modifs
This commit is contained in:
parent
b0dbb7393c
commit
4c648fb531
@ -334,10 +334,10 @@ The PBE correlation functional has clearly shown to improve energetics for small
|
||||
Therefore, based on the proposition of Ref.~\onlinecite{FerGinTou-JCP-18}, we introduce the general form of the PBE complementary functional:
|
||||
\begin{multline}
|
||||
\label{eq:def_pbe_tot}
|
||||
\bE{\PBE}{}[\n{}{},\tn{2}{},\rsmu{}{}] =
|
||||
\bE{\PBE}{\manu{\Bas}}[\n{}{},\tn{2}{},\rsmu{}{\manu{\Bas}}] =
|
||||
\int \n{}{}(\br{})
|
||||
\\
|
||||
\times \be{\text{c,md}}{\sr,\PBE}\qty(\n{}{}(\br{}),\tn{2}{}(\br{}),s(\br{}),\zeta(\br{}),\rsmu{}{}(\br{})) \dbr{},
|
||||
\times \be{\text{c,md}}{\sr,\PBE}\qty(\n{}{}(\br{}),\tn{2}{}(\br{}),s(\br{}),\zeta(\br{}),\rsmu{}{\manu{\Bas}}(\br{})) \dbr{},
|
||||
\end{multline}
|
||||
with
|
||||
\begin{subequations}
|
||||
@ -353,10 +353,10 @@ with
|
||||
In Ref.~\onlinecite{LooPraSceTouGin-JPCL-19}, some of the authors introduced a new PBE-based functional, here-referred as \titou{PBE-UEG},
|
||||
\begin{multline}
|
||||
\label{eq:def_pbe_tot}
|
||||
\bE{\titou{\PBE\text{-}\UEG}}{}[\n{}{},\n{2}{\UEG},\rsmu{}{}] =
|
||||
\bE{\titou{\PBE\text{-}\UEG}}{\manu{\Bas}}[\n{}{},\n{2}{\UEG},\rsmu{}{\manu{\Bas}}] =
|
||||
\int \n{}{}(\br{})
|
||||
\\
|
||||
\times \be{\text{c,md}}{\sr,\PBE}\qty(\n{}{}(\br{}),\n{2}{\UEG}(\br{}),s(\br{}),\zeta(\br{}),\rsmu{}{}(\br{})) \dbr{},
|
||||
\times \be{\text{c,md}}{\sr,\PBE}\qty(\n{}{}(\br{}),\n{2}{\UEG}(\br{}),s(\br{}),\zeta(\br{}),\rsmu{}{\manu{\Bas}}(\br{})) \dbr{},
|
||||
\end{multline}
|
||||
in which the on-top pair density was approximated by its UEG version,
|
||||
\begin{equation}
|
||||
@ -369,14 +369,14 @@ However, the underlying UEG on-top pair density might not be suited for the trea
|
||||
Therefore, we propose here the "PBE-ontop" (PBEot) functional,
|
||||
\begin{multline}
|
||||
\label{eq:def_pbe_tot}
|
||||
\bE{\PBEot}{}[\n{}{},\ttn{2}{},\rsmu{}{}] =
|
||||
\bE{\PBEot}{\manu{\Bas}}[\n{}{},\ttn{2}{\manu{\Bas}},\rsmu{}{\manu{\Bas}}] =
|
||||
\int \n{}{}(\br{})
|
||||
\\
|
||||
\times \be{\text{c,md}}{\sr,\PBE}\qty(\n{}{}(\br{}),\ttn{2}{}(\br{}),s(\br{}),\zeta(\br{}),\rsmu{}{}(\br{})) \dbr{},
|
||||
\times \be{\text{c,md}}{\sr,\PBE}\qty(\n{}{}(\br{}),\ttn{2}{\manu{\Bas}}(\br{}),s(\br{}),\zeta(\br{}),\rsmu{}{\manu{\Bas}}(\br{})) \dbr{},
|
||||
\end{multline}
|
||||
a variant inspired by the work of Ref.~\onlinecite{FerGinTou-JCP-18} where the exact on-top pair density is approximated by the extrapolation formula proposed by Gori-Giorgi and Savin:\cite{GorSav-PRA-06}
|
||||
a variant inspired by the work of Ref.~\onlinecite{FerGinTou-JCP-18} where the exact on-top pair density is approximated by the extrapolation formula proposed by Gori-Giorgi and Savin:\cite{GorSav-PRA-06}\manu{. In the present context, we use the on-top pair density in the basis set $\Bas$ $ \n{2}{\manu{\Bas}}(\br{})$ together with the associated range separation function $\rsmu{}{\Bas}(\br{})$, which leads to the following approximated on-top pair density: }
|
||||
\begin{equation}
|
||||
\ttn{2}{}(\br{}) = \n{2}{}(\br{}) \qty( 1 + \frac{2}{\sqrt{\pi}\rsmu{}{}(\br{})})^{-1}.
|
||||
\ttn{2}{\manu{\Bas}}(\br{}) = \n{2}{\manu{\Bas}}(\br{}) \qty( 1 + \frac{2}{\sqrt{\pi}\rsmu{}{\manu{\Bas}}(\br{})})^{-1}.
|
||||
\end{equation}
|
||||
%Such formula relies on the association between $\n{2}{\Bas}(\br{ },\br{ })$, which is the on-top pair density computed in the basis set $\Bas$ in a given point, and the local value of the range-separation parameter $\rsmu{}{\Bas}$ at the same point.
|
||||
The sole distinction between \titou{PBE-UEG} and PBEot is the level of approximation of the exact on-top pair density.
|
||||
|
Loading…
Reference in New Issue
Block a user