minor modif
This commit is contained in:
parent
3458654557
commit
9d965aa001
@ -284,8 +284,8 @@ The ECMD functional, $\bE{\text{c,md}}{\sr}[\n{}{},\rsmu{}{}]$, is a function of
|
||||
\lim_{\mu \to 0} \bE{\text{c,md}}{\sr}[\n{}{},\rsmu{}{}] & = \Ec[\n{}{}],
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
which correspond to the WFT limit ($\mu \to \infty$) and the DFT limit ($\mu = 0$).
|
||||
In Eq.~\eqref{eq:small_mu_ecmd}, $\Ec[\n{}{}]$ is the usual universal correlation density functional defined in Kohn-Sham DFT. \cite{HohKoh-PR-64, KohSha-PR-65}
|
||||
which correspond to the WFT limit ($\mu \to \infty$) and the \manu{Kohn-Sham }DFT (KS-DFT) limit ($\mu = 0$).
|
||||
In Eq.~\eqref{eq:small_mu_ecmd}, $\Ec[\n{}{}]$ is the usual universal correlation density functional defined in \manu{KS-}DFT. \cite{HohKoh-PR-64, KohSha-PR-65}
|
||||
|
||||
The key ingredient that allows us to exploit ECMD functionals for correcting the basis-set incompleteness error is the range-separated function
|
||||
\begin{equation}
|
||||
|
Loading…
Reference in New Issue
Block a user