.000000 0.000000 0.892667 +\end{verbatim} + %%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Ethylene} %%%%%%%%%%%%%%%%%%%%%%%%%%% @@ -440,6 +449,17 @@ Here, we report the absolute energetic corrections for each state of each molecu & -0.049\,208 & -0.021\,292 & -0.01\,0257 \\ \\ + Carbon monoxyde & $1\,^{1}\Sigma^+$ + & & & + & & & + & & & + \\ + & $1\,^{1}\Pi$ + & & & + & & & + & & & + \\ + \\ Water & $1\,^{1}A_1$ & -0.058\,765 & -0.024\,014 & -0.011\,990 & -0.066\,603 & -0.027\,236 & -0.013\,127