diff --git a/Manuscript/Ex-srDFT.tex b/Manuscript/Ex-srDFT.tex index d49bf09..78953e6 100644 --- a/Manuscript/Ex-srDFT.tex +++ b/Manuscript/Ex-srDFT.tex @@ -284,8 +284,8 @@ The ECMD functional, $\bE{\text{c,md}}{\sr}[\n{}{},\rsmu{}{}]$, is a function of \lim_{\mu \to 0} \bE{\text{c,md}}{\sr}[\n{}{},\rsmu{}{}] & = \Ec[\n{}{}], \end{align} \end{subequations} -which correspond to the WFT limit ($\mu \to \infty$) and the DFT limit ($\mu = 0$). -In Eq.~\eqref{eq:small_mu_ecmd}, $\Ec[\n{}{}]$ is the usual universal correlation density functional defined in Kohn-Sham DFT. \cite{HohKoh-PR-64, KohSha-PR-65} +which correspond to the WFT limit ($\mu \to \infty$) and the \manu{Kohn-Sham }DFT (KS-DFT) limit ($\mu = 0$). +In Eq.~\eqref{eq:small_mu_ecmd}, $\Ec[\n{}{}]$ is the usual universal correlation density functional defined in \manu{KS-}DFT. \cite{HohKoh-PR-64, KohSha-PR-65} The key ingredient that allows us to exploit ECMD functionals for correcting the basis-set incompleteness error is the range-separated function \begin{equation}